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Abstract—New mobile phones equipped with multiple domains, ranging from monitoring/tracking applications,
sensors provide users with the ability to sense the world g medical, emergency and military applications.

at a microscopic level. The collected mobile sensing data . :
can be comprehensive enough to be mined not only for the The social community structures have been used ac

understanding of human behaviors but also for support- tively in many areas including online social networks,

ing multiple applications ranging from monitoring/tracki ng, €.g., community detection in multi-dimensional networks
to medical, emergency and military applications. In this pased on online social media [3], and wireless networks,
Wo_rk, we investigate the feasibility and effe_ctlveness of e.g., coping with the propagation of malware on smart
using human contact traces collected from mobile phones to e L

derive social community information to control the disease PPONes [4], and facilitating the packet forwarding in Delay
propagation rate in the healthcare domain. Specifically, Tolerant Networks (DTNs) [5]. However, few studies

we design a community-based framework that extracts the have been done in exploiting social community structures
based traces o make decisions on who wil receive disease’2cted from mobile phones to control the propagation
alert messages and take vaccination. Our approach can be of infectious diseases in the healthcare domain. In this

deployed using a centralized or distributed architecture.We ~ WOrK, we focus on building a mobile phone enabled Soc_ial
have experimentally evaluated our framework via a trace- community based framework to reduce the rate at which
driven approach by using data sets collected from mobile an infectious disease spreads.

phones. The results confirmed that our approach of utilizing . . . . .
mobile phone enabled dynamic community information is In the healthcare domain, the infectious disease is a

more effective than existing methods, without utilizing seial cIi_nicaI!y iliness resulting from the_pre_zsence of pathdgen
community information or merely using static community microbial agents [6], [7]. Transmission of the infectious

information, at reducing the propagation rate of an infectious  diseases such as SARS, bird flu and swine flu [8] can

disease. This strongly indicates the feasibility of explting the occur when people are in close proximity. For example
social community information derived from mobile sensing ’ ’

data for supporting healthcare related applications. the air around a person with swine flu may contain
H1N1 virus and infect the other people close-by [9]. The

transmission of infectious diseases in public is a serious
problem related to life or death and can cause panic in
The recent years have witnessed an explosion of ttee whole society if not controlled effectively. Due to the
usage of mobile wireless devices in our daily lives. Itypical characteristic of a slow start and then exponential
particular, with the rapid deployment of sensing techpropagation of the disease [10], mitigating an infectious
nology in mobile phones, the collected sensing data cdisease at its early stage is critical and vaccination is a
be comprehensive enough to be mined not only for thgpical strategy. Because of the limited supply of vaccines
understanding of human behaviors but also for supportiagd its relatively high cost when applying to a large
a broad range of applications. For instance, most of tip@pulation, how to efficiently distribute the vaccine and
mobile phones support the Bluetooth technology, and tire the meanwhile achieving the goal of effective control
Bluetooth device-discovery software running in a mobilef the disease propagation is an important problem.
phone allows it to collect information from other nearby Besides the traditional random vaccination strategy,
Bluetooth devices. It is thus convenient to exploit theecent work used bridge users identified in the human
mobile phones equipped with Bluetooth technology to disontact networks as distribution points of vaccination][11
cover the encounter events between people such that thie are not aware of any prior work that exploits social
social relationships can be derived and analyzed. Morelationships systematically for effective vaccinatiarcls
importantly, the discovered social relationships can leglusthat the propagation rate of an infectious disease can be
to extract social communities [1], [2], which reflect closeeduced. Since many infectious diseases propagate via
relationships or similar behavior patterns among peopleiman interactions, the social communities derived from
to assist in the development of applications in variousobile phone proximity traces in our daily lives can

