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ABSTRACT

Camera tracking has become a key technology for various appli-

cation scenarios, especially for AR-based camera-to-screen inter-

action. Demand for subtle motion detection in camera tracking

makes it essential to explore the six degrees of freedom (6-DoF)

pose detection with ultra-high precision. In this paper, we propose

a novel sensing method MoiréPose to achieve ultra-high precision

on the camera’s 6-DoF pose estimation. The purpose of MoiréPose

is to derive the camera’s 3-DoF position and 3-DoF posture relative

to the screen according to the captured moiré pattern, which is pro-

duced by the superposition of the camera’s Color Filter Array (CFA)

and the screen raster projected onto the CFA layer. Based on moiré

pattern’s high sensitivity to 6-DoF pose movement and robustness

to the environmental interference in the frequency domain, we

propose a spectrogram-based method to realize the camera’s 6-

DoF detection with ultra-high precision. Moreover, we propose a

thumbnail-based method to effectively extend the working range of

MoiréPose, so as to realize pervasive camera-to-screen interaction.

We have implemented a prototype system and evaluate the perfor-

mance in real-world environments. Extensive experiment results

show that MoiréPose achieves an average position error of 7.5mm

and an overall posture error of 1.66◦.
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1 INTRODUCTION

Nowadays, camera tracking has become a key technology in human-

computer interaction (HCI) [59], industrial robot positioning [49],

post production [31], etc. A typical scenario based on camera track-

ing is the screen interaction for extensive augmented reality (AR)

applications [10, 50, 52] and motion sensing games [12, 36]. The

user’s headset or handles are usually embedded with cameras, while

the laser base stations need to accurately reconstruct the six degrees

of freedom (6-DoF) pose of the camera so as to provide an immer-

sive experience [36], especially for aiming, shooting, steering, and

other actions that require ultra-high precision. Such demand for

subtle motion detection [7, 27] makes it essential to explore the

6-DoF pose detection with higher precision.

Existing technologies for the 6-DoF pose detection of wearable

devices mainly include Inertial Measurement Unit (IMU)-based

methods [35, 43, 45, 53, 54, 60, 62] and vision-based methods [9, 15,

24, 28, 32, 40, 55]. IMU is an electronic device that detects linear ac-

celeration with accelerometers and rotational rate with gyroscopes.

IMU-based methods suffer from integration drift [48]. Even a small

measurement error can be accumulated over time and result in

significant deviations. For the state-of-the-art vision-based meth-

ods, the essence of their positioning mechanism is to analyze the

image in the spatial domain. Thus, the accuracy of these methods is

limited to the pixel level. Even though such precision is sufficient to

handle conventional interactions, it is far from enough to achieve

6-DoF pose detection for subtle motions.

In this paper, we propose a novel sensing method MoiréPose to

achieve ultra-high precision on the camera’s 6-DoF pose estimation,

including camera’s 3-DoF position and 3-DoF posture relative to

the screen, as shown in Fig. 1. Specifically, the pose detection result

is relative to the intersection point between the camera’s optical

axis and the screen plane. We define this intersection point as the

screen’s virtual origin O so as to distinguish it from the screen’s

physical originO ′ in Fig. 1. The virtual origin is dynamic in different

images and it refers to the screen point that is projected to the cen-

ter of the image. Thus, for each screen image with moiré patterns,

MoiréPose can output a camera’s 6-DoF pose relative to the screen

point projected at the image center. This image-based pose estima-

tion mechanism is like an interface that can be used to implement

extensive applications such as continuous 6-DoF tracking.

MoiréPose is based on the following findings. When we use

a camera to shoot a screen, irregular splines often appear in the

screen area of the image, and the splines change sensitively with the

camera pose. These splines, calledmoiré pattern, is produced by the

superposition of the camera’s Color Filter Array (CFA) [2] and the

screen raster projected onto the CFA layer. We call the CFA and the
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Figure 1: Illustration ofMoiréPose: In the screen coordinate sys-

tem, the 3-DoF position is defined as the coordinates (x, y, z) of the

camera, while the 3-DoF posture is defined as the three space vec-

tors [u, v, w ] of the camera’s three axes.

projective screen as gratings since they are both formed by regular

and periodic pixels. The frequency of CFA and the projective screen

raster can reach 500 cycles per millimeter, which are “invisible”

for both human visual systems and computers. According to the

principle of moiré pattern [6], the frequency of the superimposed

moiré pattern is calculated by the frequency difference between two

gratings with high and close frequencies. Thus, the frequency of

moiré pattern can be as low as 10 ∼ 50 cycles per millimeter on the

CFA layer, corresponding to the spline width of 10 ∼ 50 pixels in

the image, which is clear enough for both human visual systems

and computer vision. Based on the low-frequency property of moiré

patterns, the projective screen pixels on the CFA layer can be scaled up

from “invisible” micron level to clear spline level for discrimination.

Furthermore, limited feature points, e.g., corner points of the visual

marker, used in traditional vision-based methods can be easily

affected by external environments, while the splines captured in

the moiré-based method repeat abundantly in the spatial domain.

Therefore, the splines’ statistical features in the frequency domain

can provide more accurate and robust information for pose estimation

than feature points used in the vision-based approaches, which only

contain limited numbers and are easily affected by the environments.

Based on the above understanding, the moiré-based mechanism

can achieve an ultra-high precision due to moiré pattern’s low-

frequency property and statistical features in the frequency domain.

Accordingly, we adopt frequency analysis to extract moiré features,

including the spatial frequency and propagation direction. To real-

ize the pose estimation, we derive the mathematical relationship

between the moiré features and camera’s 6-DoF pose, as shown in

Fig. 1. For the position estimation, we determine the camera coor-

dinates relative to the screen’s virtual origin by developing a new

ranging-based model. For the posture estimation, we determine the

three posture vectors of the camera in the screen coordinate system

by designing a novel roll-angle-based model.

There are three key challenges in this paper. The first challenge

is to ensure both high precision and robustness of the moiré features.

