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Abstract—Similarity search for trajectories, especially the top-
k similarity query, has been widely used in different fields, such
as personalized travel route recommendation, car pooling, etc.
Previous works have studied top-k similarity trajectory query
in plaintext, but the increasing attention to privacy protection
makes top-k similarity query on trajectory data become a
challenge. In this paper, we propose a privacy-preserving top-k
similarity query scheme over large-scale trajectory data based on
Hilbert curve and homomorphic encryption. Towards this end,
we first define a spatio-temporal trajectory similarity measure
that supports homomorphic computation under ciphertext based
on numerical integration algorithm for discrete trajectory data. A
new filter-and-refine strategy for similarity query is also proposed
to filter out the dissimilar trajectories based on Hilbert curve
and refine the remaining trajectories with a secure average
comparison protocol over the encrypted data. Finally, the exact
query results can be obtained through Hilbert curve decoding.
Our security analysis demonstrates that both locations and
identities of the queried trajectories are preserved from the
inference attack, and so does the privacy of the query user’s
trajectory. Meanwhile, extensive experimental results show that
the proposed scheme can filter out 95% dissimilar trajectories
with over 99% average precision, achieving higher query effi-
ciency than the state-of-the-art techniques.
Index Terms—Trajectory similarity query, Location privacy

protection, Hilbert curve, Homomorphic encryption

I. INTRODUCTION

With the rapid development of the mobile sensing

and global positioning technologies, location-based services

(LBSs) are becoming increasingly popular and important, such

as Meituan, Didi, Ctrip, etc. Due to the widespread application

of LBSs, massive amount of trajectory and location data has

been collected by location service provider. Especially for

large-scale trajectory data, their huge social and application

values enable wide use in various fields (e.g., traffic and

transportation optimizations). As a typical application with

respect to large-scale trajectories, the top-k similarity search

returns the k most similar trajectories for a given trajectory,

which is often used in LBSs such as tourist route design,

carpooling, and social network personalized recommendation,

etc. However, the trajectory or location in LBSs contains a
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lot of sensitive information of the user, such as frequently

visited places, home addresses, work places, etc. These infor-

mation can be revealed by data mining or statistical analysis

techniques, which brings a great threat to the privacy of

users or even national security. For instance, U.S. military

bases and patrol routes were leaked by the heat map of the

fitness app Strava1. Many existing studies on similarity search

or top-k similarity search are primarily based on plaintext

without taking the privacy issues into accounts [1-3]. There-

fore, location privacy protection has been extremely necessary.

In order to protect location privacy in LBSs, not only are

the privacy-preserving policies [4] needed, but also different

technical means should be proposed. Currently, there are

already some mature solutions for location privacy protection

in LBSs, which can be generally classified as obfuscation-

based approaches and cryptography-based approaches. The

main idea of obfuscation-based location privacy protection ap-

proaches is to hide the user’s real location through techniques

such as cloaking [5], dummy locations [6], and differential

privacy [7], while the cryptography-based approaches preserve

location privacy via some cryptographic tools such as space

transformation [8], secure multiparty computation (SMC) [9],

and private information retrieval (PIR) [10]. However, neither

can achieve high accuracy and high efficiency on location

privacy protection at the same time.

In trajectory similarity search, only a few works have inves-

tigated privacy-preserving trajectory similarity search. Liu et

al. [11] first study secure similarity computation of encrypted

trajectories based on data packing technique. However, it

only considers the similarity calculation between any two

encrypted trajectories, which may lead to extremely high

search complexity for similarity queries on big data. Teng et al.

[12] propose a secure trajectory similarity search scheme based

on a bi-directional similarity measurement and improve the

search efficiency by secure signature matching. Although [12]

can be extended to top-k similarity search on trajectories, it is
hard to predetermine a proper threshold for the query request.

Considering trajectory clustering, Guan et al. [13] propose

a privacy-preserving scheme for trajectory range query of

discrete Fréchet distance, which returns all the identities of

trajectories that satisfy the distance threshold in the request.

But the user cannot identify the exact top-k results from the

output identities since they are obtained only by verification.

Moreover, the aforementioned methods cannot obtain the top-

1https://www.wired.com/story/strava-heat-map-military-bases-fitness-
trackers-privacy/
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k trajectories apart from the similarity values [11, 12] or the

identities [13], and they just consider the spatial features of

the trajectory but ignore the temporal features, which are also

important features of the object’s moving patterns.

An accurate and efficient top-k query mechanism is needed.

But to achieve such efficient privacy-preserving top-k tra-

jectory similarity query, the following challenges should be

tackled.

1) Similarity measurement over encrypted trajectory
data: Most trajectory similarity measures are based on dy-

namic programming algorithms, which involve a large number

of recursive operations. For the encrypted data, it becomes a

difficult and complex task since multiple times of comparisons

and branching operations on the ciphertexts are called recur-

sively. Thus, a similarity measure should be carefully designed

to evaluate the trajectory similarity in the ciphertext state.

2) Efficient privacy-preserving top-k trajectory similar-
ity search: Intuitively, the top-k similarity query on large-scale
encrypted trajectory dataset can be achieved by first computing

the similarities between every two trajectories and then sorting

them in the ciphertext state, which consumes a huge amount of

computational cost and communication overhead. Meanwhile,

most of trajectories in the dataset are very dissimilar to the

queried one, which leads to many unnecessary operations.

Therefore, an efficient privacy-preserving top-k trajectory sim-
ilarity search scheme that filters before refining is in need.

In order to overcome the above challenges, we propose an

efficient Privacy-preserving Top-k Trajectory Similarity Query
scheme (PTTSQ), and the contributions are as follow:

• We define a new spatio-temporal similarity measure for

discrete trajectories, which facilitates the distance calcu-

lation of large-scale encrypted trajectories. Besides, We

design a Hilbert-based filtering method to screen out the

dissimilar trajectories while preserving privacy.