I. INTRODUCTION



be utilized to choose the set of people that need to bighm was introduced to improve the initial division of a
vaccinated or alerted such that we can mitigate the diseasg#work by optimizing the number of graph edges within
propagation more effectively and economically as opposadd between the partitions using the greedy algorithm.
to randomly choosing any person to be vaccinated ] developed a sociological approach called hierarchical
alerted. clustering. The idea behind this method is to develop a
In light of these benefits, in this paper, we design measure of similarity between each pair of vertices from
social community-based method that exploits the socidle structure of the network and merge the communities
relationships derived from mobile phone Bluetooth tracesith the highest similarity. The algorithm of Girvan and
to reduce the rate at which an infectious disease spreaswman [2] divided the network by iteratively removal
Based on human’s encounter events, multiple communities the edges. The betweenness metric is a centrality
are derived and kernel structures are extracted. The comeasure of a vertex within a graph. Vertices that occur
munity information may vary over time. Previous work®&n many shortest paths between other vertices have higher
in community extraction typically find communities ovetbetweenness than those that do not. [15] further analyzed
the whole trace and such static community informatiothe computational cost of the betweenness metric in social
is then used for making decisions, e.g., selecting tmetworking applications.
appropriate relaying users for message dissemination [5].Another important metric in community detection is
However, static community extraction cannot capture thiodularityQ as described in [3], [16] where a larger mod-
time-varying community information present in the traceylarity indicates more frequent within-group interactitm
In our work, we propose to extract community structures general, one aims to find a community structure such that
different time periods and then merge these extracted cof+is maximized. On the other hand, instead of relying on
munities to capture the dynamic community informatiog centralized server, [17] proposed distributed community
so as to control the disease propagation more effectiveljetection, which makes mobile devices sense and detect
People who are in the same community or kernel strugqeir own local communities.
ture are presen.t in the close pr_oximity more frequently The active development of group discovery and com-
and thus may interact more with each other, whereagnity detection provides promising techniques for ap-
those people across different communities imply fewgfiying social relationships to support various applicatio
interactions. We believe those people w_lthln the sam@mains. [3] performed online group discovery in multi-
communities or kernel structures as the sick people haygnensional networks obtained from various social media
h?gher r_isks to get infected, and thus shpuld be _at Iea(%t_g” YouTube and Flickr). [18], [19] conducted social
given disease alert messages and receive vaccine shfgyork analysis in Delay Tolerant Networks by utilizing
if available. Moreover, we develop a framework whictheyveenness and similarity metrics. Moreover, the social
supports two architectures, centralized and distributqgommunity structures were utilized to cope with the prop-
to utilize the_ dynamic social community information t0agation of malware on smartphones in mobile networks
control the disease spreads. as proposed in [4], and [10] developed a social network
We experimentally evaluated our framework through g,sed patching scheme for effectively limiting the spread

trace-driven approach by using the MIT reality miningt \j\s and SMS based worms in cellular networks.
trace [12] and the Italian trace [13]. The results showed However, little work has been done in applying social

that ourstrgtegy is highly ef_fective forefficien-t vaccioat community structures to effectively control the disease
to_ control d_lsease propagapon when comparing to methg pagation through vaccination in the healthcare domain.
th_tlh(_)ut utsT_g social r_etlapofnsmp? and schemes mer 0] studied the relationships between the voluntary vac-
u '_I'_Zh'ggressfl('; fr?ernrgurgr%;no(;rgﬁz'zg' as follows. We ﬁrcination and the transmission of a vaccine-preventable
pap 9 ) ?ﬁfection. It pointed out that the propagation of the diseas

PUt our work in the context of c.urrent research in Se% related with the neighborhood size. [21] proposed to
tion 1. We then present our mobile phone enabled soci udy contact networks, where each person’s role in a

community based framework in Section Ill. It describe opulation is treated as distinct, i.e., a heterogeneous

itseoﬂre?;?;r:\:\'é?g Zlnodntghvewg:st:silsi:;:gttiii zzﬁgggg 8pulation. It suggested that by restricting the contacts
emselves, one can also limit disease spread effectively.

this work. We n_ext pre§ent our dynamlc social communlt}zhis would correspond to deleting edges in the modeled
based scheme in Section IV. In Section V, we validate t € ntact network

feasibility of our framework by using datasets collecte [11] further considered the modeling of the disease

from mobile phones and compare with existing methodss. read over pobulations. It proposed that vaccinating the
Finally, we conclude our work in Section VI. P Ver popuiations. It prop vaccinating

groups of more sociable persons can prevent a larger num-
Il. RELATED WORK ber of infectious than if administering the same number
Group discovery and community detection have beef vaccinations to random members of the population.
an active research area. In [14], the Kernighan-Lin algdone of these works have systematically investigated the
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Fig. 1. Epidemic infection model used in our framework.

effectiveness of exploiting social community structures f analysis. Our framework will utilize the existing infras-

efficient vaccination such that the propagation rate of dructure in cellular networks. We assume the users are
infectious disease is reduced. Our work is novel in thaubscribed to the cellular data plan and recorded en-
we extracted dynamic social community information bgounter events (which include discovered device IDs and
leveraging the contact traces derived from mobile phongmestamps) will be periodically sent back to a back-end
and proposed a community based framework for contreérver authorized by the service provider. The dynamic

of disease propagation. community extraction mechanism is run by the server. The
detailed description of our dynamic community extraction
Il. FRAMEWORK OVERVIEW approach is presented in Section IV. Moreover, the ex-

