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ABSTRACT

The integration of deep learning on Speaker Recognition (SR) ad-

vances its development and wide deployment, but also introduces

the emerging threat of adversarial examples. However, only a few

existing studies investigate its practical threat in physical domain,

which either evaluate its feasibility only by directly replaying gen-

erated adversarial examples, or explore the partial channel inter-

ference for robustness improvement. In this paper, we propose a

physical adversarial example attack, PhyTalker, which could gen-

erate and inject perturbations on voices in a live-streaming man-

ner on attacking various SR models in different physical channels.

Compared with the typical adversarial example for digital attacks,

PhyTalker generates a subphoneme-level perturbation dictionary to

decouple the perturbation optimization and injection. Moreover, we

introduce the channel augmentation to compensate both device and

environmental distortions, as well as model ensemble to improve

the perturbation transferability. Finally, PhyTalker recognizes and

localizes the latest recorded phoneme to determine the correspond-

ing perturbations for real-time broadcasting. Extensive experiments

are conducted with a large-scale corpus in real physical scenarios,

and results show that PhyTalker achieves an overall Attack Success

Rate (ASR) of 85.5% in attacking mainstream SR systems and Mel

Cepstral Distortion (MCD) of 2.45dB in human audibility.

CCS CONCEPTS

• Security and privacy→Mobile and wireless security; •Com-

puting methodologies → Artificial intelligence;
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1 INTRODUCTION

Recent years have witnessed voiceprint becoming one of the most

emerging biometrics, thanks to its easy integration with the natural

and human-centered Voice User Interface (VUI). Benefit from the

advances by deep learning, corresponding Speaker Recognition (SR)

achieves wide applications on both hardware (e.g., smart speak-

ers including Google Home Voice Match[17], Amazon Alexa Voice

ID[2]) and software (mobile banks and instant messaging APPs

including HSBC Bank, U.S. Bank, TD Bank [5] and WeChat [56])

systems. However, as users enjoy the convenient authentication

experience of SR services, these solutions have been revealed vul-

nerable to adversarial example attacks, due to the intrinsic linear

structure of neural networks. Such a vulnerability indicates that SR

is facing severe security threats as investigated in many existing

studies, and raises prevalent user privacy concerns.

Early researches [7, 26, 60] reveal the vulnerability of deep

learning-based SR under white-box attacks in digital domain. Such

attacks construct the adversarial examples and directly inject them

to underneath machine learning models of SR systems in the dig-

ital space. To push such threats into practice, recent studies start

exploring physical adversarial example attacks. The representa-

tive work FakeBob [8] evaluates its physical attack performance

by directly replaying generated adversarial examples. Though its

proposed query-based natural evolution strategy realizes the black-

box perturbation generation, the neglect of physical perturbation

injection and channel interference limit its threats to practical SR

1ZJU-HIC is the acronym of ZJU-Hangzhou Global Scientific and Technological Inno-
vation Center.
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systems. Instead, without using typical injection mode (i.e., digital

overlaying or physical replaying), other studies [32, 59, 61] gen-

erate input-agnostic adversarial examples for real-time physical

attacks. But they are still limited by poor channel robustness and

weak transferability on attacking unknown models. Recent stud-

ies [34, 35, 61] take channel interference into consideration, and

introduce room impulse response [50] compensation for robust-

ness enhancement. However, they ignore the significant distortion

from device channels caused by the hardware imperfection, thus

remaining limited in practice. Therefore, the adversarial examples

realized by all of these works only partially meet the demand for

physical attacks, either in adversarial example injection mode or

biased channel enhancement.

Toward this end, we revisit the adversarial example attack in

physical domain, and comprehensively explore several key goals

required to implement a practical physical attack, i.e., real-time

live streaming, physical channel robustness and transferability on

attacking various models. Based on the analysis, several key chal-

lenges need to be addressed to realize the physical attack. Real-

time Perturbation Generation and Injection: to avoid being exposed

to surrounding people, the attack should be performed in a live-

streaming manner, requiring the real-time perturbation generation

and injection physically. Channel Interference Resistance: the physi-

cal perturbation propagation introduces complex interference into

adversarial examples, so the attack needs to be cross-channel, i.e.,

being able to resist both device and environmental channel dis-

tortions. Transferability on Attacking Unknown Models: the prior

knowledge of target SR model details is hard to obtain for adver-

saries, indicating the demand of black-box attacking capability.

In this paper, we first investigate the system model of main-

stream SR systems, and the threat model of physical adversarial

example attacks. To realize the threat model, we propose PhyTalker,

a live-streaming, cross-channel and black-box adversarial example

attack on SR in physical domain. Different from typically convert-

ing an entire voice to an utterance-level adversarial example in

an offline manner, we turn to generate fixed-length subphoneme-

level perturbations for 40 widely-used phonemes respectively as a

dictionary, which is independent of specific text context. By play-

ing the corresponding subphoneme-level perturbations while the

adversary is uttering a live voice stream, PhyTalker can perturb

the whole utterance in real-time. Specifically, PhyTalker first deter-

mines the perturbation length according to the statistical analysis

on a large-scale corpus, and further generates the perturbations to

form the dictionary. To resist the channel interference and model

variation, we introduce the channel impulse response, including

both typical environmental noises and our investigated imperfect

device variation, to augment the training corpus for perturbation

optimization. To generalize on unknown SR systems, we adopt a

model ensemble method to improve the perturbation transferability.

After generating the perturbation dictionary, PhyTalker performs

the live-streaming perturbation broadcasting for real-time injection.

In particular, based on the recorded live-streaming voices of the ad-

versary, PhyTalker continuously recognizes and localizes the latest

recorded phoneme, and then estimates the subsequent unrecorded

phonemes by referring to a preset reference phoneme sequence.

With the estimated phoneme information, PhyTalker plays the cor-

responding perturbations to inject the adversary’s live-streaming

Adversary

Recognition

Result

Attack

Device

SR Device

Voice

Perturbation

(reject)

(pass)

Target User

Surrounding People
Surrounding People

Figure 1: Threat model on speaker recognition.

voices in physical domain so as to launch an imperceptible attack.

Extensive experiments in real scenarios demonstrate that PhyTalker

can effectively deceive SR systems in physical domain while re-

maining imperceptible to surrounding people.

We highlight our contributions as follows.

• We explore three major requirements comprehensively under-

lying a practical physical adversarial example attack scenario,

including live-streaming injection, cross-channel robustness, and

black-box optimization.

• We propose a physical adversarial example attack, PhyTalker,

which enables an adversary to broadcast real-time perturbations

synchronously with the live voices in physical domain.

• We design a subphoneme-level adversarial perturbation genera-

tion and a perturbation-voice synchronization mechanism, which

takes advantages of the composability and stability of phonemes,

outperforming the universal perturbation in imperceptibility.

• We develop a channel augmentation approach and a model en-

semble method, to improve perturbations’ robustness on various

devices and environmental channels as well as unknown SR mod-

els in physical attacks.

• We conduct extensive experiments with a large-scale corpus

in real physical scenarios, and results show that PhyTalker can

achieve an overall Attack Success Rate (ASR) of 85.5% in attacking

mainstream SRs, Mel Cepstral Distortion (MCD) of 2.45dB in

terms of human audibility and Real Time Factor (RTF) of 0.5 in

terms of computational efficiency.

2 ATTACK STATEMENT

In this section, we present the system and threat model, then show

the design goals for the physical adversarial example attack on SR,

and finally present the overview of our attack.

2.1 System and Threat Models

Speaker Recognition (SR) is an automatic technique that extracts

distinguishable voiceprint from raw voices to identify speakers.

