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Abstract—New mobile phones equipped with multiple
sensors provide users with the ability to sense the world
at a microscopic level. The collected mobile sensing data
can be comprehensive enough to be mined not only for the
understanding of human behaviors but also for support-
ing multiple applications ranging from monitoring/tracki ng,
to medical, emergency and military applications. In this
work, we investigate the feasibility and effectiveness of
using human contact traces collected from mobile phones to
derive social community information to control the disease
propagation rate in the healthcare domain. Specifically,
we design a community-based framework that extracts the
dynamic social community information from human contact
based traces to make decisions on who will receive disease
alert messages and take vaccination. Our approach can be
deployed using a centralized or distributed architecture.We
have experimentally evaluated our framework via a trace-
driven approach by using data sets collected from mobile
phones. The results confirmed that our approach of utilizing
mobile phone enabled dynamic community information is
more effective than existing methods, without utilizing social
community information or merely using static community
information, at reducing the propagation rate of an infectious
disease. This strongly indicates the feasibility of exploiting the
social community information derived from mobile sensing
data for supporting healthcare related applications.

I. I NTRODUCTION

The recent years have witnessed an explosion of the
usage of mobile wireless devices in our daily lives. In
particular, with the rapid deployment of sensing tech-
nology in mobile phones, the collected sensing data can
be comprehensive enough to be mined not only for the
understanding of human behaviors but also for supporting
a broad range of applications. For instance, most of the
mobile phones support the Bluetooth technology, and the
Bluetooth device-discovery software running in a mobile
phone allows it to collect information from other nearby
Bluetooth devices. It is thus convenient to exploit the
mobile phones equipped with Bluetooth technology to dis-
cover the encounter events between people such that their
social relationships can be derived and analyzed. More
importantly, the discovered social relationships can be used
to extract social communities [1], [2], which reflect close
relationships or similar behavior patterns among people,
to assist in the development of applications in various

domains, ranging from monitoring/tracking applications,
to medical, emergency and military applications.

The social community structures have been used ac-
tively in many areas including online social networks,
e.g., community detection in multi-dimensional networks
based on online social media [3], and wireless networks,
e.g., coping with the propagation of malware on smart
phones [4], and facilitating the packet forwarding in Delay
Tolerant Networks (DTNs) [5]. However, few studies
have been done in exploiting social community structures
extracted from mobile phones to control the propagation
of infectious diseases in the healthcare domain. In this
work, we focus on building a mobile phone enabled social
community based framework to reduce the rate at which
an infectious disease spreads.

In the healthcare domain, the infectious disease is a
clinically illness resulting from the presence of pathogenic
microbial agents [6], [7]. Transmission of the infectious
diseases such as SARS, bird flu and swine flu [8] can
occur when people are in close proximity. For example,
the air around a person with swine flu may contain
H1N1 virus and infect the other people close-by [9]. The
transmission of infectious diseases in public is a serious
problem related to life or death and can cause panic in
the whole society if not controlled effectively. Due to the
typical characteristic of a slow start and then exponential
propagation of the disease [10], mitigating an infectious
disease at its early stage is critical and vaccination is a
typical strategy. Because of the limited supply of vaccines
and its relatively high cost when applying to a large
population, how to efficiently distribute the vaccine and
in the meanwhile achieving the goal of effective control
of the disease propagation is an important problem.

Besides the traditional random vaccination strategy,
recent work used bridge users identified in the human
contact networks as distribution points of vaccination [11].
We are not aware of any prior work that exploits social
relationships systematically for effective vaccination such
that the propagation rate of an infectious disease can be
reduced. Since many infectious diseases propagate via
human interactions, the social communities derived from
mobile phone proximity traces in our daily lives can



be utilized to choose the set of people that need to be
vaccinated or alerted such that we can mitigate the disease
propagation more effectively and economically as opposed
to randomly choosing any person to be vaccinated or
alerted.

In light of these benefits, in this paper, we design a
social community-based method that exploits the social
relationships derived from mobile phone Bluetooth traces
to reduce the rate at which an infectious disease spreads.
Based on human’s encounter events, multiple communities
are derived and kernel structures are extracted. The com-
munity information may vary over time. Previous works
in community extraction typically find communities over
the whole trace and such static community information
is then used for making decisions, e.g., selecting the
appropriate relaying users for message dissemination [5].
However, static community extraction cannot capture the
time-varying community information present in the trace.
In our work, we propose to extract community structures at
different time periods and then merge these extracted com-
munities to capture the dynamic community information
so as to control the disease propagation more effectively.