In this section, we first provide the system model fofracted community information will be stored at the server
our mobile phone enabled disease control framework, a@fd updated from time to time.
present descriptions of both the centralized and disgibut 2) Centralized vs. Distributed Architectur&Ve design
architecture in our framework. We envision this framewortwo types of messages that a user may recei@ecination
can be implemented by any State Department of Heakind alert. A user who receives a&accination message
through the coordination of the Centers for Disease Coshould go to obtain a vaccine shot, whereas a user receiv-
trol and Prevention (CDC). For example, during the 200@g a alert message should take precautions as directed.
spreading period of the pandemic influenza A (HINIWe assume that all the users who have been notified
virus, every state in US is required to report the number ufill take the necessary recommendated actions. In our
infected patients to the CDC. The available vaccines aif@mework, vaccine shots of an infectious disease only
then allocated appropriately by the CDC to the differerftave limited supplies and are more costly comparing to
states [22]. alert messages. The number afert messages for each

We then present the infection model used in our wortisease can be either controlled or unlimited. To protext th
and provide an analysis on the state transitions in ouseres’ privacy, such messages will be sent anonymously
model. Without loss of generality, we do not consider theo that the receivers do not know who the senders are. The
differences between users and assume that all the udetsdiscussion of the privacy issue is out of the scope of

follow the same infection model. this paper and will be included in our future work.
When actions need to be taken for an infectious disease,
A. System Model in the centralized architecture, the server will decide on

1) Uncovering Human Social Relationships from Corwho will receive vaccination messages and who will
tact Traces via Mobile Phonesnstead of random vaccine receivealert messages respectively based on the extracted
distribution, targeting vaccination to a group of peoplgocial communities stored in its database. Then the server
with higher risk of infection can provide more effectivewill send out each message to corresponding users.
control of an infectious disease propagation. Traditignal On the other hand, in the distributed architecture, each
scientists and doctors have to rely on social relationshipser who has already been infected by the disease will
derived via manually recorded daily activities from humadownload the community information related to his device
subjects [12]. However, this approach is tedious, erra® from the server. We note that although the user based
prone as the human subjects may forget to perform recombmmunity information only contains a partial view of
ing from time to time, and can be out of date. In this workhe whole community information stored in the server, the
we consider extracting social community information frormemory requirement of storing such partial community
human contact traces collected by mobile phones. information is much less than that of storing the whole

The Bluetooth enabled device-discovery process is simemmunity information. This makes it applicable to store
ple and automatic, and thus is suitable for recordirthe partial community view in individual mobile devices.
encounter events between people for social relationstBased on the downloaded social community information,



[ Notation | pescripfion __ — | downloaded from the server and the next set of people he
Din Disease infection probability il
Pin X Pal Disease infection probability will encounter. ) ) ]
with alert messages (3) From Susceptible (without alertjo Infective If a
Pre Recovery probability user encounters a sick person, the user has a probability
after the recovery cycle . .
Pre X Dim Probability of recovery with immunizatior| pin Of being infected.
after the recovery cycle _ (4) FromSusceptible (with alerto Infective Since pre-
pre % (1= pim) Z}{t‘;?é:ﬁg't?’el@\g&”f;;;‘ée o susceptible cautions will be taken for users at ti®usceptible (with
N, The Tength of the disease recovery cycld alert) state, the probability of such a user get infected
TABLE | when he encounters a sick person is reducegl,{o< pg;.
NOTATIONS USED IN THE INFECTION MODEL (5) From Infective to Immunized An infected user

moves to thdmmunizedstate after he has recovered from

each sick user will then decide on whether to send out3 disease with immunity. This happens with a probability

vaccinationmessage or alert message when he encoun®f Pre X pim €very recovery cycle (set &, days).

ters the next person, i.e., a new person discovered by thd6) Frominfectiveto Susceptible (without alertan in-

sick person’s mobile device. fected user moves to tr&Jscgptible (Without.aleréta_\te if
The distributed approach is a challenging architectuf® has recovered from the disease, but notimmunized from

as it requires peer-to-peer communications over an ad HINg infected again. Based on item (5), this probability

wireless network. Moreover, in our future work, we plaﬁhOUId bep,. x (1 — pim) for every recovery cycle.