Specifically, recognition of moiré pattern in the spatial domain can

be significantly affected by lighting conditions and the screen’s

pixel geometry [56], including dot, stripes, and triangular arrange-

ment. To address this challenge, we transfer the moiré pattern from

the spatial to the frequency domain for analysis. Interestingly, we

find that the detailed moiré shape and original screen contents are

both transformed into frequency noises, and only the statistical fea-

tures reflecting the inherent moiré features are highlighted in the

spectrogram. Therefore, we propose to adopt frequency analysis to

extract robust and accurate moiré features without the interference

of spatial noises. The second challenge is to precisely explore the math-

ematical relationship between moiré features and the camera’s 6-DoF

pose relative to the screen. To estimate the camera position, we find

that moiré pattern’s frequency in the spatial domain is extremely

sensitive to the distance between the camera and the screen. Thus,

we propose a ranging-based model to first select several points

of interest (POI) on the screen and then calculate the distances

(denoted as “distance array”) from the camera to each POI on the

screen. Based on the distance array, we can deduce the camera

position according to an optimized multilateral positioning method.

To estimate the camera posture, we find that the rotation of the

camera along the optical axis can significantly impact the propaga-

tion direction of moiré pattern. Thus, we propose a roll-angle-based

method to estimate rotation angle along the optical axisw as shown

in Fig. 1, and determine the overall posture axes of the camera. The

third challenge is to extend the effective working range of moiré pat-

tern. The low-frequency moiré pattern can be generated only when

the frequencies of the CFA grating and the projective screen grating

are close. Once the camera gets much closer or farther to the screen,

the frequency difference between the projective screen and CFA,

i.e., moiré pattern’s frequency, becomes larger. It is hard for the

camera to resolve such high frequency since multiple splines are

mapped to one camera pixel. To address this challenge, we propose

a novel thumbnail-based method to reduce the high frequency of

moiré patterns captured at inappropriate (i.e., either too close or

too far) distances. Specifically, we sample the high-frequency moiré

pattern with an iterative thumbnail ratio (i.e., down-sampling ratio)

until we can obtain a clear thumbnail image with low-frequency

moiré patterns. Based on our derived thumbnail ratio and the clear

moiré patterns in the thumbnail image, we can restore the accurate

moiré features of the original high-frequency moiré patterns even

at some improper distances. By solving the above three challenges,

we are able to realize the camera’s 6-DoF detection with ultra-high

precision in pervasive camera-to-screen interaction scenarios.

We make three key contributions in this paper. First, to the best of

our knowledge, this is the first work to thoroughly investigate themoiré

localization mechanism based on optical devices and apply it to sense

the 6-DoF pose of the camera. We develop an ultra-high precision lo-

calization mechanism by extending the precision from conventional

pixel level to the spline level based on the low-frequency property

of moiré pattern. Furthermore, we propose a spectrogram-based

method by extending limited feature points in the spatial domain

to the statistical and robust features in the frequency domain. It

can significantly reduce the noises in the spatial domain caused by

ambient light, screen content, and device types. Second, we derive

a mathematical model to associate the 6-DoF camera pose with the

extracted moiré features and effectively extend the working range of

the moiré-based mechanism. We derive the impact of the camera

pose on the moiré features, and propose a ranging-based model

and a roll-angle-based model to determine the camera position and

posture, respectively. Furthermore, to ensure the pervasiveness of

moiré features, we propose a thumbnail-based method to generate

clear moiré patterns and extract accurate moiré features even at

some improper distances. Third, we implement a prototype system

of MoiréPose and evaluate the performance in real-world environ-

ments. Extensive experiment results show that our system achieves an

average position error of 7.5mm and an overall posture error of 1.66◦.
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Figure 2: Moiré pattern, moiré feature, and spectrum

2 RELATEDWORK

Vision-based pose estimation: Existing vision-based technolo-

gies for camera’s 6-DoF pose estimation mainly include Perspective-

n-Point (PnP)-basedmethods [9, 15, 24, 55] and deep-learning-based

methods [28, 32, 40]. PnP-based methods [9, 15, 24, 55] estimate

the 6-DoF pose of the camera by finding a scaling and deformed

relationship of the feature points from the 3D world to the 2D im-

age. These solutions rely on the priori of markers’ location and

layout in the 3D world. Once the detection space changes, both the

procedures of deployment and measurement must be done again.

Deep-learning-based solutions [28, 32, 40] leverage trained neural

network models to predict the pose in a given picture, but they

suffer from highly complex model training and weak generalization.

Furthermore, a critical problem of vision-based solutions is the diffi-

culty in recognizing subtle pose changes, especially when the target

is in front of the markers at a far distance. Whereas, MoiréPose can

make it since moiré pattern’s low-frequency property has the ability

to amplify the subtle pose changes from conventional pixel level into

the spline level.

IMU-basedmotion tracking: IMU has become an increasingly

popular COTS device for motion tracking, including indoor localiza-

tion [43, 54] and gesture recognition [35, 45, 53, 60, 62]. However,

IMU-based methods usually suffer from integration drift since they

need to integrate acceleration to calculate velocity and position [48].

Even a small measurement error can be accumulated over time to

lead to a significant deviation. In addition, the fatal problem of

IMU-based methods is that the very nature of inertial measurement

makes accelerometers and gyroscopes insensitive for measuring

subtle and slow movement.