People who are in the same community or kernel struc-
ture are present in the close proximity more frequently
and thus may interact more with each other, whereas
those people across different communities imply fewer
interactions. We believe those people within the same
communities or kernel structures as the sick people have
higher risks to get infected, and thus should be at least
given disease alert messages and receive vaccine shots
if available. Moreover, we develop a framework which
supports two architectures, centralized and distributed,
to utilize the dynamic social community information to
control the disease spreads.

We experimentally evaluated our framework through a
trace-driven approach by using the MIT reality mining
trace [12] and the Italian trace [13]. The results showed
that our strategy is highly effective for efficient vaccination
to control disease propagation when comparing to methods
without using social relationships and schemes merely
utilizing static community information.

The rest of the paper is organized as follows. We first
put our work in the context of current research in Sec-
tion II. We then present our mobile phone enabled social
community based framework in Section III. It describes
the decentralized along with the distributed system models
in our framework and the disease infection model used in
this work. We next present our dynamic social community
based scheme in Section IV. In Section V, we validate the
feasibility of our framework by using datasets collected
from mobile phones and compare with existing methods.
Finally, we conclude our work in Section VI.

II. RELATED WORK

Group discovery and community detection have been
an active research area. In [14], the Kernighan-Lin algo-

rithm was introduced to improve the initial division of a
network by optimizing the number of graph edges within
and between the partitions using the greedy algorithm.
[1] developed a sociological approach called hierarchical
clustering. The idea behind this method is to develop a
measure of similarity between each pair of vertices from
the structure of the network and merge the communities
with the highest similarity. The algorithm of Girvan and
Newman [2] divided the network by iteratively removal
of the edges. The betweenness metric is a centrality
measure of a vertex within a graph. Vertices that occur
on many shortest paths between other vertices have higher
betweenness than those that do not. [15] further analyzed
the computational cost of the betweenness metric in social
networking applications.

Another important metric in community detection is
modularityQ as described in [3], [16] where a larger mod-
ularity indicates more frequent within-group interaction. In
general, one aims to find a community structure such that
Q is maximized. On the other hand, instead of relying on
a centralized server, [17] proposed distributed community
detection, which makes mobile devices sense and detect
their own local communities.

The active development of group discovery and com-
munity detection provides promising techniques for ap-
plying social relationships to support various application
domains. [3] performed online group discovery in multi-
dimensional networks obtained from various social media
(e.g., YouTube and Flickr). [18], [19] conducted social
network analysis in Delay Tolerant Networks by utilizing
betweenness and similarity metrics. Moreover, the social
community structures were utilized to cope with the prop-
agation of malware on smartphones in mobile networks
as proposed in [4], and [10] developed a social network
based patching scheme for effectively limiting the spread
of MMS and SMS based worms in cellular networks.

However, little work has been done in applying social
community structures to effectively control the disease
propagation through vaccination in the healthcare domain.
[20] studied the relationships between the voluntary vac-
cination and the transmission of a vaccine-preventable
infection. It pointed out that the propagation of the disease
is related with the neighborhood size. [21] proposed to
study contact networks, where each person’s role in a
population is treated as distinct, i.e., a heterogeneous
population. It suggested that by restricting the contacts
themselves, one can also limit disease spread effectively.
This would correspond to deleting edges in the modeled
contact network.

[11] further considered the modeling of the disease
spread over populations. It proposed that vaccinating the
groups of more sociable persons can prevent a larger num-
ber of infectious than if administering the same number
of vaccinations to random members of the population.
None of these works have systematically investigated the
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Fig. 1. Epidemic infection model used in our framework.

effectiveness of exploiting social community structures for
efficient vaccination such that the propagation rate of an
infectious disease is reduced. Our work is novel in that
we extracted dynamic social community information by
leveraging the contact traces derived from mobile phones
and proposed a community based framework for control
of disease propagation.

III. F RAMEWORK OVERVIEW

In this section, we first provide the system model for
our mobile phone enabled disease control framework, and
present descriptions of both the centralized and distributed
architecture in our framework. We envision this framework
can be implemented by any State Department of Health
through the coordination of the Centers for Disease Con-
trol and Prevention (CDC). For example, during the 2009
spreading period of the pandemic influenza A (H1N1)
virus, every state in US is required to report the number of
infected patients to the CDC. The available vaccines are
then allocated appropriately by the CDC to the different
states [22].