• We propose a privacy-preserving top-k trajectory simi-

larity query scheme (PTTSQ) over large-scale trajectory

data, which enables the user to retrieve the k most similar
trajectories while preserving the privacy of the query

requests, the query results and the trajectory datasets.

• Extensive experiments are conducted to demonstrate the

effectiveness of the proposed PTTSQ, and the results

show that most dissimilar trajectories can be filtered out

in PTTSQ and it is computationally efficient for top-k
queries compared to the state-of-the-art methods.

II. PRELIMINARIES

In this section, we first define a spatio-temporal trajectory

similarity measure (DSED) used in PTTSQ. Next, we briefly

introduce the relevant technical tools.

A. Discrete Synchronous Euclidean Distance (DSED)

To facilitate the spatio-temporal distance measurement [14]

in the ciphertext state, we formally define a new similarity

measure for discrete trajectories.

Suppose that TA = {τA
i }la

i=1 = {(tA1 , pA
1 ), (t

A
2 , p

A
2 ), ...,

(tAla , p
A
la
)} and TB = {τB

j }lb
j=1 = {(tB1 , pB

1 ), (t
B
2 , p

B
2 ),

Fig. 1: Illustration of trajectory distance computation.

..., (tBlb , p
B
lb
)} are two trajectories of moving objects, where

tAi , t
B
j are the sampled timestamps, and pA

i , p
B
j are the

corresponding geolocations (i ∈ [1, la], j ∈ [1, lb]). Then, the
distance from a sampling point τA

i = (tAi , p
A
i ) to another

trajectory TB can be calculated by linear interpolation as

follows.

Dist(τ
A
i , T

B
) = d(p

A
i , p̂

B
j ) = d(p

A
i ,

tBj+1 − tAi

tBj+1 − tBi
· pBj +

tAi − tBj

tBj+1 − tBi
· pBj+1),

(1)

where d() denotes the Euclidean distance, and (tBj , p
B
j ),

(tBj+1, p
B
j+1) are two temporally adjacent points in TB satis-

fying tBj ≤ tAi < tBj+1. Then, 〈tAi : (pA
i , p̂

B
j )〉 is called a syn-

chronous pair at point τA
i . Similarly, we have 〈tBj : (pB

j , p̂
A
i )〉

at point τB
j .

To compute the Discrete Synchronous Euclidean Distance
(DSED), we traverse all the sampling points in TA and TB ,

and obtain (la + lb − 2) synchronous pairs at each recorded
timestamp in chronological order. Then, for the u-th syn-

chronous pair, u ∈ [1, la+lb−2], we have su = Dist(τA
i , TB)

or su = Dist(τB
j , TA). Finally, the DSED can be defined as

follows.

DSED(T
A
, T

B
) = (

Δt1,2 · s1 +Δth−1,h · sh
2

+

h−1∑

u=2

Δtu−1,u+1
2

· su) ·
1

Δt1,h
,

(2)

where h = la + lb − 2 and Δti,j = ti − tj .
To further illustrate the computation of DSED, an example

is given as shown in Fig. 1. Suppose TA and TB are two

trajectories (la = 3, lb = 4). In the order of time, we have

5 synchronous pairs at timestamp {4, 5, 7, 9, 15}, and the

distance between points within each pair is computed as su,
u ∈ [1, 5]. Then, according to Eq.(2), the DSED value between

TA and TB is equal to (s1 + 3s2 + 4s3 + 8s4 + 6s5)/22.

B. Hilbert Curve

Hilbert curve [15] is a space-filling curve that can traverse

through all cells in a multi-dimensional space. It has been

widely applied in spatial indexing of large-scale databases for

its superior locality-preserving property [16]. A Hilbert curve

in 2-D space can be determined by four parameters, i.e., φ =
{N, θ, P0, γ}, where N is the curve order, θ ∈ {�,�,�,�}
denotes the curve’s orientations, P0 = (x0, y0) is the starting
point, and γ is the scale factor. Since the curve passes through
each cell exactly once, a unique integer in [0, 22N − 1] is
assigned to each cell, which represents its encoding H-value.
Then, each coordinate point p = (x, y) in the space can be

indexed with φ as a space decoding/encoding key [8], and
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the original coordinates cannot be revealed from the encoded

values without knowing φ. Accordingly, we can represent the
encoding algorithm HIL.Enc as vφ : p → H , where vφ() is
a bijective function from R

2 to R1, and its inverse function is

also known as the decoding algorithm HIL.Dec.

C. SHE Cryptosystem

SHE [17] is an efficient symmetric homomorphic encryption

algorithm that supports homomorphic addition and multiplica-

tion, and it contains three algorithms:

• SHE.KeyGen(k0, k1, k2): Given a set of security pa-
rameters {k0, k1, k2} satisfying k1 	 k2 < k0, the
key generation algorithm outputs the secret key sk =
(p, q,L), where p, q are two large prime numbers in

{0, 1}k0 and L ∈ {0, 1}k2 is a random number. Next, it

sets N = pq, the public parameter pp = (k0, k1, k2,N )
and the basic message space M = [−2k1−1, 2k1−1).

• SHE.Enc(sk,m): Given a secret key sk and a plaintext
m, the encryption algorithm outputs a ciphertext E(m) =
(rL + m)(1 + r′p) mod N , where r ∈ {0, 1}k2 and

r′ ∈ {0, 1}k0 are random numbers.

• SHE.Dec(sk,E(m)): Given sk and E(m), the decryp-
tion algorithm recovers the plaintext m′ by computing

m′ = (E(m) mod p) mod L = (rL + m) mod L. If
m′ < L/2,m = m′, otherwise m = m′ − L.

For the SHE under public key setting, by setting pk =
{E(0)1, E(0)2, pp}, a message m ∈ M can also be encrypted

by E(m) = m+r1 ·E(0)1+r2 ·E(0)2 mod N , where E(0)i is
a ciphertext of 0, and ri is a k2-bit random number, i = 1, 2.