Moiré-based solutions: With the popularity of various dig-

ital screens, many researchers have focused on eliminating the

moiré pattern in screens to provide users with a clear viewing ex-

perience [13, 23, 29]. Furthermore, some researchers try to extract

meaningful information from the screen’s moiré patterns for per-

ception [14, 19, 34] rather than mopping them. Pan et al. [34] first

exploit the nonlinearity of spatial frequency in camera systems

to realize a secure and robust QR code communication. Cheng et

al. [14] leverage the moiré effect between the CFA and a crafted

mID encoding on the screen to realize a new watermark-like tech-

nique for digital forensics. These state-of-the-art works provide

the possibility of moiré pattern for sensing. However, they can not

be applied to camera-to-screen scenarios for deriving pose-related

information. In terms of detecting the camera’s pose, some state-

of-the-art works propose to sense the camera position via moiré

mechanism [51, 58]. However, these solutions are not suitable for

camera-to-screen scenarios since they both rely on customized

moiré-based markers, and they only focus on the camera position

estimation without posture detection. Tanaka [51] leverages a cus-

tomized LentiMark to sense the changes of the camera position in

two dimensions. Xiao et al. [58] realizes 3-DOF camera position

estimation with the aid of marker-based method. It relies on a cus-

tomized two-layer MoiréBoard, consisting of a 3D printing layer

and a display layer. It will be intrusive for the camera-to-screen

interaction. Different from the previous work, MoiréPose is capable

of sensing 6-DoF pose of the camera relative to the screen with a

non-intrusive manner based on the inherent property of screens and

CFA.

3 PRELIMINARY

Moiré pattern is produced by the superposition of two periodic

gratings in two-dimensional space. Consider two simple gratings

with a cosine profile function as shown in Fig. 2(a) and Fig. 2(b),

which are given by the following function:

дi (x ,y)=
1

2
+

1

2
cos(2π fi (x cosθi + y sinθi )), i ∈ {1, 2}, (1)

where the function д(x ,y) represent the color intensity at the co-

ordinate (x ,y) on the 2D image plane. The angle θ indicates the

propagation direction of the grating’s frequency, which is orthog-

onal to the inherent direction of the grating, as shown in Fig. 2.

Particular, the width of the grating in one period is denoted by

T , and the spatial frequency f of the grating can be calculated by

f = 1
T . To simplify the presentation, we use the vector s = [x ,y]T

to substitute the 2D coordinates and use fi = [fi cosθi , fi sinθi ]
T,

i ∈ {1, 2}, to represent the frequency vector [8]. According to the

moiré principle [6], the superposition of two gratings is equivalent

to the multiplication operation. Thus, the superposition дm (s) illus-

trated in Fig. 2(c) can be calculated by д1(s) × д2(s) and rewritten

as the following equation with newly generated frequency vectors

f1 − f2 and f1 + f2:

дm (s) =
1

4
+

1

4
cos(2πf1 · s) +

1

4
cos(2πf2 · s)+

1

8
cos(2π (f1 − f2) · s) +

1

8
cos(2π (f1 + f2) · s) .

(2)

This phenomenon can be easily explained from the frequency do-

main. Specifically, we show the theoretical Fast Fourier Transform

(FFT) resultsG1,G2, andGm in Fig. 2(d) ∼ Fig. 2(f). We can observe

four new frequency vectors in Fig. 2(f) due to the convolution of

the frequency vectors f1 and f2. Note that the length and direction

of the frequency vector fi respectively correspond to the spatial

frequency and propagation direction of the grating дi . Thus, the
frequency vector f1 − f2 with the lowest spatial frequency exactly

corresponds to the most sparse and conspicuous grating in Fig. 2(c),

i.e., the moiré pattern. Therefore, the superimposed grating of moiré

pattern in Fig. 2(c) can be finally represented as the following ex-

pression by reserving the lowest-frequency component and the DC

component:

д̂m (s) =
1

4
+

1

8
cos(2π (f1 − f2) · s) . (3)

We use this simple expression to express the moiré pattern gratings

in the subsequent sections of this paper.
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Figure 3: Sensitivity analysis of moiré pattern

4 SENSITIVITY ANALYSIS OF MOIRÉ

4.1 Empirical Study

To demonstrate the sensitivity of the moiré pattern to the relative

pose between the screen and camera, we first capture an image of

a 24-inch screen displaying a visual maker at a distance of 42cm

(denoted as pose “P1”). After that, we increase the camera-to-screen

distance by 5mm (“P2”) and then rotate the camera along its optical

axis by 5◦ (“P3”). We also capture images for pose P2 and P3. The
corresponding results are illustrated in Fig. 3. It can be observed

that the profile of the visual maker at three pose locations are quite

similar, while the extracted moiré pattern changes significantly

even for such small changes of the camera pose. Specifically, we

can have the following observation:

Observation 1: The spatial frequency of moiré pattern changes

with the camera-to-screen distance.

Observation 2:The propagation direction ofmoiré pattern changes

with the camera posture.

These observations provide us an opportunity to derive the cam-

era pose according to the variation of moiré features.

4.2 Superiority of Moiré Pattern

Next, we conduct theoretical analysis on the sensitivity of moiré

patterns. We use Tm , Tc , and Tp to represent the period lengths of

the moiré pattern, CFA grating, and screen grating, i.e., the inverse

the spatial frequency. Since moiré pattern’s spatial frequency fm is

calculated by the difference between the CFA frequency fc and the

projective screen frequency fp , i.e.,
1
Tm
= 1

Tc
− 1
Tp

, the period length

of moiré pattern Tm compared to the original camera resolution Tc
can be expressed as:

Tm
Tc
=

1

1 − Tc
Tp

, (4)

where Tm
Tc

can be denoted as the magnification coefficient Xm to

indicate the magnification ratio of the moiré pattern compared to

original camera pixels. Thus, moiré-based method can enlarge the

pixel-level feature points used in traditional vision-based methods

toXm times. According to our empirical experiments, the coefficient

Xm can reach 5.13 ∼ 11 times at proper interaction distances (i.e.,

the period lengths of CFA Tc and projective screen Tp are close),

which ensures the ultra-high precision of camera pose estimation

even for subtle motions.

4.3 Technical Issues

Based on the above analysis, to realize the ultra-high precision pose

estimation via moiré-based mechanism, we still need to deal with

three critical technical issues:

1) Pose estimation model: What is the mathematical relation-

ship between the observed moiré features and the 6-DoF pose of

the camera relative to the screen?