And its rapid development has derived many categories, including

text-dependent [29] and text-independent recognition [6], Open-

Set Identification (OSI) [15], Close-Set Identification (CSI) [36]

711



Push the Limit of Adversarial Example Attack on Speaker

Recognition in Physical Domain SenSys ’22, November 6–9, 2022, Boston, MA, USA

and Speaker Verification (SV) [13], etc. Considering the general-

ization capability and adaptability, our attack targets on the text-

independent OSI SR system. Specifically, such a system extracts

the high-level embedding features underlying speaker voices, then

derives the confidence corresponding to the enrolled user profiles,

and finally regards the user identity as the one with the highest

confidence. To further prevent the spoofers from accessing, the

system further sets a confidence threshold to reject speakers with

lower confidence. Mathematically, the decision of an OSI system

can be formulated as:

𝐷 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
argmax

𝑦𝑖
(𝑆𝑦𝑖 (𝑥)), max

𝑖∈{0,· · · ,𝑛−1}
𝑆𝑖 (𝑥) > 𝜃

𝑟𝑒 𝑗𝑒𝑐𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(1)

where 𝑥 is the testing voice, 𝑆𝑦𝑖 (𝑥) is the confidence that the voice
𝑥 belongs to the enrolled user 𝑦𝑖 , and 𝜃 denotes the confidence

threshold.

To realize the aforementioned physical attack on SR system, we

need to achieve the following design goals.

To physically attack such an SR system, we then illustrated our

threat model as shown in Figure 1. In this attack, an adversary

intends to impersonate a legitimate user to access the target SR

system, so as to retrieve the user’s privacy or activate sensitive

voice commands. We assume the adversary has not enrolled in the

target system, thus being regarded as a spoofer in normal situations.

To obtain legitimate access, a straightforward approach is to replay

the victim’s voice or a pre-crafted forged voice directly. But such

an approach is limited to the scenarios in the absence of other

persons, because the broadcasting voice through common COTS

loudspeakers induces a significantly different hearing from live

speech voice, thus raising ambient persons’ awareness and leading

to the failure of an imperceptible attack. To this end, our threat

model is considered to be able to launch the imperceptible attack

on this extended scenario, where other persons are allowed to

exist around the adversary and target SR system. For example,

an adversary wants to impersonate a legitimate user to punch in

the voiceprint attendance system that is fixed in an office with

surrounding colleagues. Since the colleagues around may see/hear

the attendance system and the adversary, the adversary cannot

replay the legitimate user’s voices only without live speech, which

easily attracts surrounding persons’ awareness. On the other hand,

we assume the adversary can collect a few voice examples longer

than 5s of the target user from public conversations or social media.

Representative examples include crank calls, videos from TicTok

or Youtube, etc. But note that the content of the collected voice

sample is not constrained thus not required to cover the texts that

may be used in further attacks. Considering the limited texts in

collected samples and attention-attracted scenarios, the adversary

obviously cannot launch such an attack via pure replay techniques.

Also, we assume the adversary has no prior knowledge of the target

SR system, including signal processing techniques, neural network

structure, model parameter configuration, etc. And the adversary

could neither control the receiver device, nor the environmental

settings of the target SR system. Furthermore, the adversary is only

allowed to carry an attack device with a speaker and a microphone,

which is used to broadcast the adversarial perturbations.
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Figure 2: Overview of PhyTalker.

2.2 Design Goals

Live-streaming. As mentioned in Section 2.1, the adversary can

not simply replay the user’s voice or adversarial examples without

live speech in order to avoid raising surrounding persons’ aware-

ness. Hence, the adversary needs to utter live-streaming voices

and inject adversarial perturbations in real-time. This introduces

the requirements of real-time perturbation generation and voice-

perturbation synchronization, indicatingmore challenges compared

with digital-domain attacks.

Cross-channel. Unlike over-the-line digital attacks, the gen-

erated adversarial examples experience microphone transmission,

over-the-air propagation and loudspeaker reception in physical

domain. The complex channel, including various device models

and different surrounding environments, induces severe distortions

to the audio signals. To ensure that the adversarial perturbations

survive in the target physical domain, it is necessary to enhance

their cross-channel robustness.

Black-box. Commercial SR systems usually do not expose their

model details to the public. Even worse, most systems limit the

query frequency to prevent enumeration-like attacks. Hence, for

an adversarial example attack, especially the physical attack, the

adversary has no prior knowledge of the SR system. This requires

the adversary to realize a black-box attack in real situations.

2.3 Attack Overview

Meeting the goals mentioned in Section 2.2, we propose PhyTalker,

a live-streaming, cross-channel and black-box attack. The basic idea

of PhyTalker is to decouple the perturbation optimization and injec-

tion by generating a dictionary of subphoneme-level, cross-channel

and transferable adversarial perturbations for live-streaming at-

tacks. Using the dictionary, the adversary launchs a stealthy phys-

ical adversarial example attack by uttering live-streaming voices

and broadcasting imperceptible adversarial perturbations simulta-

neously. Figure 2 shows the overview of PhyTalker, including the

offline and online phases.

712



SenSys ’22, November 6–9, 2022, Boston, MA, USA Q. Chen, M. Chen, L. Lu, J. Yu, Y. Chen, Z. Wang, Z. Ba, F. Lin, K. Ren

The offline phase aims to generate a dictionary of cross-channel

and transferable subphoneme-level perturbations for live-streaming

attacks. First, in Subphoneme-level Perturbation Generation, we gen-

erate the subphoneme-level perturbations with a fixed length for

each phoneme to construct the dictionary in the offline attack

preparation. Specifically, PhyTalker extracts the phoneme sequence

from the training voices, and aligns voice and the corresponding

phoneme based on timestamp with a Kaldi-based open-source tool

Montreal Forced Aligner (MFA). Then PhyTalker iteratively op-

timizes the perturbation for each phoneme by solving the well-

designed objective function, so as to generate an adversarial pertur-

bation dictionary. During the optimization, Cross-channel Pertur-

bation Augmentation employs a channel simulation method with

Unit Impulse Response(UIR) to augment adversarial perturbations.

By simulating various channels from different device models and

environments with only a few samples, PhyTalker could adapt to

different channel interference in physical attacks. Furthermore, we

ensemble multiple mature SR models for the perturbation opti-

mization in Transferable Perturbation Calibration to support the

black-box attacking capability.

The online phase aims to broadcast adversarial perturbation

with the well-trained subphoneme-level perturbation dictionary

for the physical perturbation injection in real-time. In particular,

in Live-streaming Adversarial Example Attack, PhyTalker first con-

structs a Reference Phoneme Sequence (RPS) for real-time phoneme

alignment. With a well-trained recurrent neural network model,

PhyTalker recognizes and localize the latest recorded phoneme

and predict its subsequent phonemes relative to the reperfence

phoneme sequence. Then, PhyTalker employs an Exponentially

Weighted Moving-Average (EWMA) algorithm to estimate the time

duration of subsequent phonemes. With the estimated phoneme in-

formation, PhyTalker could broadcast subphoneme-level adversarial

perturbations of the appropriate type and number. In the over-the-

air propagation, the adversary’s live-streaming voice would be

injected with adversarial perturbations, and then spoof the target

SR system to regard it as from a legitimate user.

3 ATTACK DESIGN

In this section, we present the design detail of PhyTalker.

3.1 Subphoneme-level Adversarial Perturbation
Generation

As mentioned in Section 2.2, our attack aims to be live-streaming

so as to avoid raising the awareness of surrounding persons. Hence,

PhyTalker needs to generate the adversarial perturbations corre-

sponding to the adversary’s speech in real-time. However, typical

adversarial example attacks usually require the whole adversary’s

speech voice (i.e., an utterance-level voice) as input for the pertur-

bation training, indicating that the generated perturbations highly

depend on the input voice texts. In a physical attack, the adversary

probably needs to speak various commands to achieve his/her curi-

ous or malicious objectives. Hence, such an implementation cannot

meet the live-streaming goal in the physical attack. To realize the

live-streaming attack, we decouple the perturbation generation and

injection processes, and propose to generate a subphoneme-level

TZIV I

Subphoneme-level
Perturbation for “Z”

Phoneme-level
Perturbation for “Z”

repeat

Utterance-level
Perturbation for “visit”

Figure 3: Illustration of adversarial example generation with

subphoneme-level perturbation, where the subphoneme-

level perturbation repeats to form phoneme-level pertur-

bation, then forms utterance-level perturbation.

adversarial perturbation dictionary in the offline generation for

further online injection.

Phonemes are the basic units of voice in phonology. A limited

number of phonemes can be combined into any semantic words

and sentences in a language, e.g., English only has 39 widely-used

phonemes, as shown in Table 1. Also, these basic phonemes have

relatively stable vocal characteristics, such as similar frequency

distribution and formants, indicating that phoneme-based features

tend to be similar among utterances with different text or contexts.