We then present the infection model used in our work
and provide an analysis on the state transitions in our
model. Without loss of generality, we do not consider the
differences between users and assume that all the users
follow the same infection model.

A. System Model

1) Uncovering Human Social Relationships from Con-
tact Traces via Mobile Phones:Instead of random vaccine
distribution, targeting vaccination to a group of people
with higher risk of infection can provide more effective
control of an infectious disease propagation. Traditionally,
scientists and doctors have to rely on social relationships
derived via manually recorded daily activities from human
subjects [12]. However, this approach is tedious, error-
prone as the human subjects may forget to perform record-
ing from time to time, and can be out of date. In this work,
we consider extracting social community information from
human contact traces collected by mobile phones.

The Bluetooth enabled device-discovery process is sim-
ple and automatic, and thus is suitable for recording
encounter events between people for social relationship

analysis. Our framework will utilize the existing infras-
tructure in cellular networks. We assume the users are
subscribed to the cellular data plan and recorded en-
counter events (which include discovered device IDs and
timestamps) will be periodically sent back to a back-end
server authorized by the service provider. The dynamic
community extraction mechanism is run by the server. The
detailed description of our dynamic community extraction
approach is presented in Section IV. Moreover, the ex-
tracted community information will be stored at the server
and updated from time to time.

2) Centralized vs. Distributed Architecture:We design
two types of messages that a user may receive:vaccination
and alert. A user who receives avaccination message
should go to obtain a vaccine shot, whereas a user receiv-
ing a alert message should take precautions as directed.
We assume that all the users who have been notified
will take the necessary recommendated actions. In our
framework, vaccine shots of an infectious disease only
have limited supplies and are more costly comparing to
alert messages. The number ofalert messages for each
disease can be either controlled or unlimited. To protect the
useres’ privacy, such messages will be sent anonymously
so that the receivers do not know who the senders are. The
full discussion of the privacy issue is out of the scope of
this paper and will be included in our future work.

When actions need to be taken for an infectious disease,
in the centralized architecture, the server will decide on
who will receive vaccination messages and who will
receivealert messages respectively based on the extracted
social communities stored in its database. Then the server
will send out each message to corresponding users.

On the other hand, in the distributed architecture, each
user who has already been infected by the disease will
download the community information related to his device
ID from the server. We note that although the user based
community information only contains a partial view of
the whole community information stored in the server, the
memory requirement of storing such partial community
information is much less than that of storing the whole
community information. This makes it applicable to store
the partial community view in individual mobile devices.
Based on the downloaded social community information,

3



Notation Description
pin Disease infection probability
pin × pal Disease infection probability

with alert messages
pre Recovery probability

after the recovery cycle
pre × pim Probability of recovery with immunization

after the recovery cycle
pre × (1 − pim) Probability from infective to susceptible

after the recovery cycle
Np The length of the disease recovery cycle

TABLE I
NOTATIONS USED IN THE INFECTION MODEL.

each sick user will then decide on whether to send out a
vaccinationmessage or aalert message when he encoun-
ters the next person, i.e., a new person discovered by the
sick person’s mobile device.

The distributed approach is a challenging architecture
as it requires peer-to-peer communications over an ad hoc
wireless network. Moreover, in our future work, we plan
to develop distributed social community extraction scheme
so that each user has the capability to derive his local
community and does not rely on the centralized server.

B. Infection Model

In our framework, we extend the standard epidemic SIR
model [23] to four states:susceptible without alert, sus-
ceptible with alert, infectiveand immunized. Susceptible
means that a user can be infected by the disease. When a
user is susceptible, he can be at eithersusceptible without
alert or susceptible with alert. When a user is infected, he
goes to theinfectivestate and he can infect other people
that he encounters. A user may go to theimmunizedstate
only when he is either vaccinated or has recovered from
the disease with immunity.

The notations used in the infection model and across
the paper are summarized in Table I. We depicted the state
transition diagram of our infection model in Figure 1 and
list all possible state transitions as follows:

(1) From Susceptible (without alert)to Immunized: In
the centralized architecture, the server will choose the
users who should receive thevaccinationmessages based
on the extracted social community information and send
the vaccinationmessages to these users directly. Whereas
in the distributed architecture, the user who is already
infected will decide on who should receive thevaccination
messages based on the social community information
downloaded from the server and the next set of people
he will encounter.