to develop distributed social community extraction scheme

so that each user has the capability to derive his lodal Analysis of State Transitions

community and does not rely on the centralized server. The epidemic infection model includes rules on how the

members of users transit from one state to another. Directly

analyzing the state transitions within the social communit

In our framework, we extend the standard epidemic SIR e is prohibitive. Thus, we analyze the state transition
model [23] to four statessusceptible without alersus- pa5eq on users' encounter events. Because we believe

ceptible with alert infectiveand immunized Susceptible -+ this analysis can provide us with an upper bound of

means that a user can be infected by the disease. Whef@fing) infected ratio for our dynamic community based
user is susceptible, he can be at eitbesceptible without g giem since the contact rate is assumed to be constant
alert or susceptible with alertWhen a user is infected, hejn e analytical model, although in real system this rate
goes to thenfectivestate and he can infect other peoplgecreases as more people gets infected or vaccinated.
that he encoun_ters.. A user may 9o to thmunizedstate We assume that the total number of uséfg;,; will

only when he is either vaccinated or has recovered froﬂ?.)t change and users only transit from one state to another

the disease with immunity. state. LetS;(¢) and S2(t) denote the number of users in

hThe notations used_ Inc]lthe_llnfb?ct;o\r}vmgde_l a':jd hacro%e stateSusceptible (without alerdnd Susceptible (with
the paper are summarized in Table 1. We depicted the st ﬁ%rt), respectively.I(¢t) denotes the number of users in
transition diagram of our infection model in Figure 1 an

list all ibl " follows: e statelnfectiveand R(¢) denotes the number of users
|st1a IPOSS'S € state_btlran5|_t|r(])ns asl 0 O\INS' ed | ImmunizedTimet is taken as a variable here. We assume

1) rom uscepti '€ (without alerto Mmunizedin -yt the encounters between infected users and other ones
the centralized architecture, the server will choose trb%cur at an average rate 6f which is often referred to as

users who should receve tivaccw.]atl.onmessgges basedt e contact rate. The state transitions can be represented
on the extracted social community information and sen rough the following equations:

the vaccinationmessages to these users directly. Whereas
in the distributed architecture, the user who is already
infected will decide on who should receive th&ccination SLHAD=S10) __ 5. 1(1).8, (t)-(1—pua)—B-I(£)-S1 ()-Dua
messages based on the social community information '
downloaded from the server and the next set of people FPre-(1=pim) 1(2)-6(t=Ny-N) @
he will encounter.

(2) FromSusceptible (without alertp Susceptible (with S2(HAN=S2(8) _ 3. 1(1).84 (£)-(1—pua)—B-1(£)-S2- () Din-par (2)
alert): Likewise, in the centralized architecture, the server
chooses the users who should receive dleet messages
based on the extracted social community information 5 =5-1(1)-S2(t)-pin-Par—Pre-pim-1(1)-3(t=Np-N)
and sends thealert messages to these users directly. —pre-(1=pim)I(£)86(t—Ny-N) 3
Whereas in the distributed architecture, the user who is
already infected will determine who should receive the I
alert messages based on the social community information BOEBD RO —5.1(t)-81 () pva+Pre Dim 1(t)-6(t—Np-N)  (4)

B. Infection Model
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For the community information, we define two types
of social clusters to represent different levels of social
relationships: one is refereed to@smmunityand the other
is referred to askernel structure The people within the

S — ot same community meet frequently with one another, while
s s .
the kernel structure aims to capture a subset of people
(@) B8 = 0.01 (b) B = 0.06 . )
. . on top of the community structures that have even higher
o o Suecepio e o o suseeniaminaeny encounter frequency. Instead of using static community
© 08| ~O=Infective © 03] =0 Infective . . .
: -A-immunizes L immunzes information derived from the whole trace, we propose

an approach calledividing and merging where dynamic
community information is utilized since people may be-
long to different social communities at various times, and
a A communities may appear or disappear in different time
S SRS S T L WS S U Wi periods.