Inspired by the composability and stability of phonemes, we gener-

ate a perturbation dictionary where each perturbation corresponds

to each phoneme, and employ it to construct adversarial exam-

ples with any text. Unfortunately, due to the variation of speech

texts, context and speed, the duration of phonemes is not fixed,

even the same phoneme in different contexts (e.g., different words)

with distinct duration. To handle it, we propose to generate fine-

grained subphoneme-level perturbations, whose duration is fixed

and shorter than that of all phonemes.

Specifically, we define 𝑃 = {𝑃1, 𝑃2, ..., 𝑃40} as a dictionary of

generated subphoneme-level perturbations, consisting of 40 per-

turbations for 39 phonemes in Table 1 and the silence interval. For

a given input voice 𝑥 , we decompose it into a phoneme sequence

and inject the corresponding perturbations for each phoneme. Note

that the subphoneme-level perturbation is much shorter than the

phoneme duration, we repeat the same perturbation as many as

Table 1: List of ARPAbet [25] phonemes.

No. Phn Eg. No. Phn Eg. No. Phn Eg.

1 AA odd 14 F fee 27 P pee

2 AE at 15 G green 28 R read

3 AH hut 16 HH he 29 S sea

4 AO ought 17 IH it 30 SH she

5 AW cow 18 IY eat 31 T tea

6 AY hide 19 JH gee 32 TH theta

7 B be 20 K key 33 UH hood

8 CH cheese 21 L lee 34 UW two

9 D dee 22 M me 35 V vee

10 DH thee 23 N knee 36 W we

11 EH Ed 24 NG ping 37 Y yield

12 ER hurt 25 OW oat 38 Z zee

13 EY ate 26 OY toy 39 ZH seizure
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Figure 4: Frequency responses of loudspeaker-environment-

microphone systems under different device models and en-

vironments.

possible within each phoneme duration. With such a subphoneme-

level perturbation injection, we can adapt to different phonemes of

variant length and then generate the adversarial example 𝑥
′
. Figure

3 illustrates an example of perturbation injection for word “visit”.

To realize a successful targeted attack, the generated adversarial

example 𝑥
′
should reach the maximum confidence for the target

speaker 𝑦𝑡 while larger than the preset threshold 𝜃 . Hence, our
objective function is designed as follows:

𝐿𝑆,𝜃 (𝑥
′

, 𝑦𝑡 ) = max{𝜃, max
𝑖∈𝑌\{𝑦𝑡 }

𝑆𝑖 (𝑥
′

)} − 𝑆𝑦𝑡 (𝑥
′

). (2)

To generate 𝑃 for phonemes from general voices with any text, we

further employ batch of voice samples following a distribution X,

instead of a single sample, for perturbation optimization:

argmin
𝑃

E
𝑥∼X

𝐿𝑆,𝜃 (𝐺 (𝑥, 𝑃), 𝑦𝑡 )

s.t. ‖𝑃 ‖∞ ≤ 𝜖,
(3)

where𝐺 (𝑥, 𝑃) denotes the perturbation generation function from a

voice sample 𝑥 based on the dictionary 𝑃 , i.e., 𝑥
′
= 𝐺 (𝑥, 𝑃), 𝜖 refers

to the perturbation scale.

By solving Eq. (3), we obtain a subphoneme-level perturbation

dictionary, with which PhyTalker generates utterance-level adver-

sarial examples with various texts by injecting subphoneme-level

perturbations on each phoneme to launch the impersonation attack.

3.2 Cross-channel Adversarial Perturbation
Augmentation

Though the subphoneme-level perturbation dictionary contributes

to a successful attack in digital domain, it may fail due to complex

physical propagation channels, as discussed in Section 2.2. To im-

prove the robustness of PhyTalker in physical domain, we adopt a

channel simulation method for low-effort channel augmentation

on the adversarial examples.

Theoretically, when broadcasting over the air, the digital pertur-

bation first travels through DAC circuit, voice coil and diaphragm,

becoming mechanical acoustic waves, then propagates through the

air medium in a space, and finally received by a microphone, expe-

riencing ADC and other electronic circuits to generate the digital

signals. Such a transmission process introduces two aspects of chan-

nel interference, i.e., device-related interference (e.g., non-linearity

of the amplifier) and space-related interference (e.g., multi-path

effect).

To explicitly observe channel interference on voices, we mea-

sure frequency responses of different devices and environments.

On one hand, we employ RP-M10W, TCM-340, Mi11 as receiver

respectively in the same environment (i.e., a lab) to study the im-

pact of different devices. On the other hand, we employ RPM10W

as the same receiver in a lab, an office, a study respectively to ex-

plore the environmental variations. Considering the transmitter

device can be controlled by the adversary, we use the same loud-

speaker EDIFIER M230, and fix the loudspeaker and microphone at

a distance of 5cm. Figure 4 shows the frequency responses under

different device models and environments. We can observe that

different device models exhibit significant differences between each

other in frequency responses, while different environments also

induce considerable variants into the received signals. The result

indicates that the channels, including the device and environment,

introduces distortion into the over-the-air signals. Considering the

subtle perturbations, such interference significantly downgrades

the performance of physical adversarial example attacks.

Based on the analysis, PhyTalker augments the perturbation dic-

tionary 𝑃 with various UIR. Typically, the most straightforward

augmentation approach is to collect a large amount of perturbation

broadcasting samples using different device models in different

environments. However, such an approach requires significant data

collection efforts, which limits the threat of physical attacks. To

release the adversary’s efforts, we design a channel simulation

method for perturbation augmentation. The basic idea is to de-

couple the received signal into pure voice and channel response.

Theoretically, a signal 𝑥 propagating through a channel 𝑐 becomes

𝑦 = 𝑐 ∗𝑥 . In practice, the digital signal is the one involved in channel
responses, i.e., 𝑦 in the equation,instead of 𝑥 . This indicates that we
could simulate a signal propagating through any channel in digi-

tal domain as long as the channel response is obtained, providing

us the opportunity to augment the perturbation for improving its

channel robustness.

To derive the channel response, we consider the whole system

propagated by the voice as a Linear, Time-Invariant (LTI) system,

because of the relatively wide linear regions offered by most audio

systems. Fortunately, for a LTI system, the channel response can be

formulated by Unit Impulse Response (UIR). To measure the UIR,

we employ MLS-derived impulse response measurements[46], one

of the basic acoustics measurement methods in ISO standards[22].

Specifically, we broadcast an MLS signal (i.e., a specific kind of

pseudo-random binary signal) with a transmitter, then propagating

through a specific environment, and finally received by a receiver.

After that, the channel’s UIR, including the transmitter-receiver

device models and environment, is derived by performing convolu-

tion operation on the received signal and transmitted MLS signal.

Since the MLS signal is spectrally flat, pre-certain and repeatable,
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semble learning and adaptive weights.

the derived UIR has a higher Signal-to-Noise Ratio (SNR). Using

such a method, the adversary could collect only one sample in each

environment under each device model to generate various channel

responses.

After obtaining various UIRs, we augment the utterance-level

adversarial perturbation via a convolution operation before inject-

ing it into the voice. Then, our perturbation optimization problem

Eq. (3) is transformed as:

argmin
𝑃

E
𝑥∼X,𝑐∼C

𝐿𝑆,𝜃 (𝐺 (𝑥, 𝑃 ∗ 𝑐), 𝑦𝑡 )

s.t. ‖𝑃 ‖∞ ≤ 𝜖,
(4)

whereC is a UIR distribution collected frommultiple real transmitter-

receiver devices and environments, excluding the targeted devices

and environment.

By augmenting subphoneme-level perturbations with collected

UIRs, PhyTalker can cross various device models and different en-

vironments to launch a successful adversarial example attack in

physical domain without the knowledge of the victim’s device and

environment.

3.3 Transferable Adversarial Perturbation
Calibration

Except for the channel robustness, it’s also necessary to realize the

black-box attack on SR systems, as mentioned in Section 2.1. Hence,

PhyTalker needs to improve its transferability so that the attack

still remains successful when meeting unknown systems.