D. Proxy Re-encryption

Proxy re-encryption (PRE) [18] is a special type of public

key encryption that allows a proxy to convert a ciphertext

encrypted under the delegator i’s key into an encryption of the
same message under the delegatee j’s key, while the proxy has
no knowledge of the original message. A PRE often consists

of the following algorithms:

• PRE.GenKey(ki): Given a security parameter ki as an

input, the PRE key generation algorithm outputs a pair

of secret and public keys {ski, pki} for user i.
• PRE.ReKey({ski, pki}, {skj , pkj}): Given two pairs

of keys, where skj is optional, the PRE re-encryption key

generation algorithm outputs a re-encryption key rkij .

• PRE.Enc(pki,m): Given a public key pki and a mes-

sage m, the PRE encryption algorithm outputs a cipher-

text ci of user i.
• PRE.ReEnc(rkij , ci): Given a re-encryption key rkij

and user i’s ciphertext ci, the PRE re-encryption algo-

rithm outputs a re-encryption ciphertext cj for user j.
• PRE.Dec(skj , cj): Given a secret key skj and a cipher-

text cj , the PRE decryption algorithm outputs a plaintext.

III. PROBLEM, MODELS AND DESIGN GOALS

In this section, we formalize the top-k trajectory similarity

query problem. Then, we introduce the system model, security

model and the design goals of PTTSQ.

(1) Authorization Key

(3) Secure Computation

Query User

CS1

CS2

Data Owner

Fig. 2: System Model.

A. Problem Definition

Given a trajectory dataset T containing n trajectories with

identity information, a query trajectory Q and an integer

number k, the Privacy-preserving Top-k Trajectory Similarity

Query outputs the k most similar trajectories to Q along with

their identities and distance values in a privacy-preserving

manner, i.e., to find R ⊆ T , such that |R| = k, for ∀ R ∈ R
and ∀ T ∈ T −R, we have DESD(R,Q) ≤ DESD(T,Q).
In this paper, the identity information and DSED values in the

results R are also denoted as R.ID and R.D, respectively.

B. System Model

The system model of PTTSQ is shown in Fig. 2, which

mainly consists of three types of entities: a data owner DO,
dual cloud servers (CS1 and CS2), and a query user (QU ).

- Data OwnerDO:DO has a large dataset with n trajectories,
i.e., T =

{
〈IDi, T

i〉
}n

i=1
, where T i, IDi denotes the i-th

trajectory and its identity, respectively. For instance, an item

of IDi may include sensitive personal information such as an

individual’s name, ID number and mobile phone number, etc.

To save computational and storage costs, DO outsources the

trajectory data and similarity search services to cloud servers.

For privacy concerns, DO encrypts the dataset T before data

outsourcing. Meanwhile, it constructs a Hilbert-based look-up

table Γ for the privacy-preserving search on the cloud servers.

- Query User QU : QU is a query user authorized byDO. QU
can initiate a top-k trajectory similarity query request {Q, k}
to CS1, and obtains the query results including identities,

trajectories and DSED values without revealing privacy, i.e.,

R = {〈IDj , R
j , Dj〉}k

j=1, where Dj = DSED(Rj , Q).

- Cloud Servers (CS1, CS2): Generally, privacy preserving
computing on a single cloud server is often difficult and

inefficient, so dual-cloud model is adopted in the system. CS1
stores the Hilbert-based look-up table, the encoded trajectory

data and the encrypted identity information, while CS2 keeps
the secret key of SHE. When receiving a query request from

QU , CS1 initially filters the massive trajectory data to obtain
K candidate similar trajectories. Then through the secure

protocol, the two cloud servers further refine the actual k most
similar trajectories and return them as the query results toQU .
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TABLE I: Notations

Notation Description
Q The queried trajectory submitted by QU
T A dataset of n trajectories owned by DO
F The candidate result set of K trajectories after filtration
R The final result set of k trajectories after refinement
n,K, k The number of trajectories in dataset T , F , R
IDi, T

i The identity information and trajectory in T
(tij , p

i
j) The j-th timestamp and geo-location of T i

li The trajectory length of T i

id The index of the trajectory in T
φ The parameters of Hilbert curve, i.e., {N, θ, P0, γ}
N, θ, P0, γ The order, orientation, starting point and scale factor
Γ The Hilbert-based look-up table
sk, pk The secret key and public key of SHE encryption
pkd, pkq , pkc The public key of DO,QU,CS1
rkdq The re-encryption key created by DO for QU

C. Security Model

In PTTSQ, all above three entities are assumed to be

honest-but-curious, i.e., they perform the protocol honestly

but may attempt to infer privacy information of other parties.

Besides, CS1 and CS2 are supposed to be non-colluding

entities, which is realistic since the commercial competition

and interest conflicts between different cloud service providers

[19]. Furthermore, DO and QU are considered not to collude

with CS1 or CS2 for the sake of their own trajectory privacy.
As semi-honest participants, cloud servers are supposed to

launch cloud inference attacks to get the plaintext of the

trajectory data, the identity information, the query requests

and results. In addition, QU and DO may want to reveal the

privacy of each other’s trajectory data.

D. Design Goals

Based on above system and security models, we aim to

propose a PTTSQ scheme with following goals:

1) Query Precision of Top-k: The filtration method is

adopted to reduce similarity computations on the large-scale

trajectory data, which may slightly weaken the query precision

of top-k. Therefore, the precision of returned query results R
should be ensured.

2) Privacy Preservation: PTTSQ should protect the data

privacy of DO, the query request and result privacy of QU .
That is, the dataset T owned by DO cannot be revealed by

CS1 and CS2, and that QU can only get the query result R
of k trajectories without knowing other knowledge of T −R.
Besides, the privacy of query trajectory Q, the result trajectory
set R and the similarity values {DSED(Rj , Q)}k

j=1 should

be preserved against DO, CS1 and CS2.
3) Efficiency: Similarity search on encrypted trajectory data

will greatly increase the computational cost and communica-

tion overhead of the system, so PTTSQ should be efficient for

similarity search.