" - Flow Overview. Our dynamic community and kernel
extraction approach is illustrated in Figure 3. First, ni@bi
Fig. 2. Ratio of the users at different states when varyingvery cycle phones with Bluetooth capability record user encounter
and contact rate. events. The recorded human encounter events are divided

into multiple trace files based on each time window. We
In the equations above, thé = 1,2, 3, ... and the function npote that the length of the time window is adjustable (e.g.,

(c) N, =1day,3 = 0.02 (d) N, = 4 days,3 = 0.02

4(t) is defined as: the length of the time window can be one day).
. From each contact trace file, two contact graphs are
3(x) = {1 if z=0; (5) constructed. One will be used for extracting community
0 otherwise. and the other for extracting kernel structure. Hierardhica
clustering method can be one of the options to extract
For the above equations, we also have: both community and kernel structures. The extracted com-
munity and kernel structures learnt for the current time
Si(t) + Sa(t) + I(t) + R() = Niogar. (6) period are then merged with the existing community and

kernel structures that our system maintains. The combined
community and kernel structures will be used to make de-
cisions on who to send theaccinationandalert messages
Based on the above state transition analysis, we vary tivhen the next request coming from the server or from an
parameters in the infection model to provide an illustratioindividual user based on the specific architecture used in
of the number of users at each state as a function of tinwur framework.
We first vary the contact ratg to study its impact: we  In following subsections, we first describe how we
consider a contact rate of 0.06 and 0.01. Based on tbenstruct contact graphs and our dividing strategy for the
results depicted in Figure 2 (a) and (b), we concluded thednstruction of community and kernel structures. Then, we
the infected ratio remained low for the whole duratiodlescribe how we merge the newly learnt community and
when users meet less frequently, while the number kérnel structures from different trace files with the exigti
infected people increases significantly if users meet magemmunity information.
frequently. This indicates that our infection model can
precisely capture the propagation trend of an infectiofs Dividing Based Contact Graph Construction
disease. The whole contact trace is divided into multiple trace
We then set the contact rate@ = 0.02 based on the files. We assume that each trace file consists of recorded
mean value observed from the MIT reality trace [12] andncounter events that happened during the time period
examine the number of users at different states when t17%&, 7;,1]. Each entry in such a trace is a record of one
initial ratio of the sick person is set to 0.15. Figure Zncounter event between two mobile phones: including
(c) and (d) plotted the results for 10 testing days whethe starting and ending time of the contact as well as
recovery cycle is 1 day and 4 days respectively. Wenique IDs of the mobile phones. We also assume that
observed that the ratio of the infected persons increaghs same person carries the mobile phone for the duration
as the time moves along. In particular, it increases to 0a2 the trace. Based on this information, a contact graph
and 0.45 for 1 day and 4 days recovery cycle at the edtl = (V, E) can be derived, which consists of a vertex
of the testing period. setV and an edge seb. Each vertexu € V denotes a

D. Analytical Results
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Fig. 3. Flow overview: components to extract community infation.

person, while each edg€u, v) denotes that persamhas ones. We next describe our community merging technique.
contacted personfor at least¥ times. The weight(u,v) We note that the same technique is applied to merge kernel
denotes how frequent the two persanandv meet during structures.
[T;, Ti+1]. We use the number of times that the two personsWe assume that we have D time windows. We have
have encountered with each other as the weight becagsastructed one contact graph from each time period
the people who encounter with each other frequently telathd we assume these are non-overlapping time periods:
to have closer relationships or similar social behaviomg.(e [Ty, T1], [T1,T%),..., [Tp—1,Tp] with G; = (W1, E1),
riding on the same train to go to work each morning). G2 = (V2, E»),..., Gp = (Vp, Ep). The communities are
_ _ extracted from each contact graph = (V;, F;) by using

B. Community & Kernel Structures Extraction From Congne hierarchical clustering algorithm and the modularity Q
tact Graphs Let S; represents the set of communities found for time

For each trace file, we construct two contact graphaindow . Thus, we havesy, Ss, ..., Sp. EachS; contains
one with W = w; and the other withW = w,; where a set of verticesd;. Each A; has been divided intd;
ws > wy. Clusters extracted using the first contact graptommunities, which are represented as follows:
are referred to as communities, whereas clusters extracted ,
from the second one are referred to as kernel structures. Ai=AjUATU .U A? @

An illustration of community and kernel structures is We compare each community i; with all the com-
shown in Figure 4. Two communities can be extracte@unities discovered ir$; 1 to see if a community irf;
using a contact graph. Community 1 consists of users {&atisfies one of the following conditions:

B, C, D, H} while Community 2 consists of users {E, , s part of a bigger community irS;, and hence
F, G, I}. The communities are shown as dotted circles. 51 pe removed.
Moreover, by using a highé¥, three sets of users, namely | | can be merged with one community §; using