To improve PhyTalker’s transferability, we employ the ensemble

learning method to fuse the outputs from multiple substitute SR

models in the perturbation optimization. Specifically, when a voice

sample 𝑥 is fed to the optimization process, the corresponding ad-

versarial perturbation is generated from 𝑃 as mentioned in Section

3.1. Then, the generated adversarial example is fed to 𝑛 different

substitute SR models, (𝑆0, 𝜃0), ..., (𝑆𝑛−1, 𝜃𝑛−1), to obtain various

confidence outputs, which are fused to update perturbations for

discarding model-specific features and learning transferable pertur-

bations. Considering the distinct importance of different SR models,

we further introduce learnable adaptive weight with weight nor-

malization,𝑤𝑖 ∈ {𝑤0, ...,𝑤𝑛−1} where
∑𝑛−1
𝑖=0 𝑤𝑖 = 1, for each model

to dynamically adjust the significance of each model as shown in

Figure 5. Hence, the perturbation optimization problem is further

transformed as:

argmin
𝑃

E
𝑥∼X,𝑐∼C

𝑛−1∑
𝑖=0

𝑤𝑖𝐿𝑆𝑖 ,𝜃𝑖 (𝐺 (𝑥, 𝑃 ∗ 𝑐), 𝑦𝑡 )

s.t. ‖𝑃 ‖∞ ≤ 𝜖.

(5)

With ensemble learning and adaptive weights, the calibrated

perturbation extends its attack targets from a single SR system to

various systems, realizing the black-box attack ability.

3.4 Live-streaming Adversarial Example Attack

After the offline perturbation optimization, PhyTalker generates

subphoneme-level, cross-channel and transferable adversarial per-

turbations. In the online attacking, PhyTalker injects the perturba-

tions to the adversary’s live-streaming voices in real-time and con-

tinuously, which consists of the real-time alignment and phoneme

sequence estimation.

3.4.1 Real-time Alignment. The live-streaming attack relies on a

continuous and real-time alignment between the latest recorded

live-streaming voice and speech texts. After that, we estimates the

types and durations of phonemes in the subsequent live-streaming

voice for perturbation injection. Although the adversary’s speech

texts are not constrained, he/she should determine the speech texts

before launching the physical attack. Thus, PhyTalker is able to

obtain the texts of the adversary’s voice before the live-streaming

perturbation broadcasting. From the speech texts, we construct a

Reference Phoneme Sequence (RPS), consisting of phonemes used in

the live-streaming query, serving as the alignment reference. Then

we use a fast phoneme recognition system to extract phoneme

sequence from the latest recorded live-streaming voice and align it

to RPS for perturbation synchronization.

The premises of the real-time alignment are to derive the RPS

from the speech text and extract recorded phoneme sequence from

the latest recorded live-streaming voice. Hence, we employ awidely-

used text-to-phoneme tool (i.e., Phonemizer[4]) to extract RPS from

the speech text before attacks. For each phoneme in RPS, we assign

the average duration of this type of phonemes to it as duration

reference, thus we finally obtain an RPS with both phoneme types

and durations. Different from RPS, the recorded sequence should

be regularly extracted from the latest recorded voice in real-time

when the attack performs. Hence, we employ a lightweight three-

layer Bidirectional Recurrent Neural Network (BRNN)[19] model

for the frame-wise real-time phoneme recognition. The BRNN takes

26-dimensional acoustic features as input, and adopts 256 one-cell

memory GRU units with layer normalization in both the forward

and backward layers, resulting in 40-dimensional phoneme predic-

tions. After that, we further calibrate it by combining the same or

similar phonemes and discarding the incorrect or too short ones. Fi-

nally, we derive the time-aligned phoneme sequence in the recorded

voice.

With RPS and the phoneme recognition system, PhyTalker finally

recognizes the phoneme sequence in the recorded live-streaming

voice and align it to the RPS with a long short-term window mech-

anism as shown in Figure 6. The long-term window determines

a global searching interval to performance coarse-grained align-

ment, which starts from the last aligned phoneme with a preset

window length of 𝐿. Then a short-term window is used to locate
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Figure 6: Illustration of the live-streaming phoneme align-

ment with long short-term window mechanism.

the latest recorded phoneme more accurately for fine-grained align-

ment. In particular, a short-term window slides through the whole

long-term window in RPS, and applies Levenshtein distance[30] to

measure its similarity with the one covering the latest phoneme in

the recorded sequence. When the minimum Levenshtein distance is

derived, PhyTalker regards the last phoneme in the corresponding

short-term window as the aligned position in the query. We also

preset a distance threshold to discard false alignment. During real-

time alignment, We pull the short-term window in the recorded

sequence backward phoneme-by-phoneme, and repeat the above

processes. Due to the variable speaking speed of adversaries, the

aforementioned alignment is continuously repeated in real-time so

as to avoid the cumulative errors in the alignment.

3.4.2 Phoneme Sequence Estimation. After aligning the recorded

phoneme sequence and the RPS, we can determine the phoneme

types of the estimated phoneme sequence by checking the phoneme

sequence after the alignment position in the RPS. To accurately

inject perturbation on the subsequent live-streaming voice, the

durations of each phoneme in the estimated sequence are also re-

quired. However, such phoneme durations remain unknown in

the estimated sequence, and are hard to predict based on RPS

due to the variable speaking speed of humans. Hence, we design

a phoneme duration estimation method based on Exponentially

Weighted Moving-Average (EWMA) algorithm, which dynamically

adjusts the duration of phoneme-level adversarial perturbation to

follow the live-streaming voice.

The basic idea of the duration estimation is to normalize the

voice speed from different speeches into the same scale of RPS.

Specifically, we derive a speaking speed 𝑣𝑖 for the 𝑖𝑡ℎ phoneme

relative to the speed of RPS, i.e.,

𝑣𝑖 =
𝑑
𝑟𝑒 𝑓
𝑖

𝑑𝑟𝑒𝑐𝑖

, (6)

where 𝑑
𝑟𝑒 𝑓
𝑖 is the 𝑖𝑡ℎ phoneme’s duration in RPS, 𝑑𝑟𝑒𝑐𝑖 is the corre-

sponding phoneme’s duration in the recorded voice. To estimate

the speed of phoneme 𝑣𝑒𝑖 , we derive a cumulative speed among the

previous 𝑘 phonemes based on EWMA, i.e.,

𝑣𝑒𝑖− 𝑗 = 𝛽𝑣𝑖− 𝑗 + (1 − 𝛽)𝑣𝑒𝑖− 𝑗−1, 𝑗 ∈ {1, · · · , 𝑘}, (7)

where 𝛽 is a preset weight. Considering the human speaking be-

havior is approximately a LTI system , the speed should lean to

stable for a period of time. Hence, based on the estimated speed,

PhyTalker further re-scales the phoneme durations in RPS to that

in the recorded voices, i.e.,

𝑑𝑒𝑖+𝑗 =
𝑑
𝑟𝑒 𝑓
𝑖+𝑗

𝑣𝑒𝑖−1
, 𝑗 ∈ {0, · · · , 𝑀}, (8)

where𝑀 is the segment size for phoneme duration estimation.

After that, we can estimate the duration of subsequent phonemes

until the next alignment, and determine the number of correspond-

ing subphoneme-level perturbations for injection. In particular, we

assume the duration of each generated subphoneme-level perturba-

tion is 𝑑𝑠𝑖 (usually shorter than the shortest phoneme as mentioned

in Section 3.1). When each subsequent phoneme is predicted as

𝑝 with the duration of 𝑑𝑒𝑝 based on Eq. (8), PhyTalker repeats the

corresponding subphoneme-level perturbation 	𝑑𝑒𝑝/𝑑
𝑠
𝑝 
 times as

the phoneme-level perturbation, and then broadcasts it by speakers

for injection.

4 EVALUATION

In this section, we evaluate the performance of PhyTalker with open

datasets in real physical environments.

4.1 Experimental Setup & Methodology

Dataset. We employ two open datasets, i.e., VoxCeleb1[41] and Lib-

riSpeech[44], for SR model training and attack evaluation, respec-

tively. Considering the multiple SR systems required to implement

in the evaluation, we randomly select three subsets from VoxCeleb1

as the training sets for SR systems, named Train-1, Train-2, Train-3.

Each subset contains 1,000 speakers with around 175k utterances.