IV. OUR PROPOSED SCHEME: PTTSQ

In this section, we describe the proposed privacy-preserving

trajectory top-k query scheme (PTTSQ) in detail, before which
we first introduce a modified Hilbert distance used in PTTSQ.

The used notations are summarized in Table I.

21 22 25 26 37 38 41 42

20 23 24 27 36 39 40 43

19 18 29 28 35 34 45 44

16 17 30 31 32 33 46 47

15 12 11 10 53 52 51 48

14 13 8 9 54 55 50 49

1 2 7 6 57 56 61 62

0 3 4 5 58 59 60 63

HC HCI HC II

63 62 49 48 47 44 43 42

60 61 50 51 46 45 40 41

59 56 55 52 33 34 39 38

58 57 54 53 32 35 36 37

5 6 9 10 31 28 27 26

4 7 8 11 30 29 24 25

3 2 13 12 17 18 23 22

0 1 14 15 16 19 20 21

21 22 25 26 37 38 41 42

20 23 24 27 36 39 40 43

19 18 29 28 35 34 45 44

16 17 30 31 32 33 46 47

15 12 11 10 53 52 51 48

14 13 8 9 54 55 50 49

1 2 7 6 57 56 61 62

0 3 4 5 58 59 60 63

Fig. 3: An example of modified Hilbert distance.

A. Modified Hilbert Distance

In order to search the trajectories efficiently while pre-

serving privacy, PTTSQ filters out the dissimilar trajectories

preliminarily by combining a cluster of Hilbert curves. In other

words, for the approximate but quick computation of trajectory

similarity, we introduce a modified Hilbert distance based on

the locality-preserving property of Hilbert curve [16].

Firstly, given a Hilbert curve HCφ with parameter φ, the
distance between every two points can simply be approximated

by calculating the difference of their H-values, i.e.,

dH(pi, pj) = |vφ(pi)− vφ(pj)| = |Hφ
i −Hφ

j |, (3)

where pi, pj are two coordinate points in high-dimensional

space and Hφ
i , H

φ
j denote their H-values on HCφ.

However, errors of distance estimation may occur in some

particular circumstances where the points with separated H-

values are actually very close in the 2-D space. To en-

sure the precision of filtration, we modify the Hilbert-based

approximate distance in Eq.(3) by combining a cluster of

Hilbert curves. Specifically, they are generated from HCφ

by doing rotations and translations, i.e., varying parameters

θ and P0 in φ. Then, given a cluster of Hilbert curves

HC = {HCφ, HCI , HCII , . . . , HCr} with same scale γ,
whose encoding rules are V = {vφ; vI , vII , . . . , vr}, the
modified Hilbert distance is defined as the minimum value of

the Hilbert-based distances on all above Hilbert curves, i.e.,

dH(pi, pj) = min
η∈ϕ

|vη(pi)− vη(pj)| = min
η∈ϕ

|Hη
i −Hη

j |, (4)

where ϕ = {φ, I, II, . . . , r}.
To better understand the modified Hilbert distance,

Fig. 3 shows a simple example of three Hilbert curves

HC = {HCφ, HCI , HCII}, in which HCI and HCII

are generated by rotating and translating HCφ respec-

tively, i.e., {θφ, θI , θII} = {�,�,�}, {Pφ
0 , P

I
0 , P

II
0 } =

{(0, 0), (0, 0), (−3,−3)}. Given points p1 = (3, 0) and

p2 = (4, 0), their H-values encoded by the three Hilbert

curves are Hφ
1 = 5, HI

1 = 15, HII
1 = 51, Hφ

2 = 58,
HI
2 = 16, HII

2 = 48. Then the modified Hilbert distance

dH(p1, p2) = min
η∈{φ,I,II}

|Hη
1 − Hη

2 | = min{53, 1, 3} = 1.

Similarly, for points p3 = (3, 2) and p4 = (4, 4), we have
dH(p3, p4) = min

η∈{φ,I,II}
|Hη
3 −Hη

4 | = min{23, 21, 3} = 3.

B. Description of PTTSQ

Our PTTSQ scheme contains four parts, i.e., initialization,

querying, preliminary filtration and refining, and the work flow

is shown in Fig. 4. In such a filter-and-refine framework, most
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DO QU CS1 CS2
SHE.KeyGen

TableGen

PRE.Enc
HIL.Enc

Register

ParmEnc
PRE.ReKey

HIL.Enc

HIL.Filt

PRE.ReEnc
Decrypt
Decode

 

Initialization

Querying

Filtration

Refining

sk

pkq pkq

Epkq( ) rkdq

k, Epkc(H (Q))

Epkd( .ID), H ( )

Epkq (ra||rb)

Epkq ( .D ) .id
SHE.SAC

SHE.SAC  

k, .id, E(S ), L

Erkdq( .ID), Epkq(H ( ))

 

 

Fig. 4: System Flow Diagram.

dissimilar trajectories are firstly ruled out by the Hilbert curve-

based filtration and only K candidates (k ≤ K 	 n) are
retained for the final refining to get the final top-k results.

1) Initialization: To initialize the system, DO generates

a cluster of Hilbert curves HC and a public/secret key pair

{pk, sk} of SHE, and then constructs a lookup-table. Next, it
outsources the encrypted data to CS1. When a QU registers

in the system, DO returns the encrypted curve parameters and

generates a re-encryption key rkdq . The details are as follow:

Step-1: Data Pre-processing.
DO first utilizes the Douglas-Peucker(DP) algorithm [20]

for data thinning process and extracts representative point

sequences from the trajectory. We assume that the points on

the trajectory are located in cells of a 2N ∗ 2N resolution

square grid and the coordinates are integers. The pre-processed

dataset of n trajectories are denoted as T =
{
〈IDi, T

i〉
}n

i=1
,

where IDi denotes the moving object’s identity, and T i =
{(ti1, pi

1), (t
i
2, p

i
2), · · · , (tili , pi

li
)} is the i-th trajectory in T .