{4, B,C}, {E, F, G} and {D, H} are found having the community merge operation for two communities
higher encounter frequencies within the same set than the A? and Al‘+1 under an adjustable threshatd

rest of users. Thus, they form 3 different kernel structures ’ .
(shown with solid circles). |AT N AL |

For scalability, it is important that an efficient algorithm Mazx(|AZ), 1AL L)) -7 (8)
is used to partition the contact gragh = (V, E) into ‘
separate clusters. In this paper, we use a simple, yed Itis a superset of a community;,, in S;;1, then
effective partition algorithm called hierarchical cluste Al 41 Is removed from sebi; .
ing [24]. Further, to verify whether a particular divisio® i At the end of this operation, the two seéfsandsS; ., are
meaningful or not, we use the modularity metrig,[24].  unioned to form a nevs; , ,, which will merged withS;  »

This metric has often been used by researchers in previgysthe next round of comparison. The merging process
studies to measure how good a partition is. A lar@er jterates through D time windows.

value indicates a better partition of the users.

D. Using Extracted Community Information in Disease
C. Merging Community Information Extracted over DifPropagation Control

ferent Time Periods Based on our community information extraction strat-
Recall that the social community information mayegy, people that belong to the same kernel structures have

change with time: some communities may merge, sonaehigher encounter frequency. Thus, an infectious disease

may disappear, and others may be divided into smalleas a higher probability to spread among these group of



people if one person is infected already. Similarly, those
in the same community as a sick person are also more
susceptible to be infected by the disease. However, the
probability for the disease to spread across two disjoint
communities is low because people in such communities
contact less frequently. We note that one person can belong
to multiple communities and kernels. L&t represent the
set of sick persons for a particular infectious disease. We
define the susceptible persons who are in the same kernels
as the sick people a8, while those susceptible persons
who are in the same communities but are not in the same
kernels as those sick people Bs

Because of the limited supply and relatively high cost of
vaccines, an appropriate decision on efficient vaccination Fig. 4. An example of social community.
is that the vaccine shots and the alert messages should
be given to those people who have higher risk of beinge In the case that the number of these messages is
infected by the disease. Thus, by utilizing the community larger than the number of total susceptible persons
information, the people iy, should have higher priority in V. J Vi, the remainder messages are held till the
to receivevaccinationor alert messages than those . next update of the community information as new
We further define the importance of a person by the weight persons may appeatr.
when there are total/ number of extracted communities We note that for every round of calculation, choosing
(or kernel structures): the candidates to send out thaccinationmessages will

Definition 1. The weightW (v, S) of a personv in the take higher priority tharalert messages.
community (or kernel structure) sét= Vi, V5,..., Vyy is Distributed Community Based Algorithm. The sick
defined as the total number of people in the community (pérsoni downloads his community set’’ and kernel
kernel structure) thab belongs toIV (v, S) = > (|V;|—1)  structure se¥} information from the server. In the mean-

for all V; which satisfies € V. _ time, the sick person will check the availability of the
We further return the topi user list based on the vaccinationand alert messages with the server. We note
following function: that the community and kernel structure sets may also

Definition 2. TheTOP(V, K) is defined as the function be possibly determined by users themselves, e.g., [17].
which can return a Top-K ranked list of the personslin This issue is further explored in our future work. The sick
based on their weight&/. person then performs the following:

Our goal is to find two optimum sets of people, one , The sick person sets the persons who ard/jnas
for receivingvaccinationmessages for vaccine shots, and  cangdidate user list for sending out tvaccination
the other for receivinglert messages, such that we can  messages.
keep the infection rate low and effectively control the , The sick person sets the persons who aré/jnas
propagation of the disease. We next describe how these cgndidate user list for sending out thiert messages.
two sets of users are selected in our community-based, The sick person sends out corresponding messages
framework. when he encounters another user who belongs to the

Centralized Community Based Algorithm. As de- above candidate lists. We note that if there are not
scribed in Section lll, the server will decide who to receive  engughvaccinationmessages for the people 1,

vaccinationor alert messages. The flow of the centralized  the alert messages will be sent instead.
community based algorithm is as follows:

o The kernel structure®), are considered first and the
weight of each person i reflects the priority. The In this section, we first describe our simulation method-
functionTOP(V;, K) is called to produce the tof  ology and present three existing methods for vaccination
user list Ly, where K is determined by the numberdistribution. We then present the performance of our social
of availablevaccinationor alert messages. community based methods by comparing to the existing