Each SR system is enrolled by 5 speakers from LibriSpeech’s train-

clean-100 set, including 3 males and 2 females with 5 randomly

selected utterances for each speaker. On the other hand, we ran-

domly select 10 speakers with 1,105 utterances from LibriSpeech

as adversaries for the evaluation, among which 884 utterances are

used for perturbation optimization while the rest 221 for testing.

SR Models. We implement 9 SR models with 3 different ar-

chitectures and 3 different training datasets on PyTorch for per-

turbation optimization and evaluation. For all the models, we use

24-dimension MFCC features, whose frame size and step are 25ms

and 10ms, respectively. And the models output 512-dimension iden-

tity embeddings. After that, a GPLDA is employed to compare the

similarity between the identity embeddings of the input voice and

that of each enrolled user, outputting a confidence. Table 2 shows

the details and performances of the 9 SR models.

Attack Implementation. We implement the subphoneme-level

perturbation generation on an AMAX server (Intel Xeon Silver

4210R, 256GB RAM, NVIDIA RTX A6000) for the attack. The dic-

tionary of subphoneme-level perturbations are generated by mini-

mizing the objective function in Eq. (5). By default, the amplitude

Table 2: EERs of the 9 SR models with different architectures

trained by different datasets.

Architecture Train-Set 1 Train-Set 2 Train-Set 3

x-vecter[49] A (6.0%) B (6.3%) C (6.4%)

d-vecter[53] D (9.6%) E (10.4%) F (9.9%)

DeepSpeaker[31] G (7.2%) H (8.4%) I (7.9%)
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Figure 7: Illustration of experimental setup.

threshold 𝜖 = 0.02, and the duration of subphoneme-level per-

turbation is 12.5ms. We employ 24 UIRs measured by 8 different

recording device models with each playback device in 3 different

environments for data augmentation. Note that the perturbations

are specifically augmented for each single playback device, because

an adversary should only use a single device for one attack. We

further employ 4 white-box models with different architectures and

training datasets, selected from the aforementioned 9 SR models,

for the model ensemble.

Experimental Setup. Figure 7 shows the experimental setup

for the evaluation. We deploy PhyTalker on a Seeed ReSpeaker

Core v2[48] (Cortex A7, 1GB RAM) as the adversary’s attack device.

To control the experimental variable, we playback human voices

with a loudspeaker EDIFIER M230, instead of recruiting humans

for simplicity. And the target SR model is deployed on a Lenovo

Xiaoxin Pro 13 with an external receiving front-end (i.e., a 360◦

microphone RunPu M10W, a lavalier microphone Takstar TCM-

340). In each experiment, we play the voices with M230 as the

adversary’s real-time query. During the voice playing, the attack

device receives them by a lavalier microphone, which is fixed near

M230, and then derives the corresponding perturbations based on

the signals, as mentioned in Section 3.4. After that, the perturbations

are broadcasted with two loudspeakers (i.e., JBL CLIP 3 and HP

DHS) respectively, for injection on the voice query. To simulate

a real physical attack, the M230 for playing adversary’s query is

50 cm (40cm × 30cm) away from the SR system’s front-end, while

another speaker (i.e., JBL CLIP 3 or HP DHS) is 5cm. In order to

eliminate the accumulated error, the alignment for the perturbation

on human voices is performed every 0.5s for 3s recorded segment.

Moreover, we set a delay of 0.2 ∼ 0.4s to compensate for the time

cost of data processing (around 0.17 ∼ 0.23s, measured from our

implementation) and signal transmission (a random value obeying

the uniform distribution𝑈 (0.05, 0.1)). The experiments are repeated

in four different indoor environments: a Lab (7.4× 5.6m2, 38.7dBA),

an Office (18.0 × 6.0m2, 43.1 dBA), a Study (3.1 × 4.4m2, 37.2 dBA)

and a Cafe simulated with acoustic scene records from TUT2016[40]

in the Lab (7.4 × 5.6m2, 54.3dBA).

Metrics. (1) Attack Success Rate (ASR) is the ratio of successful

attacks 𝑛𝑠 among all the attack attempts 𝑛𝑎 , i.e., 𝐴𝑆𝑅 = 𝑛𝑠/𝑛𝑎 ×

100%. (2) Sound Pressure Level (SPL) is a logarithmic measure of the

effective pressure of a sound 𝑝 relative to a reference value 𝑝𝑟𝑒 𝑓 ,

i.e., 𝑆𝑃𝐿 = 20 log 𝑝/𝑝𝑟𝑒 𝑓 , where 𝑝𝑟𝑒 𝑓 = 20𝜇𝑃𝑎 (a common value in

most cases). (3) Hit Rate (HR) is the ratio of correct phonemes that

the perturbation hits among all phonemes in an utterance. Note

that a valid hit is counted only when the phoneme overlapping is

over 12.5ms to contain at least one subphoneme-level perturbation.

(4) Mel Cepstral Distortion (MCD) [27] measures the sound quality

by comparing the distance between the target and reference sounds,

i.e., 𝑀𝐶𝐷 = (10/𝑇 ln 10)
∑𝑇
𝑡=1

√
2 ·

∑24
𝑖=1 (𝑚𝑐𝑡𝑖 −𝑚𝑐𝑒𝑖 )

2, where𝑚𝑐𝑡𝑖
and𝑚𝑐𝑒𝑖 denote the target and estimated mel-cepstrals, respectively.

(5) Real Time Factor (RTF) is the ratio of total processing time 𝑡𝑝
to the input audio duration 𝑡𝑡 , i.e., 𝑅𝑇𝐹 = 𝑡𝑝/𝑡𝑡 . (6) Signal-to-Noise
Ratio (SNR) is the ratio of the power of a signal 𝑃𝑠 to the power of

noise 𝑃𝑛 expressed in decibels, i.e., 𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (𝑃𝑠/𝑃𝑛).

4.2 Overall Performance

We first evaluate the overall performance of PhyTalker, whose ex-

periment is performed in the lab with CLIP3 and M10W as the

front-ends of the attack device and SR system, respectively. The

target SR models are A, D and G, as mentioned in Table 2. To eval-

uate its black-box attacking capability, we ensemble (E, F, H, I), (B,

C, H, I) and (B, C, E, F) to attack model A, D, G, respectively. To

validate the effectiveness of PhyTalker, we introduce two State-Of-

The-Art (SOTA) works FakeBob[8] and AdvPulse[35] as baselines.

Specifically, we implement FakeBob based on its open-source code

[1], where we set the amplitude threshold 𝜖 as 0.05 and the score

threshold 𝜅 as 70.0, then playback the well-crafted examples at a

loud volume 50cm away from the SR system. As for AdvPulse, due

to the lack of the open-source code, we directly refer to its available

results under a similar experimental setup, for a fair comparison.

Table 3 shows ASRs, SNRs, and RTFs of PhyTalker, FakeBob and

AdvPulse when attacking different SR systems with d-vector, x-

vector and DeepSpeaker. We can find that when attacking the three

models physically, PhyTalker all achieves 15.5% higher ASRs com-

pared with FakeBob[8] on average while realizing a 5.2dB higher

SNR. This indicates that PhyTalker outperforms FakeBob under the

over-the-air and black-box settings. In addition, we measure MCDs

of signals received by a microphone 1m away from the target SR

system to evaluate the perceptibility of surrounding people. It can

be observed that MCD of PhyTalker is 1.7dB lower than FakeBob[8],

indicating a better audibility of PhyTalker. This is because PhyTalker

decouples the perturbation with the adversary’s voice. By placing

the attack device near the target SR system, the volume of per-

turbation could be set at a relatively small value, thus leading to

a lower MCD in the surrounding. Compared with the white-box

AdvPulse on x-vector, although PhyTalker is a bit lower on ASR

by 9.4%, its SNR is 12.1 dB better than AdvPulse, indicating that

Table 3: Overall ASRs, SNR, MCD and RTF of PhyTalker and

SOTA works under physical attack scenarios.

Attack
ASR(%) SNR

(dB)

MCD

(dB)
RTF

d-vec. x-vec. D.S.

PhyTalker 85.5 80.5 90.5 16.8 2.45 0.5

FakeBob 63.3 77.4 69.8 11.6 4.15 95.3

AdvPulse N/A 89.9 N/A 4.7 N/A <1.0
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the phoneme-based optimization improves the audibility of live-

streaming attacks, which outperforms SOTA significantly under a

comparable attack ability.