(2) FromSusceptible (without alert)to Susceptible (with
alert): Likewise, in the centralized architecture, the server
chooses the users who should receive thealert messages
based on the extracted social community information
and sends thealert messages to these users directly.
Whereas in the distributed architecture, the user who is
already infected will determine who should receive the
alert messages based on the social community information

downloaded from the server and the next set of people he
will encounter.

(3) From Susceptible (without alert)to Infective: If a
user encounters a sick person, the user has a probability
pin of being infected.

(4) FromSusceptible (with alert)to Infective: Since pre-
cautions will be taken for users at theSusceptible (with
alert) state, the probability of such a user get infected
when he encounters a sick person is reduced topin × pal.

(5) From Infective to Immunized: An infected user
moves to theImmunizedstate after he has recovered from
the disease with immunity. This happens with a probability
of pre × pim every recovery cycle (set toNp days).

(6) FromInfectiveto Susceptible (without alert): An in-
fected user moves to theSusceptible (without alert)state if
he has recovered from the disease, but not immunized from
being infected again. Based on item (5), this probability
should bepre × (1 − pim) for every recovery cycle.

C. Analysis of State Transitions

The epidemic infection model includes rules on how the
members of users transit from one state to another. Directly
analyzing the state transitions within the social community
model is prohibitive. Thus, we analyze the state transitions
based on users’ encounter events. Because we believe
that this analysis can provide us with an upper bound of
the final infected ratio for our dynamic community based
system since the contact rate is assumed to be constant
in the analytical model, although in real system this rate
decreases as more people gets infected or vaccinated.

We assume that the total number of usersNtotal will
not change and users only transit from one state to another
state. LetS1(t) andS2(t) denote the number of users in
the stateSusceptible (without alert)andSusceptible (with
alert), respectively.I(t) denotes the number of users in
the stateInfectiveand R(t) denotes the number of users
Immunized. Time t is taken as a variable here. We assume
that the encounters between infected users and other ones
occur at an average rate ofβ, which is often referred to as
the contact rate. The state transitions can be represented
through the following equations:

S1(t+∆t)−S1(t)
∆t

=−β·I(t)·S1(t)·(1−pva)−β·I(t)·S1(t)·pva

+pre·(1−pim)·I(t)·δ(t−Np·N) (1)

S2(t+∆t)−S2(t)
∆t

=β·I(t)·S1(t)·(1−pva)−β·I(t)·S2·(t)·pin·pal (2)

I(t+∆t)−I(t)
∆t

=β·I(t)·S2(t)·pin·pal−pre·pim·I(t)·δ(t−Np·N)

−pre·(1−pim)I(t)δ(t−Np·N) (3)

R(t+∆t)−R(t)
∆t

=β·I(t)·S1(t)·pva+pre·pim·I(t)·δ(t−Np·N) (4)
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Fig. 2. Ratio of the users at different states when varying recovery cycle
and contact rate.

In the equations above, theN = 1, 2, 3, ... and the function
δ(t) is defined as:

δ(x) =

{

1 if x = 0;

0 otherwise.
(5)

For the above equations, we also have:

S1(t) + S2(t) + I(t) + R(t) = Ntotal. (6)

D. Analytical Results

Based on the above state transition analysis, we vary the
parameters in the infection model to provide an illustration
of the number of users at each state as a function of time.
We first vary the contact rateβ to study its impact: we
consider a contact rate of 0.06 and 0.01. Based on the
results depicted in Figure 2 (a) and (b), we concluded that
the infected ratio remained low for the whole duration
when users meet less frequently, while the number of
infected people increases significantly if users meet more
frequently. This indicates that our infection model can
precisely capture the propagation trend of an infectious
disease.

We then set the contact rateβ = 0.02 based on the
mean value observed from the MIT reality trace [12] and
examine the number of users at different states when the
initial ratio of the sick person is set to 0.15. Figure 2
(c) and (d) plotted the results for 10 testing days when
recovery cycle is 1 day and 4 days respectively. We
observed that the ratio of the infected persons increases
as the time moves along. In particular, it increases to 0.2
and 0.45 for 1 day and 4 days recovery cycle at the end
of the testing period.