2) Robustness of moiré features: In different environments

with various lighting conditions or device types, how to extract the

reliable and stable moiré features to estimate the camera pose?

3) Availability of moiré pattern: Actually, there is an effec-

tive distance range to capture clear moiré patterns, i.e., when the

frequencies of the CFA and projective screen gratings are close.

Once the camera exceeds the distance range, how to ensure the

availability of the moiré pattern?

5 MOIRÉ FEATURE EXTRACTION

To derive the camera position (x ,y, z) and posture [u,v,w] rela-

tive to the screen, we first need to extract the moiré pattern and

derive effective moiré features from the image. However, the moiré

pattern in the spatial domain can be easily influenced by the envi-

ronment and screen types. Specifically, due to the vignetting [5]

and distortion [3] of the camera lens, moiré pattern at the image

edge is usually blurry and can not be used to calculate moiré fea-

tures. Besides, different screen pixel geometries [56] lead to various

moiré details. To deal with these noises in the spatial domain, in

this section, we propose to leverage the center part of the image to

derive clear moiré patterns and adopt frequency analysis to extract

statistical and robust moiré features without the interference from

device types with different pixel geometries.

5.1 Moiré Pattern Extraction

To extract the clear moiré pattern, we leverage a series of image

processing methods to eliminate the influence of vignetting effect

and enhance the contrast of the moiré pattern, as illustrated in

Fig. 4. According to the refraction of the camera lens, the object

point with a farther distance to the optical axis gets a more signifi-

cant distortion in the captured image [3]. Based on our empirical

study, the impact of camera lens’ vignetting and distortion can be

effectively eliminated by setting the side length of the center part to

one-third of the short side of the image. Thus, we cut the marginal

part with significant distortions and leave the center part with more

reliable moiré patterns. Even so, the contrast of the image grayscale

is still weak, and the illumination at the four corners is darker than

the center area. If we directly perform binarization, some moiré

patterns may be submerged in the background, especially the moiré

pattern at the four corners. Therefore, we first perform the his-

togram equalization to enhance the contrast of the moiré pattern

and then leverage the multi-scale Gaussian function to adaptively

adjust the illumination at the corners based on non-linear Gamma

Correction [46]. After that, we perform binarization and use a me-

dian filter to derive clear moiré patterns without significant noises

and shakes. The final enhanced moiré pattern is shown in Fig. 4(d).

5.2 Feature Calculation

Based on the extracted moiré pattern, it is still difficult to find a

unified method to extract moiré features from the spatial domain.

It is because: 1) The detailed shape, e.g., stripes, gratings, and dots

in Fig. 5, may interfere with the period extraction in the spatial

domain. 2) One of the moiré dimensions in the spatial domain may
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Figure 4: Process of moiré pattern extraction

be weakened by the demosaicing process [21], i.e., the superposition

process of CFA and the projective screen grating, as shown in

Fig. 5(a). 3) The original content displayed on the screen can also

affect the moiré recognition and feature extraction. The intuition to

deal with these issues is that in the frequency domain, the detailed

moiré shape and the original screen content are both transformed

into frequency noises in the spectrogram. Only the statistical features

reflecting the spatial frequency and propagation direction of the moiré

pattern can be highlighted in the spectrogram.

Based on the above understanding, we perform the Fast Fourier

Transform (FFT) for the extracted moiré patterns, and the corre-

sponding spectrogram is shown in Fig. 4(e). Without loss of gen-

erality, the spectrum of one-dimensional period grating usually

consists of three pronounced impulses, including the direct current

(DC) impulse at the spectrogram origin and the other two impulses

with equal brightness symmetrically distributed about the origin.

The DC impulse represents the zero frequency and corresponds

to the constant component in the spatial domain, while the target

frequency of the moiré pattern we need to consider is the symmet-

ric impulse pair. For each impulse, there exists a frequency vector

f to connect the spectrogram origin to the geometric location of

the impulse. The frequency vector f in the spectrogram can be ex-

pressed by its polar coordinates (f ,θ ), where θ is the direction of

the impulse, i.e., propagation direction, and the length f of the fre-

quency vector denotes its frequency in that direction, i.e., the value

of the spatial frequency. Notably, the specific values of the spatial

frequency f and the propagation direction θ can be calculated by

the Cartesian coordinates values (u,v) of the impulse as:

f =
√
u2 +v2 , θ = arctan(

v

u
) , (5)

where u and v denote the horizontal and vertical components of

the gratings in the frequency domain. According to Eq. (5), we

can calculate the moiré spatial frequency fm and the frequency

directionθm based on the observed value ofu andv in Fig. 4(e). Here,

the spatial frequency fm represents the number of cycles within

the length of the center part’s side. The unit ξ in Fig. 4(e) denotes

a constant to convert fm to the unit of meter. It can be calculated

by 1
cRm

. Rm represents the number of pixels contained in the side

length of the center part, and c (unit: meter) denotes the pixel size

of the CFA. Note that the features of the weakened dimension in the

spatial domain are also contained in the spectrogram. Therefore,

we can obtain the moiré features in both two dimensions based on

the spectrogram analysis.

6 ESTIMATION OF CAMERA POSITION

According to Observation 1 in Section 4.1, we find that moiré pat-

tern is sensitive to the distance changes. Thus, in this section, we

focus on exploring the relationship between the moiré features

and the camera-to-screen distance so as to derive the 3-DoF posi-

tion. Specifically, we build a ranging-based model to calculate the

distances from the camera to the selected points of interest (POI)

on the screen. Based on the distance array, i.e., the distance from

the camera to each POI on the screen, we can deduce the precise

coordinates of the camera position relative to the screen’s virtual

origin O , which is projected to the image center.

6.1 Modeling Camera-to-Screen Distance

In this subsection, we focus on constructing a mathematical re-

lationship between the camera-to-screen distance and the moiré

features. As shown in Fig. 6, the moiré pattern is superimposed by

the CFA grating and the projective screen grating rather than the

original screen grating. Based on the observed frequency of the

superimposed moiré pattern and the known frequency of the CFA

grating, we can deduce the projective screen grating’s frequency.