We also compare the efficiency of generating adversarial exam-

ples. We can see from Table 3 that the average RTF of PhyTalker

and FakeBob are 0.4 and 95.3, respectively. Such a significant gap

is because PhyTalker decouples the perturbation optimization and

injection, leading to only once perturbation optimization. In the

process of generating adversarial examples, it is only necessary to

extract phonemes in voice in real time and play the well-crafted

subphoneme-level perturbations. But in FakeBob, the generation of

adversarial examples requires a large number of queries to obtain

the scores (e.g., 20k queries totally per sample in this experiment),

thus increasing its time cost. Both of PhyTalker and Advpulse gener-

ate adversarial examples in real time. That’s because both of them

adopt the manner of online injecting well-trained adversarial per-

turbations thus saving the time of training perturbation during the

attack.

4.3 Performance of Live-Streaming Attack

As a physical attack, PhyTalker enables the adversary to query in a

live-streaming manner, while broadcasting corresponding pertur-

bations in real-time. Hence, its performance highly depends on the

accuracy and efficiency of synchronization between perturbations

and voices as mentioned in Section 3.4.

Figure 8 shows the Cumulative Distribution Function (CDF) of

HR after applying our synchronization strategy. We can observe

that the HR mainly ranges from 40% to 80% with a median value of

61.2% and over 90% of utterances achieve over 50% HR. This indi-

cates that PhyTalker successfully perturbs at least 50% phonemes

in any live-streaming voice. We further investigate the impact of

synchronization performance on the attack effectiveness. Figure 9

shows ASRs of PhyTalker over different HRs. As the HR grows, ASR
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Figure 11: ASRs of PhyTalker under different device models

and environments.

rapidly increases and then gradually go stable to 91% ASR. Note

that the ASR has already reached 76.2% at the point of 50% HR, and

can still be improved with higher HR, indicating the satisfactory

synchronization performance for live-streaming attack. In addition,

the synchronization efficiency is also important for real-time per-

turbation injection. Hence, we also evaluate the time complexity of

our synchronization strategy. The result derived from all the testing

samples shows that the time cost ranges from 0.17s∼0.23s with a

mean value of 0.21s, which is much less than the synchronization

step (0.5s) and sufficient for real-time injection.

We also evaluate PhyTalker under different synchronization

mechanisms. Except for the proposed mechanism in Section 3.4,

we implement another two mechanisms, i.e., (1) Ground-truth RPS:

using the ground-truth phoneme sequence and duration as RPS,

(2) NoSync: directly broadcast perturbation according to the RPS

starting with the voice without synchronization. Figure 10 shows

the HRs and ASRs of using PhyTalker and another two mechanisms.

Compared with NoSync, both the average ASR and HR of PhyTalker

are higher with 29.7% and 35.1%, respectively. This result indicates

that the regular synchronization mechanism of PhyTalker plays an

important role in enhancing the attack performance in physical do-

main. On the other hand, we can find the HR of PhyTalker is 21.8%

lower than that of Ground-truth RPS, but the ASR only declines

2.4%. This is because even though a phoneme is not accurately

estimated, the corresponding perturbation could be still injected

near the phoneme due to the regular alignment. This result further

supports a well-performed synchronization in PhyTalker.

4.4 Performance of Channel Robustness

The robustness of a physical attack to various channel interference

is another important property. We evaluate the performance of

PhyTalker under different channels of device models and environ-

ments. In the experiment, we implement two other augmentation

mechanisms as baselines, i.e., (1) SingleAug applies only target de-

vice model pair (i.e., CLIP3-M10W) and one environment (i.e., lab)

for augmentation. (2) NoAug generates the perturbation without

augmentation.

Figure 11(a) shows ASRs of PhyTalker under four different de-

vice model pairs (i.e., CLIP3 and DHS as loudspeaker, M10W and

TCM340 as receiver). We can see that PhyTalker achieves ASRs of

85.5%, 91.0%, 86.9% and 97.3% on the four device models, respec-

tively. The ASRs under M10W as the receiver are slightly lower,

because M10W is a conference microphone with higher sensitivity
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Figure 12: ASRs of PhyTalker under different models.

and larger sensing range, thus introducing more ambient noises.

Moreover, compared with NoAug, PhyTalker achieves 44.4% higher

ASRs on average. This result demonstrates that the channel aug-

mentation does improve the robustness of adversarial perturbations

in physical attacks. As for SingleAug, its ASR is 97.8% on the seen

device model (i.e., CLIP3-M10W), but rapidly decreases to 53.9%,

51.6% and 42.5% under other unknown device models, respectively.

This indicates introducing sufficient channel responses for augmen-

tation can significantly improve the robustness of PhyTalker.

Figure 11(b) shows ASRs in different environments (i.e., Lab, Of-

fice, Study and Cafe). It can be observed that ASRs of PhyTalker are

85.5%,88.2%, 83.2% and 78.3%, higher than NoAug by 19.0%, 20.8%,

23.9% and 37.1%, respectively, indicating that PhyTalker is robust

to different environments. But for SingleAug, its ASRs are 92.4%,

80.6%, 78.2% and 61.1% under the four environments, exhibiting

less variances. This result indicates environments induce slighter

interference than device models, which is consistent with our pre-

vious observation as shown in Figure 4(b). Especially, the noisy

environment, Cafe scenario, greatly affects the attack effect under

NoAug setup. But our proposed channel augmentation algorithm

effectively resists it and maintains the attack’s effectiveness.

4.5 Performance of Cross-model Transferability

We further evaluate the transferability of PhyTalker across different

SR systems. In addition to the two available cross types among the

models in Table 2 (cross training dataset and model architecture),

we retrain model A using 13*3 dynamic MFCCs with 50ms dura-

tion and 10ms hop as input feature, which contains first-order and

second-order difference coefficients extracted from a larger frame

thus reflecting more abundant dynamic information of the speech.

Figure 12(a) shows ASRs of PhyTalker with ensemble and single

models under five different cross types (i.e., white-box, cross train-

ing data, cross input feature, cross model architecture and cross

all the three factors). We can see that ASRs with ensemble model

are 94.8%, 91.5% 89.6%, and 75.4%, which are higher than those of

the attack with the single model by 28.0%, 27.0%, 37.5%, and 36.9%,

respectively. This indicates that the model ensemble contributes to

improving the robustness of attacking different black-box models

than a single model. Moreover, it can be also observed that the

attack cross all three factors exhibit worst ASR than other cross

types. But even under such a situation that is closest to real physi-

cal attacks, PhyTalker can achieve the ASR of 75.4%, validating its

effectiveness.
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Figure 13: SPL distribution of adversarial perturbation and

MCDs of adversarial examples.

Figure 12(b) shows ASRs of PhyTalker across both of model and

data under ensemble method with different number of models. We

can see that the average ASRs are 48.3%, 69.5%, 83.5% and 85.5%

under 1, 2, 3 and 4 models for ensemble, respectively, exhibiting

an increasing trend with the increase of model numbers. But the

result also shows that the ASR increases gradually becomes little as

the model number increases. This is because the ensemble model

can only construct a more generalized solution space, instead of

the exact solution space of the target model. But even under such

an incomplete space, PhyTalker can also achieves 85.5% ASR on

average under 4 models in ensemble, demonstrating its robustness

under black-box models.

4.6 Performance of Human Imperceptibility

We also evaluate the human imperceptibility of PhyTalker with

both objective experiments and subjective human study.

We first measure the SPL distribution round the attack device

when broadcasting perturbations generated by PhyTalker, for that

SPL represents the strength of voice, and it intuitively reflects the

imperceptibility of the perturbation without human voice. The

SPLs are measured by a SMART SENSER AR844 (30∼80 dB, A-

weight). Figure 13(a) shows SPL distribution around the attack

device under different distances and angles.We can see that the SPLs

in front of the attack device (i.e., around 0◦ ∼ 30◦) are significantly

higher than that at other angles. When the angle is greater than 30◦,

the SPL beyond 1m is lower than 39.2dB, only 0.5dB higher than

that in ambient environments. This result indicates a surrounding

person can perceive the perturbation only if he/she appears in

specific angles to the attack device. Moreover, in the perspective of

distance, the maximum SPL of 45.1 dBA appears at the distance of

around 0.5m. But when the distance increases to 2m, the SPL rapidly

attenuates to 38.9dB. Considering the common social distance by

WHO (i.e., 1m) [57], such a small SPL is difficult to perceive by

surrounding people. Also, the adversary can intentionally control

his/her device’s direction to avoid the attention of surroundings.