Step-2: Hilbert-based Lookup-table Construction.
DO runs TableGen to obtain a Hilbert-based lookup-

table Γ by following steps. First, DO picks a specific Hilbert

curve parameter φ, then by varying orientation θ and starting
point P0, a cluster of Hilbert curves are generated as HC =
{HCφ;HCI , HCII , · · · , HCr}, where r is the number of

transformed curves. Next, for each coordinate point (x, y) in
the targeted space, DO runs HIL.Enc((x, y), φη) to generate
the corresponding H-values of every HCη , and obtains Hη

xy ,

where x, y ∈ [0, 2N−1] and η ∈ {φ, I, II, . . . , r}. Meanwhile,
DO runs SHE.KeyGen to generate a public/secret key

pair {pk, sk}, and encrypts the above 2-D coordinates as

(E(x), E(y)), correspondingly. At last, DO constructs the

lookup-table Γ by matching the encrypted 2-D coordinates

with the corresponding H-values of different Hilbert curves,

i.e., Γ =
〈
Hφ

xy : [H
I
xy, H

II
xy , · · · , Hr

xy, (E(x), E(y))]
〉
, where

Hφ
xy is set as the key of the lookup-table for convenience of

the later data retrieval. For instance, a look-up table of Hilbert

curves with order 3 is illustrated in Table II.
Step-3: Trajectory Encoding & Encryption.

DO encodes the trajectories by running HIL.Enc(pi
j , φ)

on each coordinate point, i.e., Hφ(T ) = {Hφ(T i) =

[(ti1, H
φ(pi

1)), (t
i
2, H

φ(pi
2)), · · · , (tili , Hφ(pi

li
))]|i = 1, 2, · · · ,

n}. Meanwhile, DO runs PRE.Enc(pkd, ID) with public

key for proxy re-encryption to obtain the encrypted trajectory

identities Epkd(T .ID) = {Epkd(IDi)|i = 1, 2, . . . , n}.
Finally, DO outsources the lookup-table Γ, the encoded tra-

jectory data Hφ(T ) and the encrypted identities Epkd(T .ID)
to CS1. Meanwhile,DO shares the sk of SHE to CS2 secretly.
Step-4: Query User Registration.
To register to the system for the top-k similar trajectory

query on DO’s data, QU submits the public key pkq to

DO and CS1. Then, DO encrypts the selected Hilbert curve

parameter φ using pkq and runs PRE.ReKey(skd, pkd, pkq)
to generate a conversion key rkdq for QU . Finally, DO returns

Epkq (φ) and rkdq to QU .

2) Querying: For the query trajectory Q = [(t1, q1),
(t2, q2), · · · , (tl0 , ql0)], QU runs HIL.Enc(qj , φ) to en-

code each point of the query trajectory, i.e., Hφ(Q) =
[(t1, H

φ(q1), (t2, H
φ(q2), · · · , (tl0 , Hφ(ql0))]. Then, QU en-

crypts Hφ(Q) with CS1’s public key and submits the query
request {Epkc(H

φ(Q)), k} to CS1, where k is an integer.

3) Preliminary Filtration: In this phase, CS1 blindly pro-
cesses similarity queries with the assistance of the Hilbert-

based lookup-table Γ, and obtains K candidate trajectories as

the preliminary filtration results F .
Step-1: Hilbert-based Similarity Calculation.
After receiving Hφ(Q), CS1 calculates the Hilbert-based

similarity DSEDH between the query trajectory Q and each

trajectory T i ∈ T to approximate the value of DSED, where

the modified Hilbert distance is adopted for computing su in

Eq.(2). Thus, according to the look-up table Γ, CS1 obtains
DH =

{
DH

i = DSEDH(Q,T i)|(i = 1, 2, · · · , n)
}
.

Step-2: Trajectory Filtration.
CS1 filters out dissimilar trajectories by sorting the trajec-

tories based on the similarity values DH, and retains a top-K
candidate set as the preliminary filtration results F from the

entire n trajectories , where |F| = K 	 n. To facilitate further
refining, CS1 keeps the K filtered indexes as F .id.

4) Refining: CS1 and CS2 further determine the final

query results by operating a series of secure protocols on

encrypted trajectory data. Finally, QU can recover the top-

k query results, the corresponding similarities and identities

by decoding and decryption algorithms.
Step-1: Encrypted Trajectory Retrieval.
To refine the exact top-k similar trajectories from F ,

CS1 looks up the SHE ciphertexts of the coordinates in the

TABLE II: An illustration of the look-up table

Hφ
xy HI

xy HII
xy . . . Hr

xy (E(x), E(y))

000000 010101 101010 . . . 111111 (E(0), E(0))
000001 010110 101011 . . . 111100 (E(0), E(1))
000010 010111 101000 . . . 111101 (E(1), E(1))

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

111111 000000 010101 . . . 101010 (E(7), E(7))
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query trajectory by matching their Hφ-values in table Γ, and
obtains E(Q) = [(t1, E(q1)), (t2, E(q2)), · · · , (tl0 , E(ql0))].
Similarly, a set of K encrypted trajectories can be obtained by

looking up the SHE ciphertexts of the coordinates in candidate

trajectories, i.e., E(F) = {E(T j) = [(tj1, E(p
j
1)), (t

j
2, E(p

j
2)),

· · · , (tjlj , E(p
j
lj
))]|j ∈ F .id}.

Step-2: Homomorphic Calculation of Exact Distances.
After retrieving E(F) and E(Q), CS1 computes the en-

crypted distance su in Eq.(2) between Q and each T j ∈ F
by homomorphic operations on SHE ciphertexts, denoted as

E(s
(j)
u ), where j ∈ [1,K], u ∈ [1, l0 + lj ]. Then, for each

T j ∈ F with trajectory length lj , it obtains the sum of

synchronous distances at all the timestamps by calculating:

E(Sj) =Δt1,2E(s
(j)
1 ) + Δthj−1,hjE(s

(j)
hj
) +

hj−1∑

u=2

Δtu−1,u+1E(s
(j)
u ),

where hj = l0+lj . Suppose that Lj = Δt1,hj denotes the total
time interval, then DSED(Q,T j) = Sj/(2Lj). However,
SHE do not support the division and comparison operations

of the ciphertext, thus the following SHE.SAC protocol is

called to refine F over the ciphertext.