IV. DYNAMIC EXTRACTION OF COMMUNITY

INFORMATION

For the community information, we define two types
of social clusters to represent different levels of social
relationships: one is refereed to ascommunityand the other
is referred to askernel structure. The people within the
same community meet frequently with one another, while
the kernel structure aims to capture a subset of people
on top of the community structures that have even higher
encounter frequency. Instead of using static community
information derived from the whole trace, we propose
an approach calleddividing andmerging, where dynamic
community information is utilized since people may be-
long to different social communities at various times, and
communities may appear or disappear in different time
periods.

Flow Overview. Our dynamic community and kernel
extraction approach is illustrated in Figure 3. First, mobile
phones with Bluetooth capability record user encounter
events. The recorded human encounter events are divided
into multiple trace files based on each time window. We
note that the length of the time window is adjustable (e.g.,
the length of the time window can be one day).

From each contact trace file, two contact graphs are
constructed. One will be used for extracting community
and the other for extracting kernel structure. Hierarchical
clustering method can be one of the options to extract
both community and kernel structures. The extracted com-
munity and kernel structures learnt for the current time
period are then merged with the existing community and
kernel structures that our system maintains. The combined
community and kernel structures will be used to make de-
cisions on who to send thevaccinationandalert messages
when the next request coming from the server or from an
individual user based on the specific architecture used in
our framework.

In following subsections, we first describe how we
construct contact graphs and our dividing strategy for the
construction of community and kernel structures. Then, we
describe how we merge the newly learnt community and
kernel structures from different trace files with the existing
community information.

A. Dividing Based Contact Graph Construction

The whole contact trace is divided into multiple trace
files. We assume that each trace file consists of recorded
encounter events that happened during the time period
[Ti, Ti+1]. Each entry in such a trace is a record of one
encounter event between two mobile phones: including
the starting and ending time of the contact as well as
unique IDs of the mobile phones. We also assume that
the same person carries the mobile phone for the duration
of the trace. Based on this information, a contact graph
G = (V, E) can be derived, which consists of a vertex
set V and an edge setE. Each vertexu ∈ V denotes a
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person, while each edgee(u, v) denotes that personu has
contacted personv for at leastW times. The weightt(u, v)
denotes how frequent the two personsu andv meet during
[Ti, Ti+1]. We use the number of times that the two persons
have encountered with each other as the weight because
the people who encounter with each other frequently tend
to have closer relationships or similar social behaviors (e.g.
riding on the same train to go to work each morning).

B. Community & Kernel Structures Extraction From Con-
tact Graphs

For each trace file, we construct two contact graphs:
one with W = w1 and the other withW = w2 where
w2 > w1. Clusters extracted using the first contact graph
are referred to as communities, whereas clusters extracted
from the second one are referred to as kernel structures.

An illustration of community and kernel structures is
shown in Figure 4. Two communities can be extracted
using a contact graph. Community 1 consists of users {A,
B, C, D, H} while Community 2 consists of users {E,
F, G, I}. The communities are shown as dotted circles.
Moreover, by using a higherW , three sets of users, namely
{A, B,C}, { E, F , G} and {D, H} are found having
higher encounter frequencies within the same set than the
rest of users. Thus, they form 3 different kernel structures
(shown with solid circles).

For scalability, it is important that an efficient algorithm
is used to partition the contact graphG = (V, E) into
separate clusters. In this paper, we use a simple, yet
effective partition algorithm called hierarchical cluster-
ing [24]. Further, to verify whether a particular division is
meaningful or not, we use the modularity metric,Q [24].
This metric has often been used by researchers in previous
studies to measure how good a partition is. A largerQ

value indicates a better partition of the users.

C. Merging Community Information Extracted over Dif-
ferent Time Periods

Recall that the social community information may
change with time: some communities may merge, some
may disappear, and others may be divided into smaller

ones. We next describe our community merging technique.
We note that the same technique is applied to merge kernel
structures.

We assume that we have D time windows. We have
constructed one contact graph from each time period
and we assume these are non-overlapping time periods:
[T0, T1], [T1, T2],..., [TD−1, TD] with G1 = (V1, E1),
G2 = (V2, E2),..., GD = (VD, ED). The communities are
extracted from each contact graphGi = (Vi, Ei) by using
the hierarchical clustering algorithm and the modularity Q.
Let Si represents the set of communities found for time
window i. Thus, we haveS1, S2, ..., SD. EachSi contains
a set of verticesAi. Each Ai has been divided intoki

communities, which are represented as follows:

Ai = A1
i ∪ A2

i ∪ ... ∪ Aki

i (7)

We compare each community inSi with all the com-
munities discovered inSi+1 to see if a community inSi

satisfies one of the following conditions:

• It is part of a bigger community inSi+1 and hence
can be removed.