We further evaluate the human-audibility of the adversarial ex-

amples in physical domain with MCDs. In the experiment, we intro-

duce additional original voices propagating over the air (i.e., Origin)

and FakeBob as baselines. Then, we derive MCDs for PhyTalker and

two other baselines with the same original voices as the reference.

Figure 13(b) shows MCDs of PhyTalker, Origin and FakeBob respec-

tively. We can see that the average MCDs are 2.45dB, 2.24dB and
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Figure 14: ASRs under different pertur-

bation durations 𝑛 (𝜖=0.02, 𝑑=5)
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Figure 15: ASRs under different pertur-

bation scales 𝜖 (𝑛=12.5, 𝑑=5)
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Figure 16: ASRs under different attack

distances 𝑑 (𝑛=12.5, 𝜖=0.02)

4.15dB for the three methods respectively. Compared with Origin,

MCD of PhyTalker only increase 0.21dB, indicating that the distor-

tion introduced by PhyTalker is similar to that of environmental

noises. On the other hand, the average MCD of PhyTalker is 1.7dB

lower than that of FakeBob. These results further demonstrate the

imperceptibility of PhyTalker, which is also consistent with the

analysis in Section 4.2.

We also conduct the subjective human study on the impercep-

tibility of PhyTalker. In the experiment, we recruit 10 volunteers

including 5 males and 5 females aging from 22 to 28. They are asked

to listen to 50 pairs of normal voice samples and corresponding

adversarial examples. All the audio pairs are recorded at 1m away

from the experimental platform. We then require the volunteers

to report their intuitive sense of the audibility similarity between

normal samples and adversarial examples with a score ranging 1∼5

(a higher score indicates better audibility with less noisy percepti-

bility). Note that the experiments on volunteers are validated by

the Institutional Review Board (IRB) in our university. The result

shows that the average score of PhyTalker is 4.6, indicating the

imperceptibility of adversarial examples for human audibility.

4.7 Ablation Study

We also investigate the impact of several key variables on the per-

formance of PhyTalker, including the perturbation duration, per-

turbation scale, and attack distance. In the experiments, we select

the model D with average overall performance as the target SR

system for simplicity and explore the easiest white-box setting and

the most difficult cross architecture&dataset black-box setting, i.e.,

ensemble model B, C, H, I as substitute system for the attack.

Perturbation duration. Figure 14 shows ASRs of PhyTalker

with different durations under the white-box and black-box settings.

We can see that the ASR is less affected by the perturbation dura-

tion under the white-box setting, while there are about 10% ASR

drops with too short or too long perturbations under the black-box

setting. This result indicates the trade-off between the perturbation

coverage and segmentation, i.e., longer perturbations carry more

adversarial information but may be truncated by the frame segmen-

tation during signal processing, while shorter perturbations do the

opposite. Hence, we select 12.5ms as perturbation duration in the

implementation of PhyTalker.

Perturbation scale. Figure 15 shows ASRs of PhyTalker with

different perturbation scales under the white-box and black-box set-

tings. As the perturbation scale increases, the ASRs under both set-

tings exhibit a rapid growth, then go stable after a turning point (i.e.,

𝜖=0.01 and 𝜖=0.02), and finally reach 100% and 85.5%, respectively.

This result indicates a better attack performance under a larger

perturbation scale. However, a larger perturbation scale would also

produce severer audibility distortion. Considering the limited per-

formance improvement after the turning point and the acoustic

signal attenuation at the attack distance, we set 0.02 as the per-

turbation scale in the implementation of PhyTalker to balance the

attack performance and imperceptibility.

Attack distance. Considering that the actual impersonation

is induced by the broadcasting perturbation, this experiment in-

vestigates the impact of the loudspeaker-SR distance on PhyTalker.

Figure 16 shows ASRs of PhyTalker with different distances be-

tween the loudspeaker and SR front-end under the white-box and

black-box settings. Note that we do not re-train or calibrate the

model according to to adapt to different distances, and maintain the

volume to an equally low level (i.e., 38.9dBA SPL at 1 m distance) for

imperceptibility with the growth of the attack distance. Figure 16

shows that, as the attack distance increases, ASRs of both attack

settings drop gradually, due to a longer distance involving severe

energy attenuation and multi-path interference from environmen-

tal factors such as sound propagation delay. However, even at the

worst case of 100cm distance, the ASRs still achieve 85.5% and 76.3%

under the white-box and black-box settings, respectively.

4.8 In-the-wild Experiment

In addition to the simulation experiment using a loudspeaker, we

further conduct an in-the-wild experiment involving human speak-

ers for the evaluation. Figure 17 shows the experimental setup of

the in-the-wild experiment. We recruit 10 volunteers including

six males (i.e., P0∼P5) and four females (i.e., P6∼P9) to act as the

adversary respectively. Each volunteer sits 50cm away from the

ASR front-end, and carries an attack device connected with a loud-

speaker and a lavalier microphone. The loudspeaker is placed 5cm

away from ASR front-end to broadcast perturbations. The micro-

phone is attached to the volunteer near his/her mouth to record

the live-streaming voices. Moreover, as shown in Figure 10, we find

different synchronization mechanisms probably affect the attack

performance. Hence, in this experiment, except for the previous

mentioned statics RPS synchronization mechanism, we further in-

troduce another pre-record RPS, i.e., the RPS with phoneme duration

is extracted from a pre-recorded speech, which is obtained by the

adversary in advance. Hence, in each experiment, each volunteer is

first required to say an arbitrary 15-minute text for subphoneme-

level perturbation training, then to say ten speech commands five

times, one for extracting pre-record RPS, and four for different test

settings (i.e., attacking a male/female user with original/pre-record
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Figure 18: ASRs of ten volun-

teers with two different syn-

chronization mechanisms.

RPS). Figure 18 shows the ASRs of the ten volunteers with different

synchronization mechanisms. We can see that PhyTalker with the

original RPS achieves 84.5% ASR on average, with a standard devia-

tion of 8.8%. Compared with the performance of variable-controlled

experiments in Table 3, the in-the-wild result slightly declines them

by 1.0% ASR. In addition, it can be observed that PhyTalker with

the pre-record RPS is more effective, achieving an ASR improve-

ment of 9.5% than that of original RPS. These results encourage the

adversary to employ pre-record RPS in real physical attacks.

To further validate the performance of PhyTalker on real com-

mercial systems, we launch PhyTalker attacking on Apple Siri[3]

of an iPhone 13. In this experiment, we recruit five volunteers to

enroll in the system, and another one to issue the attack. Before the

experiment, we require the adversary to try to trigger Siri without

the adversarial perturbation, whose results show that the adver-

sary cannot activate Siri, validating that Siri realizes the speaker

recognition. Since Siri is a text-dependent SR system, we select

five common commands for the attack, i.e., “Hey Siri, play some

music", “Hey Siri, what’s the weather like today", “Hey Siri, send

a message", “Hey Siri, open the light" and “Hey Siri, open the TV".

The experimental results show that PhyTalker successfully enables

the adversary to activate Siri enrolled by the five victims under all

the five commands, which requires 1.6 attack attempts on average.

This further supports the effectiveness of PhyTalker on commercial

systems in physical domain.

5 DISCUSSIONS

Interference by Various Voice Speed. Humans’ voice speed

varies depending on different factors, such as speech texts, speak-

ers’ physiological and emotional state, surrounding environments.

Many factors introduce significant speed changes, probably reduc-

ing the accuracy of the phoneme duration estimation, thus resulting

in unsatisfactory real-time adversarial perturbation injection. A rep-

resentative example includes a speaker is scared by an unpredictable

event and thus suddenly increases his/her voice speed. However,

considering the impersonation attack is usually intentional, the

adversary could control his/her speed at a stable level during an

attack, rather than changing frequently. Hence, PhyTalker could

employ EWMA algorithm to adjust the perturbation for adapting

to the adversary’s voice speed.