Step-3: Secure and Exact Top-k Search.

To find the exact top-k similar trajectories R among the

candidate trajectories F , the dual clouds run the Secure

Average Comparison protocol SHE.SAC without collusion.

Specifically, CS1 first chooses two random numbers ra ∈
(0, 2k1), rb ∈ (−2k1 , 2k1) and sends Epkq (ra‖rb) to QU . Then
it computes {E(S′

j) = ra · E(Sj) + rb · Lj |j = 1, 2, · · · ,K}
and sends them to CS2 with the corresponding Lj and idj . On

receiving {〈E(S′
j), Lj , idj〉}K

j=1, CS2 recovers S
′
j by using sk

and computes D̄′
j = S′

j/Lj (j = 1, 2, · · · ,K). Next, since the
DSED values of the K results are basically arranged in order

after filtration, CS2 can simply utilize heapsort method on D′
j

to obtain the refined top-k results R.D′ = {D̄′
v|v = 1, . . . , k}

and the corresponding indexes, recorded as R.id. Then, CS2
returns Epkq (R.D′) to QU , and sends R.id to CS1.

Step-4: Proxy Re-encryption of Query Result.
On receiving the indexes R.id, CS1 retrieves the cor-

responding k encoded trajectories Hφ(R) and their en-

crypted identity information Epkd(R.ID) from Hφ(T )
and Epkd(T .ID)〉, respectively. Then, CS1 re-encrypts

R.ID by running PRE.ReEnc(rkdq,R.ID) with the

proxy re-encryption key rkdq . Finally, the ciphertexts

{Erkdq (R.ID), Epkq (H
φ(R))} are sent to QU .

Step-5: Query Result Recovery.
At last, on receiving {Erkdq (R.ID), Epkq (H

φ(R)),
Epkq (ra‖rb)} from CS1 and Epkq (R.D′) from CS2,
QU gets the query results of identities, trajectories and

DSED similarities in the following way, denoted as

R = {〈IDj , R
j , Dj〉}k

j=1. To obtain the top-k trajectories,

the user runs HIL.Dec(φ,Hφ(R)) to recover the trajectory
locations. Besides, the identity information of the trajectories

can be recovered by running PRE.Dec(skq, Erkdq (R.ID)).
Moreover, QU obtains the exact top-k distances R.D by

calculating D̄v =
D̄′
v−rb
ra

for v = 1, 2, · · · , k.

V. SECURITY ANALYSIS

In this section, we analyze the security of PTTSQ and show

that PTTSQ achieves the aforementioned security goals.

1) Data privacy of the DO is preserved: During the system
initialization stage, DO’s trajectory data are encoded by a

Hilbert curve HCφ as Hφ(T ) before being outsourced to

CS1. To recover these encoded trajectories, the parameter φ
is necessary as a transformation key, without which CS1 and
CS2 cannot infer DO’s trajectories due to the blind evaluation
based on Hilbert curve encoding [8]. Besides, although the

encrypted trajectories E(F) can be obtained by CS1, the
trajectories in T remain unknown to CS1 for the lack of the
secret key sk. Based on the non-collusive assumption of the
dual cloud servers, even though CS2 has sk, it just can recover
D′ from the ciphertexts of the disturbed DSED similarity

values E(D′) by using the sk, which is only the intermediate
result with no information about the original trajectories in

T . Therefore, the privacy of the trajectories owned by DO
cannot be inferred by the dual could servers. Meanwhile,

in PTTSQ, the identity information T .ID is encrypted by

the DO with pkd before uploading, and CS1 cannot infer

them without knowing skd. Even though CS1 can conduct

re-encryption on Epkd(T .ID) by using rkdq , the obtained

ciphertexts Erkdq (T .ID) can only be decrypted by using skq

[18]. The dual cloud servers have neither skd nor skq , so

they are prevented from inferring the identity information of

any trajectory. For a curious QU who does not collude with

the dual cloud servers, only the top-k trajectories Hφ(R)
and their identities Erkdq (R.ID) are returned from the dual

cloud servers. Then, although QU can recover the queried

trajectories in R and their identities R.ID by using φ and skq

respectively, it cannot infer the rest of trajectory data T −R.
In a word, the trajectory data of DO is privacy-protected to

CS1, CS2 and QU .

2) Privacy of QU ’s query request is preserved: In PTTSQ,
QU ’s query request Epkc(H

φ(Q)) is obtained by first encod-
ing the query trajectory Q with the Hilbert curve of DO,
and then encrypting it with the public key of CS1. Even
though Hφ(Q) can be decrypted by CS1 using the secret key
skc, the query trajectory Q still cannot be revealed by CS1
without knowing the curve parameters used by DO. Similarly,
both DO and CS2 are not collude with CS1, so they cannot
obtain Hφ(Q) without knowing CS1’s secret key skc, and

also cannot get QU ’s query request Q. Therefore, the query
request of QU is privacy-protected to DO, CS1 and CS2.

3) Privacy of QU ’s query results is preserved:
Based on the query responses {Erkdq (R.ID), Epkq (H

φ(R)),
Epkq (ra‖rb)} received from CS1 and {Epkq (R.D′)} received
from CS2, QU can recover the query results R by using the

secret key skq . For the dual cloud servers, as above analysed in

V.1), they cannot reveal the identity information R.ID from

Erkdq (R.ID) without knowing skq , and are also prevented

from inferring the trajectories based on Hφ(R) because they
have no knowledge of the curve parameter φ. Besides, the
queried DSED similarities R.D are kept unknown to the dual
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Fig. 5: The filtration precision with K for k = 5, 10, 15, 20.

cloud servers via the SHE.SAC protocol, where CS1 just
conducts homomorphism operations based on SHE without

knowing sk, while CS2 only obtains the disturbed similarities
D′ from CS1 without knowing ra or rb. Since the two pieces
of ciphertexts Epkq (D

′) and Epkq (ra‖rb) are encrypted by

the non-collusive dual cloud servers separately before being

returned toQU , the actual queried similarity valuesR.D could

be protected against CS1, CS2 and DO. Even though DO
owns the whole trajectory dataset T and knows the Hilbert

curve transformation key φ, it cannot infer the queried top-k
trajectories in R from Epkq (H

φ(R)) or Erkdq (R.ID) due to
the lack of skq . Thus, the query results including the queried

identity information, top-k trajectories and the corresponding

similarities are all privacy-protected to CS1, CS2 and DO.