« If there are remainingraccinationand alert mes- techniques.
sages after considering all the people W, then _ i
the community structures, are considered and the”- Simulation Methodology
weight of each person il reflects the priority. The  We implemented our framework in a home-grown trace-
TOP(V,, K) function is called to return the tofX driven simulator. We used two human contact-based traces,
user list L., where K will be set to the remaining namely the MIT reality [12] and Italian [13] traces. Both
value ofvaccinationor alert messages. traces were collected using smart phones equipped with

V. PERFORMANCEEVALUATION



e
e
e

[INo vaccine [_INo vaccine [—_INo vaccine
[_JRandom Distribution [JRandom Distribution [JRandom Distribution o
[JEncounter Based [JEncounter Based [JEncounter Based

[l community Based (distributed) I communi ty Based (distributed) [l Community Based (distributed)
Il Community Based (centralized) Il Community Based (centralized) Il Community Based (centralized)

e i e e

4 4 4
Recover y Cycle (days) Recover y Cycle (days) Recover y Cycle (days)

o
©
o
©
)
©

o
®
o
®
o
®

o
3
o
3
o
3

o
@
o
ey

o
@

o

o

o o o
S

o

o o o
w

w
o o o
N

Ratio of infected persons
Ratio of infected persons
Ratio of infected persons

o
N
o
N

o
B
o
B

o o
o kb N W

o

o

8
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Fig. 5. MIT traces: Performance comparison under differenbvery cycleN,, when there are 15 vaccines and 30 alert messagespyith= 0.5,
Pal = 0.7, pre = 0.1, pim = 0.2, pya = 0.3.

bluetooth devices. Each trace contains information abahus is static. Each susceptible person is ranked based on
the IDs of the Bluetooth devices which are within théhe betweenness metric, and then the persons with higher
transmission range of each other, and the starting arahks will be chosen to receiv@ccinationmessages while
ending times of their encounter. The MIT traces werthe persons with lower ranks will be chosen to receilest
collected from smart phones carried by 97 participants messages. This approach has an advantage of obtaining a
an university environment. We used the first 20 days skt of more active users from the population tiRkandom

the MIT traces which contains encounter events from Mistribution.

people. In particular, we used the first half of the trac® Effectiveness of Disease Propagation Control
(i.e., 10 days) as training data to extract the communities

and kernel structures, and the second half trace as thén the f'ert set OT ?xperlmeqts,bwe (Cejvalua;]te dthg effec-
testing data to evaluate our approach. In the Italian t:acg¥eneS§ ofour socia community based methods in terms
there are 44 people who carried the smart phones Q]dthe final ratio of infected persons at the end of our test
the experiment lasted for 19 days. Similarly, we used t (;:I(E)mparlr:g tE em(sj';:/ng memodl\jliﬁatmdom Dl(sjtrlbutlgnth
first 9 days of the trace as training data to extract t)‘?%'a hcounter- 5};3 c Eseh eM | r.aEeS an ';/_ary 05
communities and kernel structures, and the remaining fip recovery cycley, an the |_n|t|a sick ratio. Figure
days to evaluate our approach. We conducted extensRjgsents the final ratio of the infected persons versus the
experiments on these two sets of traces by varying differdOVerY cycle. TheNo vaccineis plotted as a baseline
parameters in our epidemiology infection model. Due t Ase.

the space limit, we only present a subset of the results ki)n-rhg ke)/thotzjser\éat;rc]) ni1s tth?t 0 dur p(rjozpste_g (t:odmmumty
the following subsections. ased methods, both centralized and distributed, consis-

tently achieve a lower infection ratio th&&andom Distri-
B. Existing Methods bution and Encounter-basednethods for each initial sick
. . ratio and each recovery cycle. This observation is also
We compare our social-community based approach

the following three existing methods for efficient vaccin('er(ﬂme with our analytical results depicted in Figure 2 (a)

L . : X . and (b). This is very encouraging since the persons chosen
distribution to achieve effective disease propagation cop . S
trol. y our commum_ty-based methods to haxm:_cmatlonor
Random Distribution Method. This is the most als:ltsreneus;?t?est;]neter?gt (r)r:;:je Z:)erﬂlrjnelzlr:t)t/ Wl;g]ssgcrngttr?sgs
straight forward method. In this method, the server Wiﬁ: q Y brop y

) L can control the disease propagation more effectively than
randomly choose the users to receive Waecinationand L . .
other methods. We also found that the final infection ratio
alert messages.