• It can be merged with one community inSi+1 using
the community merge operation for two communities
A

j
i andAl

i+1 under an adjustable thresholdτ :

|Aj
i ∩ Al

i+1|

Max(|Aj
i |, |A

l
i+1|)

> τ (8)

• It is a superset of a communityAj
i+1 in Si+1, then

A
j
i+1 is removed from setSi+1 .

At the end of this operation, the two setsSi andSi+1 are
unioned to form a newS

′

i+2, which will merged withSi+2

in the next round of comparison. The merging process
iterates through D time windows.

D. Using Extracted Community Information in Disease
Propagation Control

Based on our community information extraction strat-
egy, people that belong to the same kernel structures have
a higher encounter frequency. Thus, an infectious disease
has a higher probability to spread among these group of
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people if one person is infected already. Similarly, those
in the same community as a sick person are also more
susceptible to be infected by the disease. However, the
probability for the disease to spread across two disjoint
communities is low because people in such communities
contact less frequently. We note that one person can belong
to multiple communities and kernels. LetVs represent the
set of sick persons for a particular infectious disease. We
define the susceptible persons who are in the same kernels
as the sick people asVk, while those susceptible persons
who are in the same communities but are not in the same
kernels as those sick people asVc.

Because of the limited supply and relatively high cost of
vaccines, an appropriate decision on efficient vaccination
is that the vaccine shots and the alert messages should
be given to those people who have higher risk of being
infected by the disease. Thus, by utilizing the community
information, the people inVk should have higher priority
to receivevaccinationor alert messages than those inVc.
We further define the importance of a person by the weight
when there are totalM number of extracted communities
(or kernel structures):

Definition 1. The weightW (v, S) of a personv in the
community (or kernel structure) setS = V1, V2, ..., VM is
defined as the total number of people in the community (or
kernel structure) thatv belongs to:W (v, S) =

∑

(|Vj |−1)
for all Vj which satisfiesv ∈ Vj .

We further return the topK user list based on the
following function:

Definition 2. TheTOP (V, K) is defined as the function
which can return a Top-K ranked list of the persons inV

based on their weightsW .
Our goal is to find two optimum sets of people, one

for receivingvaccinationmessages for vaccine shots, and
the other for receivingalert messages, such that we can
keep the infection rate low and effectively control the
propagation of the disease. We next describe how these
two sets of users are selected in our community-based
framework.

Centralized Community Based Algorithm. As de-
scribed in Section III, the server will decide who to receive
vaccinationor alert messages. The flow of the centralized
community based algorithm is as follows:

• The kernel structuresVk are considered first and the
weight of each person inVk reflects the priority. The
functionTOP (Vk, K) is called to produce the topK
user listLk, whereK is determined by the number
of availablevaccinationor alert messages.

• If there are remainingvaccination and alert mes-
sages after considering all the people inVk, then
the community structuresVc are considered and the
weight of each person inVc reflects the priority. The
TOP (Vc, K) function is called to return the topK
user list Lc, whereK will be set to the remaining
value ofvaccinationor alert messages.
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Fig. 4. An example of social community.

• In the case that the number of these messages is
larger than the number of total susceptible persons
in Vc

⋃

Vk, the remainder messages are held till the
next update of the community information as new
persons may appear.

We note that for every round of calculation, choosing
the candidates to send out thevaccinationmessages will
take higher priority thanalert messages.

Distributed Community Based Algorithm. The sick
person i downloads his community setV i

c and kernel
structure setV i

k information from the server. In the mean-
time, the sick person will check the availability of the
vaccinationand alert messages with the server. We note
that the community and kernel structure sets may also
be possibly determined by users themselves, e.g., [17].
This issue is further explored in our future work. The sick
person then performs the following:

• The sick person sets the persons who are inV i
k as

candidate user list for sending out thevaccination
messages.

• The sick person sets the persons who are inV i
c as

candidate user list for sending out thealert messages.
• The sick person sends out corresponding messages

when he encounters another user who belongs to the
above candidate lists. We note that if there are not
enoughvaccinationmessages for the people inV i

k ,
the alert messages will be sent instead.

V. PERFORMANCEEVALUATION

In this section, we first describe our simulation method-
ology and present three existing methods for vaccination
distribution. We then present the performance of our social
community based methods by comparing to the existing
techniques.