Note that the projective screen’s frequency contains the camera-

to-screen distance information according to the pinhole camera

model [38]. Specifically, the pixel width of the projective screen

grating is inversely proportional to the distance, i.e., the spatial

frequency of the projective screen is proportional to the distance.

Thus, we can deduce the camera-to-screen distance based on the

pinhole camera model and the moiré features.

Specifically, we useTc andTs to respectively denote the width of

CFA and the screen grating in one period, and their corresponding

spatial frequencies can be denoted as fc =
1
Tc

and fs =
1
Ts

. We

use fp to denote the spatial frequency of the projective screen

grating. Considering that the grating frequency is directional in

the spatial domain, we use vectors fc = [fc cosθc , fc sinθc ]
T, fs =

[fs cosθs , fs sinθs ]
T, and fp = [fp cosθp , fp sinθp ]

T to represent

the frequency vectors of the CFA, screen, and the projective screen

gratings. Their propagation directions of the frequency vectors are

denoted as angles θc , θs , and θp .
According to the moiré principle [6], moiré pattern’s frequency

is equal to the frequency difference between two gratings. Thus,

the moiré pattern’s frequency fm = [fm cosθm , fm sinθm ]T can

be expressed as:

fm = fc − fp . (6)

We decompose the frequency vectors into two dimensions as:

[
fm cosθm
fm sinθm

]
=

[
fc cosθc − fp cosθp
fc sinθc − fp sinθp

]
, (7)

where fm and θm denote the spatial frequency and the propagation

direction of moiré pattern’s frequency vector fm , respectively. Par-

ticularly, the spatial frequency fp of the projective screen contains
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Figure 5: Impact of device types

the distance information according to the pinhole camera model as

shown in Fig. 6:

fp =
d fs
f
, (8)

where f represents the focal length of the camera, and d denotes

the distance from the camera’s optical center to the screen plane.

Since the pixel arrangement of the screen raster is along the X-

axis and Y-axis of the screen, the propagation direction θs of the

screen’s frequency vector in Eq. (7) can be set to zero without loss of

generality. In addition, the projective screen’s propagation direction

θp is consistent with angle θs since projection does not change the

direction of the screen grating. Thus, by combining Eq. (7) and

Eq. (8), the camera-to-screen distance d can be calculated by:

d =
f

fs
(

√
f 2c − (fm sinθm )2 − fm cosθm ) , (9)

where the spatial frequency fm and the frequency direction θm of

moiré pattern can be measured from the captured image according

to Section 5. The focal length f , spatial frequency fc of CFA on the

camera, and the spatial frequency fs of the screen can be determined

from the common COTS manuals in advance.

Notably, due to the non-directivity of the moiré pattern’s splines,

the observed propagation direction θm in Eq. (9) has two possible

values that are 180 degrees apart, and it will lead to two symmetric

solutions of the distance. The ambiguity of the distance can be

eliminated according to the effective working range limited by the

device parameters. The detailed analysis is shown in Section 9.

6.2 Position Calculation

Based on the above model, given the moiré feature of a certain

point on the moiré image, we can obtain the distance from the

camera to the certain point on the screen. Therefore, as long as we

select appropriate points of interest (POI) on the moiré image to

calculate the distance array, i.e., distances from the camera to the

corresponding POI array on the screen, the camera position can be

determined via multilateral positioning algorithm. Note that the

splines of moiré pattern repeat abundantly in the image, i.e., the

width and direction of each spline are close to those of adjacent

splines. Thus, considering the time efficiency, we only need to select

a POI array with the maximum position information entropy to

Figure 6: Modeling the distance

obtain the distance array rather than calculating the distance for

each pixel in the image.

6.2.1 Selection of POI and ROI. To ensure that the selected POI

array has sufficient position information entropy, it is better to

select the POI on center part’s boundary dispersedly so that the

POI array can cover the perspective information as much as possi-

ble. Without loss of generality, we choose points IU , ID , IL , and IR
to form the POI array, as shown in Fig. 7(a). To derive each POI’s

accurate moiré features, we take each POI as the center and crop

a region of interest (ROI) from the original image to calculate the

corresponding spectrum. The ROI array is shown in Fig. 7(a). On

the one hand, the ROI should be as small as possible so that the

moiré feature of each pixel in one ROI can be nearly uniform. On

the other hand, the ROI should be big enough to guarantee suffi-

cient resolution of the spectrogram. To make a trade-off, we first

tentatively crop the ROI for each POI according to the size of the

center part, which is too large for the accurate feature extraction.

For each temporal ROI, we calculate the spectrogram and derive the

temporal spatial frequency f ′ according to Section 5.2. According

to Nyquist–Shannon sampling theorem [44], to restore the spatial

frequency f ′, the number of pixels R′ needs to be greater than

2f ′. To ensure adequate fault tolerance, we set the ROI size R′ for

each ROI to 4f ′. Note that each ROI’s size can be different since

it is determined by each ROI’s temporal spatial frequency f ′. By
resizing the ROI array, the feature calculated from each ROI can be

more accurate due to the higher consistency among pixels within

the smaller ROI.