VI. PERFORMANCE EVALUATION

In this section, we state our experimental settings and then

evaluate our PTTSQ system from the aspects of the filtration

precision, communication overhead and computational cost.

A. Experimental Settings

To validate the effectiveness of our system, we conducted

experiments on a Dell Precision 7920 Tower Server with

two Intel Xeon Gold 6248R (96) @4GHz CPUs and 128GB
RAM running Ubuntu 20.04 using Python 3.8. Four trajec-
tory datasets are applied for the evaluation, including real

life datasets T-drive, Geolife [21, 22], and two synthetic

datasets generated by random walk algorithm with a uniform-
distributed and a normal-distributed pace accordingly. In the
experiment, the numbers of trajectories n contained in T-drive,
Geolife, Uniform and Normal are 2000, 2000, 5000, 5000, and
the corresponding lengths l are 100, 200, 100, 200. In the

evaluation, the querying map is set to a grid of 2N × 2N

for N ∈ {8, 9, 10, 11}, with the querying resolution ranging
from 65, 536 up to 4, 194, 304. For PTTSQ, a cluster of six
Hilbert curves HC = {HCφ;HCI , HCII , · · · , HCV I} is

used for the modified Hilbert similarity calculation, where HC
is generated based on the original Hilbert curve parameter

φ = {11,�, (0, 0), 5m} by doing rotations for θ ∈ {�,�,�}
and shifting the starting point for P0 ∈ {(1, 1), (2, 2), (4, 4)}.
As a comparison, we set a baseline scheme which calculates

the similarity based on a single curve HCφ. For the SHE

encryption system, the security parameters k0, k1 and k2 are
set to 2048, 24 and 160, respectively. Besides, the query

number k of top-k is set to 5, 10, 15, 20 for the evaluation.

B. Evaluations and Experimental Results

In this subsection, we first evaluate the filtration precision

of top-k query and then analyze the communication overhead
of PTTSQ. Finally, we compare the time cost of system

initialization and query processing phases with latest works

[12, 13] by conducting experiments on both real life and

synthetic datasets.

1) The filtration precision: In a single Hilbert curve, two

adjacent points may have low similarities. To alleviate this

problem, modified Hilbert distance is designed in PTTSQ.

To demonstrate the precision improvement of our Hilbert

based filtration scheme, we carry out comparison experiments

on filtering with/without modification, whose effectiveness is

evaluated by the following defined precision: pr = |R∩C|
|C| ,

where R denotes the preliminary result set of top-K similar

candidates and C denotes the exact top-k result set.

We conduct top-5, top-10, top-15 and top-20 similarity

query evaluation experiments on the Uniform and Normal with
5,000 trajectories, changing the filtration scope K from k to

n, and repeat 100 times to evaluate the average precision

in each case. The comparison results of filtration precision

are shown in Fig. 5, from which we can see that for both

Uniform and Normal, our modified Hilbert distance based

PTTSQ significantly improves the filtration precision than

the baseline scheme. More exactly, for top-5, top-10, top-15
and top-20 similarity query, our filtration method achieves

more than 99% precision when setting the filtration scope

K = 125, 190, 215, 220. It means that the preliminary filtering
mechanism in PTTSQ is effective, which can reduce the

computational cost while ensuring the search precision.

2) Communication overhead: For convenience, we de-

note Ω as the total number of grids in the target map,

i.e., 22N . Let {ES , EH , EP , ERE
, ERR

} represent the op-

erations of SHE encryption, Hilbert curve encoding, public

key encryption, PRE encryption and PRE re-encryption algo-

rithms, respectively, and the corresponding ciphertext lengths

are expressed as {|ES |, |EH |, |EP |, |ERE
|, |ERR

|}. Similarly,
{DS , DH , DP , DRR

} stand for the corresponding decryption
or decoding operations.

In the initialization phase of PTTSQ, the communication

overhead mainly comes from the delivery of the Hilbert-based

look-up table Γ, which is Ω · [(1+r) · |EH |+2 · |ES |] bits, and
the size of the look-up table Γ with different N is shown in

Fig. 6(a). Besides, the communication overhead of uploading

trajectory data and identities is 2
∑n

i=1 li · |EH |+n · |ERE
|+
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Fig. 6: The initialization performance in Γ construction and trajectory encoding.

(a) Tdrive (b) Geolife (c) Uniform (d) Normal

Fig. 7: The query processing time of PTTSQ over different datasets.

(1 + l0) · |EP | bits. During the preliminary filtration phase,

CS1 takes K · |ES | bits communication to send preliminary
filtration results to CS2. In the refining phase, CS1 sends the
encrypted random numbers and the encrypted top-k results

to QU , and the communication overheads are |EP | bits and
k · |ERR

| +∑k
j=1 lj · |EP | bits. Meanwhile, CS2 sends the

encrypted similarity values to QU , which costs k · |EP | bits
communication.

3) Computational cost: In the system initialization phase,

DO executes TableGen to generate Ω pairs of key-values in

the look-up table that leads to 2Ω times ES and (1+r)Ω times

EH . Secondly, for the local data outsourcing, the encryption

of trajectory data consumes 2(lq +
∑n

i=1 li) times EH , n
times ERE

, one EP and one PRE.ReKey. As for the

computational cost during the query processing, CS1 prelim-
inarily filters the trajectories and then refines the results with

the assistance of CS2, which requires one Hil.Filt and one
SHE.SAC, including O(nl) times homomorphic operations
and K times DS . Besides, the generation of encrypted query

results needs (1 + k +
∑k

j=1 lj) times EP and k times ERR
.