A. Simulation Methodology

We implemented our framework in a home-grown trace-
driven simulator. We used two human contact-based traces,
namely the MIT reality [12] and Italian [13] traces. Both
traces were collected using smart phones equipped with
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Fig. 5. MIT traces: Performance comparison under differentrecovery cycleNp when there are 15 vaccines and 30 alert messages withpin = 0.5,
pal = 0.7, pre = 0.1, pim = 0.2, pva = 0.3.

bluetooth devices. Each trace contains information about
the IDs of the Bluetooth devices which are within the
transmission range of each other, and the starting and
ending times of their encounter. The MIT traces were
collected from smart phones carried by 97 participants in
an university environment. We used the first 20 days of
the MIT traces which contains encounter events from 71
people. In particular, we used the first half of the trace
(i.e., 10 days) as training data to extract the communities
and kernel structures, and the second half trace as the
testing data to evaluate our approach. In the Italian traces,
there are 44 people who carried the smart phones and
the experiment lasted for 19 days. Similarly, we used the
first 9 days of the trace as training data to extract the
communities and kernel structures, and the remaining 10
days to evaluate our approach. We conducted extensive
experiments on these two sets of traces by varying different
parameters in our epidemiology infection model. Due to
the space limit, we only present a subset of the results in
the following subsections.

B. Existing Methods

We compare our social-community based approach to
the following three existing methods for efficient vaccine
distribution to achieve effective disease propagation con-
trol.

Random Distribution Method. This is the most
straight forward method. In this method, the server will
randomly choose the users to receive thevaccinationand
alert messages.

Encounter-based Method.This method involves mes-
sage distribution based on the encounter of mobile phones.
We apply the scheme in [25] and let the sick user to send
out messages when it encounters a susceptible person. In
our simulation, once the sick person encounters with a
susceptible person, thevaccinationmessage is sent with
the probabilitypva, while thealert message is sent with
the probability1 − pva.

Betweenness-based Community Method.This method
is an improvement overRandom Distribution. The concept
of the betweenness [2] is used to identify a set of key users
that act as bridge users in a contact network [11]. The
extraction of bridge users is based on the whole trace and

thus is static. Each susceptible person is ranked based on
the betweenness metric, and then the persons with higher
ranks will be chosen to receivevaccinationmessages while
the persons with lower ranks will be chosen to receivealert
messages. This approach has an advantage of obtaining a
set of more active users from the population thanRandom
Distribution.

C. Effectiveness of Disease Propagation Control

In the first set of experiments, we evaluate the effec-
tiveness of our social community based methods in terms
of the final ratio of infected persons at the end of our test
by comparing to existing methods ofRandom Distribution
andEncounter-based. We use the MIT traces and vary both
the recovery cycleNp and the initial sick ratio. Figure 5
presents the final ratio of the infected persons versus the
recovery cycle. TheNo vaccineis plotted as a baseline
case.

The key observation is that our proposed community
based methods, both centralized and distributed, consis-
tently achieve a lower infection ratio thanRandom Distri-
bution andEncounter-basedmethods for each initial sick
ratio and each recovery cycle. This observation is also
inline with our analytical results depicted in Figure 2 (a)
and (b). This is very encouraging since the persons chosen
by our community-based methods to havevaccinationor
alert messages interact more frequently with each other.
Consequently, the proposed community based methods
can control the disease propagation more effectively than
other methods. We also found that the final infection ratio
increases when the initial infection ratio or recover cycle
increases for all the methods.

Moreover, we found that the performance of our central-
ized community based method is better than its distributed
version. This is because in the centralized approach, the
distribution of vaccinationor alert messages is based on
the complete picture of the social community information,
instead of the partial local community information in the
distributed case.

D. Impact of the Number of vaccination and alert Mes-
sages

Next, we change the available number of thevacci-
nation and alert messages under different initial ratios
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Fig. 6. MIT traces: Performance comparison under differentnumber of
vaccinationandalert messages withpin = 0.5, pal = 0.7, pre = 0.1,
pim = 0.2, pva = 0.3, Np = 4 days.

of infected persons. The results from MIT traces are
presented. Figure 6(a) and (b) depicted the results of 30
alert messages and unlimited alert messages respectively,
when the available number of vaccines is 15, which is
about 20% of the total number of people in the experiment.
While Figure 6(c) and (d) presented the results of 30 alert
messages and unlimited alert messages respectively, when
the available number of vaccines is 35, which is about 50%
of the total number of people in the experiment. Again,
we observed that our proposed community based method
can achieve a much lower final infection ratio than the
Random DistributionandEncounter-basedmethods under
different number ofvaccinationandalert messages.