6.2.2 Distance Array Calculation via Frequency Analysis. Based

on the determined ROI, we propose a frequency analysis method

to calculate the distance array, i.e., the perspective information that

reflects different distances from the camera to the POI array on the

screen. Specifically, we perform the FFT for each ROI. Without loss

of generality, we take the POI IR as an example to demonstrate its

original and processed spectrograms, as illustrated in Fig. 7(b). The

distances of the rest ROIs can be calculated in the same way. To

precisely extract the impulse region in the original spectrogram,

we perform an adaptive binarization [20] to adaptively isolate the

impulse regions, according to the principle that the foreground is

brighter than the background. The processed spectrum is plotted

in Fig. 7(b). We can observe two pulse clusters Ch and Cv with the

propagation directions separated by 90◦. Specifically, the cluster

Ch and Cv reflect the moiré features of horizontal and vertical

splines, respectively. According to the method of feature extraction

in Section 5.2, for each impulse cluster, we can derive a pair of
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(a) POI and ROI selection (b) Spectrogram of the ROI centered on IR (c) Ranging-based model

Figure 7: Determining the camera position

moiré features, including the spatial frequency and the propagation

direction. It means that for each POI, we can obtain two distances

due to the 2D property of moiré patterns. Therefore, a screening

mechanism needs to be provided to eliminate the uncertainty of

the distance. Ideally, the two distances calculated from 2D moiré

patterns are supposed to be the same. However, the perspective

angle may lead to different influences on the deformation of the

2D splines, so the distances derived from the two dimensions are

different accordingly. Based on the understanding of perspective

transformation, leftwards or rightwards perspective does not affect

the frequency of the horizontal splines but significantly affects the

vertical splines’ frequency. Thus, for POI IL and IR , we leverage the

horizontal splines’ spatial frequency fh and propagation direction

θh of cluster Ch to calculate the distances dh according to Eq. (9).

In the same way, for points IU and ID , we leverage the vertical

splines’ moiré features to calculate the distance dv according to

Eq. (9). Therefore, the distance array from the camera to the POI

array on the screen can be determined.

6.2.3 Position Determination. Based on the derived distance ar-

ray, we can determine the camera’s coordinates via the multilateral

positioning algorithm. We define the estimated camera position P
with the coordinates of [x ,y, z]T . The coordinates of each POI Si on
the screen are defined as [xi ,yi , zi ]

T , which can be determined in

the next paragraph. Thus, the estimated distance from the position

P to each POI Si can be calculated by ‖P − Si ‖2. Besides, we use di
to denote the measured distance from the position P to each POI Si .
To determine the optimal solution P∗ of the position, the difference

between the estimated distance array and the measured distance

array should be minimum, i.e.:

P∗ = argmin
P

n∑
i=1

| ‖Si − P ‖2 − di | ,n ≥ 4 . (10)

Based on this multilateral positioning method with an optimization

model, we can determine the camera position according to the

measured distance array and the coordinates of the screen POI array.

Thus the critical problem now is to obtain the specific coordinates

of the screen’s POI array.

Fig. 7(c) illustrates an imaging process of the camera, and the cap-

tured image of the screen is actually on the imaging plane, i.e., the

CFA plane. Without loss of generality, we take the points IU , ID , IL ,
and IR as the POI array on the imaging plane, and the correspond-

ing POI array on the screen can are denoted by SU , SD , SL , and SR .

To realize the multilateral positioning, we also need to obtain the

coordinates of the points SU , SD , SL , and SR . We assume that there

exists a rectangle with the side length of 2a, and the coordinates

of points SU , SD , SL , and SR can be approximately expressed as

(0,a, 0), (0,−a, 0), (−a, 0, 0) and (a, 0, 0), respectively. Next, we need

to determine the specific coordinate value of a. As shown in Fig. 7(c),

we use L and Ls to denote the length of the full view range on the

screen plane and the center part range corresponding to the image

center part. Thus, the relationship between the camera’s view range

L and the component parameters, including the focal length f and

the size of the image sensor (approximate to the CFA size Lc ) can

be expressed as Lc
L =

f
d0

, where d0 is the distance from the camera

to the screen virtual originO . Since Ls = 2a and L = 3Ls (according

to crop ratio of one third in Section 5.1), the coordinate value a can

be estimated by d0Lc
6f

. Therefore, the coordinates value of the POI

array on the screen, i.e., Si in Eq. (10), can be determined so as to

derive the optimal camera position P∗.

6.3 Effective Working Range Extension

The low-frequency property of moiré pattern is not always avail-

able. Thus, we define the effective working range as the distance

range that the moiré pattern captured by the camera can be cor-

rectly resolved by MoiréPose. According to Eq. (6), only when the

CFA frequency fc and the projective screen frequency fp are close,

the frequency of the moiré pattern fm can be small enough, i.e.,

the period length can be resolved from the spectrogram. According

to Nyquist–Shannon sampling theorem [44], to resolve the spa-

tial frequency fm of the moiré pattern, the resolution Rm of the

moiré image needs to be greater than 2fm , i.e.,
fm
Rm
< 0.5. However,

according to our extensive experiments, we can only resolve the

spatial frequency that meets the relationship of
fm
Rm

∈ [0.03, 0.15]

since the moiré splines in real scenarios are not evenly and straight.

Once the camera gets much closer or farther to the screen, the

moiré pattern’s frequency becomes much higher. It is hard for the

camera to resolve such high frequency since multiple splines are

mapped to one camera pixel. Fig. 8(a) illustrates an example of a

high-frequency moiré pattern extracted from the center part of an

image, and the corresponding spectrogram is plotted in Fig. 8(b).

It is hard to determine which impulse corresponds to the accurate

frequency of the moiré pattern. To solve this problem, we propose a

novel thumbnail-based method to restore the high spatial frequency
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Figure 8: Thumbnail-based method

of the moiré pattern. Specifically, we sample the high-frequency

moiré pattern with an iterative thumbnail ratio δ until we can ob-

tain a clear thumbnail image with low-frequency moiré patterns.

The thumbnail image with the ratio δ = 0.25 and the spectrogram

are plotted in Fig. 8(c) and Fig. 8(d). Here, we leverage Brenner gra-

dient function [11] to assess the clearness of the thumbnail image.

We use inexact newton methods [16] to iteratively determine the

thumbnail ratio δ , which corresponds to a local optimum value of

the Brenner gradient function. Actually, the sampling operation

is equivalent to superposing another grating with the spatial fre-

quency of δRm on the high-frequency moiré pattern. Rm represents

the number of pixels contained in the side length of the center part.