Finally, it takes QU k timesDRR
, and

∑k
j=1 lj timesDP , DH

to obtain the query results.

To exhibit the computational efficiency more clearly, we

simulate the schemes and show the results as follows.

The Time of the Table Construction. To show the time of

the table construction, we construct the look-up tables based

on a cluster of six Hilbert curves HC (generated as in VI-A)

for each curve order N ∈ {8, 9, 10, 11}, and compare the

constructing time cost with the baseline scheme. As displayed

in Fig. 6(b), the time cost of constructing Γ is mainly related

to the order N of the selected Hilbert curve. That is because

an increasing N means the more information since the total

number of points in the space is 22N . Besides, there is no
significant difference when appending transformations and

increasing the cluster size of the curves, so it is convenient to

setup a look-up table with several transformations to modify

the approximation of trajectory similarities.
The Time of Trajectory Encoding. Intuitively, the com-

putational cost of trajectory encoding increases as the size

of trajectory data, i.e., the number of trajectories n and

the average length l. We evaluate the time of Hilbert curve
encoding on the above given four trajectory datasets, i.e.,

T-drive, Geolife, Uniform and Normal. As can be seen in

Fig. 6(c), the trajectory encoding by Hilbert curve is highly

efficient, and the time cost is linearly correlated to the size of

trajectory dataset, and also increases as the curve order rises.
The Time of Filtration & Refining. We carry out experi-

ments on the basis of an 11-order Hilbert-based look-up table
as constructed above. To show the efficiency of our scheme,

we simulate top-5, top-10, top-15 and top-20 similarity queries
over four datasets. Hence, when varying K = 100, 300, 500,
we can obtain the top-k query results in a different precision

demands. A larger K may achieve higher precision but bring

more calculations, and note that setting K = n implies that

refining all n trajectories without filtration. We displays the

query processing time for our filter-and-refine procedure after

initialization, which consists of the preliminary filtration time

(tF ), refined searching time (tR) and time of recovering query
results. As can be seen in Fig. 7, the querying time increases

with K. Since tF is the filtration time over n trajectories at

high speed, while tR is the refined searching time over only

K (K 	 n) trajectories, the filtration step over large-scale

trajectory data is of great efficiency.
Total Time Cost. The total query efficiency of our PTTSQ

is compared with related schemes STFSM [12] and PDRQ

[13] by simulating the similarity queries on four datasets.

Since the query efficiency of two comparison schemes is very

low, we just randomly choose 50 trajectories of length 50
from four datasets in the comparative experiments. In our top-

k similarity query scheme and their similarity range queries

STFSM [12] and PDRQ [13], they all output 10 most similar
trajectories. The comparison results of total query time are

shown in Table III, from which we can see that for all four
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datasets and different order N , both STFSM [12] and PDRQ

[13] cost thousands of seconds or tens of thousands of seconds

to perform a query. In contrast, the construction of the look-

up table Γ in our PTTSQ takes tens of seconds or thousands

of seconds, while the query user can complete a query within

one second. What we need special attention here is that the

query table of our PTTSQ can be constructed in advance, and

it only needs to be constructed once for different queries.

STFSM [12] and PDRQ [13] are time-consuming for a

dataset of only 50 trajectories, and they are not suitable

for large-scale trajectory datasets in terms of computational

efficiency. On the contrary, as previously demonstrated in

Fig. 7, PTTSQ just needs no more than 70 seconds for a

top-20 query among 2000 or 5000 trajectories, which is much
lower than the query time of STFSM [12] and PDRQ [13]

in 50 trajectories. Meanwhile, as illustrated in Fig. 5, PTTSQ
can also achieve high-precision query. Therefore, PTTSQ is

computationally efficient for large-scale trajectory datasets.

VII. CONCLUSION

In this paper, we propose a privacy-preserving top-k simi-

larity query system, i.e., PTTSQ, for trajectory data based on

a spatio-temporal similarity measure. To improve the query

efficiency, we develop a filtration method by utilizing the

location-preserving property of Hilbert curve, which maps

the high-dimensional geo-location points into their H-values

and screens out the dissimilar trajectories while preserving

data privacy. Then, the preliminary filtered K trajectories are

refined to get the exact query results. Security analysis shows

that PTTSQ guarantees the privacy of the query request, query

results, and DO’s trajectory data. Finally, the experimental

results show that PTTSQ has over 99% precision rate and

higher computational efficiency compared to existing studies.
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TABLE III: Total time cost on four datasets with 50 trajectories and N = 8, 9, 10, 11

System Initialization (sec) Query Processing (sec) Ref. [12] (sec) Ref. [13] (sec)

Order Order Order Order
8 / 9 / 10 / 11 8 / 9 / 10 / 11 8 / 9 / 10 / 11 8 / 9 / 10 / 11

T-drive 43.0 / 173.6 / 698.6 / 2753.1 0.418 / 0.416 / 0.416 / 0.415 3863.5 / 4759.4 / 8167.7 / 10456.1 6201.3 / 6206.1 / 6674.2 / 23806.5
Geolife 43.0 / 173.6 / 698.6 / 2753.1 0.417 / 0.414 / 0.415 / 0.416 1303.8 / 1888.2 / 3122.5 / 4236.4 5959.8 / 6029.1 / 5969.6 / 7427.5
Uniform 43.0 / 173.6 / 698.6 / 2753.1 0.418 / 0.416 / 0.415 / 0.416 2130.1 / 4532.5 / 9506.9 / 13795.9 6176.8 / 6242.4 / 9340.1 / 21780.6
Normal 43.0 / 173.6 / 698.6 / 2753.1 0.420 / 0.417 / 0.418 / 0.417 4661.1 / 7363.5 / 12513.6 / 16459.8 5966.5 / 5969.5 / 11331.3 / 20849.4
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