Furthermore, we found that there is an increasing trend
of the infection ratio as we increase the initial ratio of
sick persons. However, the final infection ratio decreases
as the number ofalert messages increases from 30 to
unlimited. This is consistent with our expectation: more
alert messages allow more people to take the necessary
precautions, which reduce their chances of being infected,
and hence reducing the number of total infected people.

In addition, comparing the results in Figure 6 under
different vaccine numbers, we found that the performance
difference between our proposed community based meth-
ods and other methods is smaller when increasing the
vaccine number from 15 to 35. This further indicates that
our proposed approach is more effective when the supply
of vaccine is limited.

E. Comparison with the Static Betweenness Method

In Figure 7, we compare the results obtained from
our community-based approach and the static betweenness
based community method (shortened asBetweenness). The
y-axis shows the improvement in the final infection ratio
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(a) Scenario 1: Initial sick ratio: 0.09 (b) Scenario 2: Initial sick ratio: 0.24

Fig. 7. MIT traces: Comparison of community based methods and
the static betweenness method under different number of vaccines when
there are 30 alert messages withpin = 0.5, pal = 0.7, pre = 0.1,
pim = 0.2, pva = 0.3, Np = 4 days.

for different methods when compared to theNo vaccine
scenario, whereas the x-axis shows the number of vaccines
used in our community-based methods andBetweenness.
The results clearly showed that our community based ap-
proach outperforms the static betweenness based method,
especially when there are fewer number of vaccines is
available (i.e., the case with 15 vaccines) for both initial
sick ratios of 0.09 and 0.24. This is becauseBetweenness
selects the relaying users for message dissemination from
static community information. However, static community
information cannot capture the time-varying community
information present in the trace. On the contrary, our
community based method uses dynamic community infor-
mation produced from our community extraction process,
and hence it can control the disease propagation more
effectively.

F. Results from Italian Traces

Finally, we present our study using the Italian traces.
Due to the space limitation, only the key results are
presented. We changed the available number of thevacci-
nation andalert messages using different initial ratios of
infected persons and examined the final ratio of infected
persons. The results depicted in Figure 8 exhibit the
same trend as we observed when using MIT traces: our
social community based methods outperforms the existing
methods.

Comparing these results with those obtained from MIT
traces in Figure 6, we further observed that the perfor-
mance difference between our proposed community based
methods and the existing methods is relatively smaller in
the Italian traces. We found that this is because there is a
large group of people who always encounter one another
in the Italian traces and hence they belong to the same
kernel structure and community. Thus, our community
based methods can not distinguish further among these
people when they attempt to choose a subset of appropriate
people for receiving thevaccinationor alert messages.

VI. CONCLUSION

In this paper, we proposed a mobile phone enabled com-
munity based disease control framework, which utilizes
human social relationship information to reduce the rate
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Fig. 8. Italian Traces: Performance comparison under different number
of vaccinationand alert messages withpin = 0.5, pal = 0.7, pre =
0.1, pim = 0.2, pva = 0.3, Np = 4 days..

at which an infectious disease spreads in the healthcare
domain. The extracted social community information is
used for efficient vaccine distribution as opposed to the
traditional random vaccine distribution. Our framework
first partitions the set of encountered people into multiple
communities and kernel structures based on their social
relationships, where the people encountering information
can be derived from traces collected by mobile phones. We
believe people who are in the same kernel structure and
community as a sick person have higher risks of being
infected since they frequently interact with each other.
Hence, these people will be chosen by our framework
to receive vaccination or alert messages. We further de-
veloped a merging technique that helps to capture the
dynamic community information so as to control the
disease propagation more effectively. We compared our
community based disease control method with existing
techniques such as Random Distribution and Encounter-
based methods using real contact-based traces such as
the MIT reality and Italian traces. Our results showed
that the propagation rate of an infectious disease can be
significantly reduced by utilizing the social community in-
formation. In addition, we compare our approach that uti-
lizes dynamic community information with a betweenness-
based approach using static community information. The
results also confirmed our observation that our community
based method is more effective in achieving a lower
infection ratio. Our study demonstrated more opportunities
for utilizing social relationships information to support
healthcare related applications.
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