Thus, the spatial frequency ft of the generated clear moiré patter in

the thumbnail image can be calculated by ft = fm −δRm . Since the

spatial frequency ft can be easily observed from Fig. 8(d), the high

spatial frequency fm of the original moiré pattern can be restored

according to the following equation:

fm = ft + δRm . (11)

Based on the thumbnail method, we can extend the resolvable

range of moiré pattern’s spatial frequency from the relationship
fm
Rm

∈ [0.03, 0.15] to
fm
Rm

∈ [0.03, 0.4]. It enableMoiréPose to extract

the effective features of the moiré pattern in a larger distance range.

7 ESTIMATION OF CAMERA POSTURE

To estimate the 3-DoF posture of the camera, we need to determine

the camera’s three axes [u,v,w] in the coordinate system with

the virtual origin, as shown in Fig. 9. In Section 6.2.3, we have

determined the camera position P relative to the virtual origin O .

Since the virtual origin O is the intersection point of the camera’s

optical axisw and the screen plane, we can directly calculate the

expression of the optical axis w as the vector
−→
OP . Thus, the unit

vector ŵ of the optical axisw can be calculated by ŵ =
−−→
OP
‖OP ‖

. Here,

we use û, v̂ , and ŵ to represent the unit vectors of u, v , and w
for the sake of subsequent operations. Actually, we only need to

determine any one of the axes û and v̂ , and the final axis can be

derived by the cross product of the other two axes.

Figure 9: Determining the camera posture

According to Observation 2 in Section 4.1, the propagation di-

rection of the moiré pattern can be easily influenced by the cam-

era’s rotation angle along the optical axis, i.e., the relative changes

between the frequency directions of CFA and screen gratings. Par-

ticularly, the direction of the screen grating in camera-to-screen

scenarios is usually certain. It gives us an opportunity to estimate

the propagation direction θc of the CFA. According to Eq. (7) and

Eq. (9), the relationship between moiré pattern’s propagation di-

rection θm and CFA’s propagation direction θc can be expressed

as:

tanθm =
sinθc

cosθc −
d0fs
f fc

, (12)

where the propagation directions θm of the moiré pattern and the

distance d0 from the camera to the virtual origin O can be derived

from Section 5.2 and Section 6.2.2, respectively. By solving Eq. (12),

we can obtain the propagation direction θc of the CFA, as illustrated

in Fig. 9. Here, θc denotes the roll angle of the camera around the

optical axis, i.e., the angle between axis u and axis-X’s projection
−−−−→
OPM on the CFA plane. The target posture vector û of the camera

can be exactly derived by rotating the unit vector of
−−−−→
OPM around

the optical axis ŵ by the angle of θc . To derive the specific posture,

we denote vector
−−−−→
OPM as [Mx ,My ,Mz ]

T , where My can be set to

zero since
−−−−→
OPM belongs to the horizontal plane. According to the

relationship that vector
−−−−→
OPM in the CFA plane is perpendicular

to the known optical axis w = [wx ,wy ,wz ]
T , we can solve the

ratio between Mx and Mz as −wz

wx
to further determine the unit

vector m̂ = [mx ,my ,mz ]
T of vector

−−−−→
OPM . Based on the efficient

Rodrigues’ rotation formula [39], we can calculate the unit vector

û by rotating the unit vector m̂ around the optical axis ŵ :

û = m̂ cos(θc ) + ŵ × m̂ sin(θc ) + (ŵ · m̂)ŵ(1 − cos(θc )) , (13)

where the rotation angle θc can be derived from Eq. (12). Eventually,

the last posture axis v̂ can be determined by ŵ × û.

8 PERFORMANCE EVALUATION

8.1 Implementation and Methodology

Implementation: We implement and evaluate MoiréPose in both

near-field and far-field interaction scenarios to show the perfor-

mance in accuracy and robustness. The setup is shown in Fig. 10.

Our system is built with a screen and a smartphone embedded with

cameras. Without loss of generality, we regard the smartphone as

the target of interacting with the screen and perform MoiréPose to

reconstruct the 6-DoF pose of the smartphone.
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Figure 10: Experimental setup: (a) Near-field interaction sce-

nario. (b) A smartphone with motion capture marker. (c) Far-field

interaction scenario. (d) Screen contents.

Table 1: Parameters of the screen devices

ID Manuf. Model Size Pixel Size

S1 Dell E2420H 23.8" 205.8 μm

S2 Apple MacBook Pro 2017 13.3” 112 μm

S3 Lenovo ThinkPad T460P 14” 161.4 μm

S4 - large LED Screen 3.3 × 2.1 m2 2.5 mm

Table 2: Parameters of the capturing devices

ID Manuf. Model Focal Length Pixel Size

C1 Samsung Galaxy note8 4.3 mm 1.4 μm

C2 Samsung Galaxy S20 FE 5.4 mm 1.8 μm

C3 Apple iPhone X 4 mm 1.22 μm

C4 Apple iPhone XR 4 mm 1.4 μm

C5 Xiaomi Mi 10S 6.72 mm 1.6 μm

C6 Xiaomi Redmi 10X 4.74 mm 0.8 μm

C7 Sony Xperia XZ1 4.4 mm 1.22 μm

Table 3: Working range of camera-screen pairs

S1 S2 S3 S4

C1 30 ∼ 42 cm 12 ∼ 23 cm 17 ∼ 33 cm 2.7 ∼ 3.7 m

C2 28 ∼ 42 cm 12 ∼ 22 cm 16 ∼ 32 cm 2.6 ∼ 3.6 m

C3 35 ∼ 45 cm 17 ∼ 25 cm 25 ∼ 35 cm 3.4 ∼ 4.0 m

C4 30 ∼ 40 cm 13 ∼ 22 cm 20 ∼ 31 cm 2.9 ∼ 3.7 m

C5 39 ∼ 58 cm 16 ∼ 31 cm 23 ∼ 45 cm 3.5 ∼ 5.2 m

C6 30 ∼ 40 cm 12 ∼ 22 cm 20 ∼ 32 cm 2.9 ∼ 3.6 m

C7 40 ∼ 50 cm 18 ∼ 27 cm 27 ∼ 39 cm 3.7 ∼ 4.4 m

Ground Truth: To obtain the ground truth of the camera pose

in 3D space, we attach three motion capture markers on the smart-

phone and leverage OptiTrack [4] to capture the precise coordinates

of the three markers, as shown in Fig. 10(b). OptiTrack realizes the

tracking precision of 0.2mm in our experimental scenarios. We con-

struct OptiTrack’s coordinate system based on the virtual origin of

the screen. Thus, the ground truth of the camera pose relative to

the screen can be obtained according to three markers’ coordinates.