Performance Degradation under Unusual Phonemes. The

occurrence frequency of each phoneme in different conversations

is distinct from each other. For example, in LibriSpeech, the av-

erage number of [2] and [Oı] in an utterance are 13.10 and 0.12,

respectively. Such a difference indicates different amounts of corpus

for subphoneme-level perturbation optimization. Especially for the

unusual phonemes (i.e., phonemes with low occurrence frequency),

the fewer samples probably lead to an inadequate perturbation

optimization, resulting in poorer attack performance. But the ad-

versary can select a particular corpus for perturbation optimization

based on his/her intended query to the SR. The particular corpus

is designated to involve more phonemes that would occur in the

physical attack, so as to ensure the attack performance.

Countermeasures. Based on the characteristics of PhyTalker,

we provide several potential countermeasures in terms of three

stages of SR systems, i.e., pre-processing, adversarial learning, and

post-detection.

(1) Pre-processing is a series of straightforward methods to miti-

gate adversarial perturbation before feeding into SR models, includ-

ing low-pass filtering, downsampling, re-quantization, and com-

pression, etc. Among them, recent work [45] reports low-pass fil-

tering is the most processing method for defending against audio

adversarial example attacks, which also applies to our attacks theo-

retically. The voice frequency band concentrates on [300, 3,400]Hz

approximately [43], but the perturbation’s spectrum distributes in

a higher frequency band, mainly from 2,000Hz to 8,000Hz. Hence,

a pre-processing method that destroys high-frequency information,

such as downsampling and low-pass, can be applied to received

audio to effectively mitigate the adversarial perturbation.

(2) Adversarial learning is also an effective countermeasure as

validated in SOTA works [14, 23], which introduces different kinds

of negative samples in the model training phase to enhance its

generalization capability in resisting adversarial examples in the

model processing stage. Specifically, during the training phase of SR

models, the SR service provider could pre-generate various adver-

sarial examples by implementing existing generation approaches,

so that the vulnerabilities in the decision boundary that are easy to

exploited by adversarial example attacks, could be fixed. To this end,

our proposed PhyTalker actually provides a new kind of adversarial

example generation approach, which serves as the basis of negative

sample generation for adversarial training, thus enabling SR models

to effectively mitigate such adversarial examples.

(3) Post-detection turns to monitor the existence of crafted pertur-

bations in received signals, serving as a reference for the legitimacy

of SR system output in the decision-making stage, instead of di-

rectly mitigating them. Spectrum detection is a representative one

to resist PhyTalker, which performs Short-Time Fourier Transform

(STFT) on the signals after high-pass filtering, then counts the

number of same energy peaks in adjacent frames in the audio, and

finally determines whether it is an adversarial sample by compar-

ing with a threshold. Due to the repeated broadcasting manner

of subphoneme-level perturbations, significant repeated patterns

would appear in the spectrum, especially a distinct spectrum pat-

tern from normal voices in the high-frequency region. By detecting

such a difference posterior to the recognition, SR systems are able

to decline the spoofing request from PhyTalker.
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6 RELATEDWORK

Similar to visual adversarial example attacks, researches on audio

adversarial examples are first explored in digital domain, where

generated examples are directly injected into the target system

without the consideration of air-borne propagation. Early works

[7, 18, 26, 54, 55, 60] explore the feasibility of launching white-

box attacks, i.e., the target system is transparent to the adversary.

They leverage classical gradient-based methods (e.g., FGSM [16],

BIM [28], PGD [38]) to optimize adversarial examples. Based on the

composability and stability of phoneme, Turner et al. [52] propose to

map and replace the phonemes in the original speaker’s speech with

those of the target speaker. Recent work PhoneyTalker [9] employs

a generative model to generate universal adversarial perturbations

for each phoneme automatically. However, these attacks still show

little threat to real systems due to their impractical assumption of

digital and white-box settings.

To realize a practical audio adversarial example attack in physical

domain, the followingworksmake efforts to investigate over-the-air

scenario, black-box setting and live-streaming context, respectively.

Table 4 shows the tasks and characteristics of these works.

The most significant difference between attacks in digital and

physical domains is whether the generated examples are injected

over the air. When signals propagate through physical channels,

audio adversarial examples suffer from various practical effects

(e.g., device non-linearity, multi-path effect, and noise interference).

To alleviate the interference of channel, data augmentation[39] and

domain adaptation[21] are proposed in the domain of speech recog-

nition. To enable adversarial examples in over-the-air scenarios,

recent studies [10, 34, 35, 58, 59, 61] exploit channel simulation

techniques (e.g., Room Impulse Response [50]) to compensate the

signal distortion during the air-borne propagation. However, these

works ignore the channel distortion caused by devices instead of

the environments, which has been demonstrated to significantly

downgrade the attack robustness in our work.

Moreover, in a physical attack, the adversary usually has no prior

knowledge about the target system. Someworks [8, 11, 24, 51] adopt

a query-based scheme to estimate gradient for example generation.

Especially, FakeBob [8] introduces a Natural Evolution Strategy

(NES [20]) to seek an effective gradient direction with the queried

decision result, which is proven to be efficient to compromises

unknown commercial systems. However, numerous queries are

Table 4: Tasks and characteristics of related works.

Research work Task Live-streaming Over-the-air Black-box

Zhang et al.[62] speech � � �

PhoneyTalker [9] speaker � � �

Metamorph[10] speech � � �

Imperio[47] speech � � �

Li et al.[34] speaker � � �

Xie et al.[58] both � � �

Devil’s whisper[11] speech � � �

FakeBob[8] speaker � � �

AdvPulse[35] both � � �

Xie et al.[59] speaker � � �

Zhang et al.[61] speaker � � �

Chiquier et al.[12] speech � � �

PhyTalker speaker � � �

required for accurate gradient estimation, which easily arouses

the target’s awareness. Other works [33, 42, 62] turn to exploit

the transferability [37] of adversarial examples. They construct a

local substitute model to simulate the behaviors of the unknown

target model for example generation. However, such transfer-based

attacks exhibit weak generalization on attacking dissimilar models.

To avoid target awareness, live-streaming attack, instead of re-

playing recorded voices, exhibits stronger practicality in physical

attacks. Recent studies [32, 59, 61] propose to repeat universal ad-

versarial perturbations with fixed length for any speech content.

However, due to excessive optimization objectives and the regard-

less of specific speech content, it’s difficult to train a universal

adversarial perturbation with strong attack ability in the original

limited feature space that allowed to be modified. Hence, a more

relaxed feature space, i.e., a larger perturbation scale, is in need,

thus sacrificing the audibility (e.g., AdvPulse only achieves 8.7dB

SNR in white-box and digital experiments). More recently, Chiquier

et al. [12] propose a predictive model with real-time constraints

to generate forward-looking perturbations for future signal, thus

realizing a live-streaming synchronization between the voice and

corresponding perturbation, but its specific real-time performance

on mobile devices under real-human setting is still unclear.

Different from these existing studies focusing on digital or par-

tially featured physical attacks, our work comprehensively summa-

rizes the practical issues, including over-the-air scenario, black-box

setting and live-streaming context, in a physical attack. Especially,

as discussed in Section 4.2, our attack outperforms the recent SOTA

works FakeBob[8] and AdvPulse[35] on efficiency and impercepti-

bility, respectively. By constructing subphoneme-level adversarial

perturbations with the multi-model ensemble, cross-channel aug-

mentation and live-streaming synchronization, we realize a more

practical audio adversarial example attack.

7 CONCLUSION

In this paper, we propose PhyTalker, a live-streaming, cross-channel

and black-box adversarial example attack on speaker recognition in

physical domain. PhyTalker can be divided into the offline perturba-

tion optimization and online attacking phases. In the offline phase,

PhyTalker generates the subphoneme-level perturbations for differ-

ent phonemes as a dictionary, where the channel impulse response

and model ensemble method are introduced to improve its chan-

nel robustness and transferability. After that, in the online phase,

PhyTalker estimates the type and duration of the latest recorded

phoneme, and prepares the corresponding perturbations. And then

the selected perturbations are broadcast for the injection on the

adversary’s live-streaming voices in physical domain. Extensive

experiments under large-scale corpus in real scenarios validate that

PhyTalker can successfully spoof mainstream SR systems while

remaining inaudible to surrounding people in physical domain.
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