. . increases when the initial infection ratio or recover cycle
Encounter-based Method.This method involves mes- . Y
increases for all the methods.

sage distribution based on the encounter of mobile phonesMoreover, we found that the performance of our central-

We apply the scheme in [25] and let the sick user to SeRd community based method is better than its distributed

out messages when it encqunters a susceptible PErson, fion. This is because in the centralized approach, the
our simulation, once the sick person encounters wnhoall

tib| theaccinati : t with stribution of vaccinationor alert messages is based on
susceptible person, theaccinalionmessage 1S Sent with y, complete picture of the social community information,
the probabilityp,,, while the alert message is sent with

. instead of the partial local community information in the
the probabilityl — p,q. P y

Betweenness-based Community Method his method distributed case.
is an improvement oveRandom DistributionThe concept D. Impact of the Number of vaccination and alert Mes-
of the betweenness [2] is used to identify a set of key us€id9€s
that act as bridge users in a contact network [11]. The Next, we change the available number of thacci-
extraction of bridge users is based on the whole trace andtion and alert messages under different initial ratios
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for different methods when compared to thNe vaccine
scenario, whereas the x-axis shows the number of vaccines
used in our community-based methods &8wtweenness
iaasscrpmions "T O The results clearly showed that our community based ap-

(c) vaccine: 35; alert: 30 (d) vaccine: 35; alert: unlimited proach outperforms the static betweenness based method,
Fig. 6. MIT traces: Performance comparison under differemhber of especially when there are fewer number of vaccines is
vaccinationand alert messages withy;,, = 0.5, po; = 0.7, pr. = 0.1, available (i.e., the case with 15 vaccines) for both initial
Pim = 0.2, pva = 0.3, Np = 4 days. sick ratios of 0.09 and 0.24. This is becalBsweenness

. selects the relaying users for message dissemination from
of infected persons. The results from MIT traces are 2 i : .
tic community information. However, static community

presented. Figure 6(a) and (b) depicted the results of 3 : ; : .
- . Imformation cannot capture the time-varying community

alert messages and unlimited alert messages respective . :
infdrmation present in the trace. On the contrary, our

when the available number of vaccines is 15, which 'Sommunit based method uses dvnamic communitv infor-
about 20% of the total number of people in the experimenct. Y y y

While Figure 6(c) and (d) presented the results of 30 alerﬂatlon prodgced from our commumty extraction process,
o . nd hence it can control the disease propagation more

messages and unlimited alert messages respectively, Wﬁﬁgctivel

the available number of vaccines is 35, which is about 509 Y-

of the total number of people in the experiment. Agairf.. Results from Italian Traces

we observed that our proposed community based methodkinglly, we present our study using the Italian traces.

can achieve a much lower final infection ratio than thgye to the space limitation, only the key results are

Random Distributiorand Encounter-basedethods under presented. We changed the available number of/ttzei-

different number oWvaccinationandalert messages. nation and alert messages using different initial ratios of
Furthermore, we found that there is an increasing trefigtected persons and examined the final ratio of infected
of the infection ratio as we increase the initial ratio ofersons. The results depicted in Figure 8 exhibit the
sick persons. However, the final infection ratio decreasggme trend as we observed when using MIT traces: our
as the number oflert messages increases from 30 Qocjal community based methods outperforms the existing
unlimited. This is consistent with our expectation: morg,ethods.
alert messages allow more people to take the necessangomparing these results with those obtained from MIT
precautions, which reduce their chances of being infectgghces in Figure 6, we further observed that the perfor-
and hence reducing the number of total infected peoplénance difference between our proposed community based
In addition, comparing the results in Figure 6 undefethods and the existing methods is relatively smaller in
different vaccine numbers, we found that the performan@ge |talian traces. We found that this is because there is a
difference between our proposed community based mefhrge group of people who always encounter one another
ods and other methods is smaller when increasing tfethe Italian traces and hence they belong to the same
vaccine number from 15 to 35. This further indicates th@grmel structure and community. Thus, our community
our proposed approach is more effective when the suppfgsed methods can not distinguish further among these
of vaccine is limited. people when they attempt to choose a subset of appropriate
d people for receiving th@accinationor alert messages.
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E. Comparison with the Static Betweenness Metho

In Figure 7, we compare the results obtained from VI. CONCLUSION
our community-based approach and the static betweennesi this paper, we proposed a mobile phone enabled com-
based community method (shortenedBatweenne3sThe munity based disease control framework, which utilizes
y-axis shows the improvement in the final infection ratihuman social relationship information to reduce the rate
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