Specifically, the ground truth of the camera position can be de-

duced from the topology between the lens and three markers. The

ground truth of camera orientation axes u and v can be calculated

by marker vectors
−−−−→
M1M2 and

−−−−→
M1M3, and axisw can be derived by

−−−−→
M1M2 ×

−−−−→
M1M3, accordingly.

Setup: 1) Screen type: To evaluate the impact of different screen

devices, we test three LCD screens, including two laptops and one

monitor, and a large LED screen, as shown in Table 1. 2) Camera

type: To evaluate the impact of different CFA types, we select seven
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Figure 11: Overall performance of MoiréPose

smartphones with different camera parameters, as shown in Ta-

ble 2. 3) Distance: To demonstrate the effectiveness of MoiréPose

in pervasive scenarios, we evaluate the system with two typical

scenarios, including near-field scenarios with the distance range

of 20∼50 cm and far-field scenarios with 2.5∼4m. Note that each

screen-camera pair determines an effective working range for opti-

mal performance. Within the effective working range, the spatial

frequency of moiré pattern is relatively low and can be accurately

resolved by MoiréPose. We calculate the specific working range for

each screen-camera pair and adopt it in our experiment, as shown

in Table 3. 4) Orientation: We do not strictly fix the camera’s pos-

ture in our experiment. However, to capture the camera’s subtle

pose change in front of the screen, the angle difference between the

screen plane and the CFA plane, i.e., the smartphone plane, needs

to be constrained within −15◦ ∼ 15◦. Otherwise, the screen may be

out of the shooting range. 5) Brightness: We evaluate four screen

brightness levels in real-world scenarios, including the brightness

percentage of 100%, 70%, 40%, and 10%. 6) Screen content: We adopt

six kinds of screen content, including three color backgrounds and

three kinds of complex patterns, as shown in Fig. 10(d). 7) Com-

parisons: We compare MoiréPose with the checkerboard-based

method [61] and the state-of-the-art solution ArUco [33] in both

light and dim scenarios.

Metrics: We evaluate the performance with metrics of position

error and orientation error. Position error refers to the Euclidean dis-

tance between the estimated position and the ground truth position

of the camera in 3D space. Besides, we also evaluate the distance

deviation along the X, Y, and Z axes, respectively. Orientation er-

ror refers to the angle difference between the camera’s three axes

[u,v,w] and the ground truth. Besides, we use the mean angle error

(MAE) to indicate the overall orientation error.

8.2 Overall Performance

MoiréPose realizes ultra-high precision localization with an average

position error of 7.5mm and an overall posture error of 1.66◦. Fig. 11(a)

and Fig. 11(b) show the Cumulative Distribution Function (CDF)

of MoiréPose’s position error and posture error with the default

devices Dell E2420H display and SamsungGalaxy note8 smartphone

in their effective working range.

According to Fig. 11(a), the position error along each axis is con-

trolled within 1cm for about 70% of the test images. Notably, more

than 93% of the test images achieves a millimeter-level precision

along the Z-axis. It is because moiré pattern is extremely sensitive

to the camera-to-screen distance. Specifically, since the spacing

between the POIs on the screen is much smaller than the distance

from the screen to the camera, the values in the distance array get
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Figure 12: Impact of the distance in near-field scenarios

close. This further leads to the large position errors along the X

and Y axes than the Z axis.

According to Fig. 11(b), the posture error along each camera’s

axis can be controlled within 2.5◦ for about 70% of the test images.

Since the working distance of the default setting is close and the

camera’s optical axisw is derived from the camera position, even a

small position error can lead to a large posture error for the optical

axis estimation. Fortunately, the posture estimation of axis u only

relies on the moiré features and achieves higher accuracy than

other axes. Thus, the roll-angle-based mechanism for the camera’s

posture estimation can achieve good performance in total.

8.3 Impact of Camera-to-Screen Distance

To demonstrate the effectiveness of MoiréPose in pervasive scenar-

ios, we evaluate the system in both near-field and far-field scenarios

as shown in Fig. 10(a) and Fig. 10(c). Notably, different interaction

distances can support different applications, and the detailed use

case scenarios are discussed in Section 9.

8.3.1 Performance in Near-field Scenarios. MoiréPose can achieve

millimeter-level localization precision in near-field scenarios with the

thumbnail-based mechanism. According to typical near-field inter-

actions with laptops or displays, we set the distance from 20cm ∼

50cm and select the default devices Dell E2420H display and Sam-

sung Galaxy note8 smartphone. Fig. 12 illustrates the position and

posture errors with/without adopting the thumbnail-based method

in the near-field scenarios. Note that in the effective working range

from 30cm ∼ 42cm, the overall position error is about 6.29mm,

and the average posture error is about 1.92◦. When the working

range is further getting closer, i.e., 20cm ∼ 30cm, or getting farther,

i.e., 42cm ∼ 50cm, the performance of MoiréPose start to decrease

significantly. It is because the frequency of moiré pattern at these

two distance ranges becomes extremely high. Such high-frequency

moiré patterns can neither be captured at far distances due to the

limited resolution of the camera nor be captured at close distances

due to the camera’s limited focusing capacity.

8.3.2 Performance in Far-field Scenarios. MoiréPose can achieve

centimeter-level localization precision in the far-field scenarios. Specif-

ically, we set the distance range from 2.5m ∼ 4m, and select four

kinds of smartphones with different camera types in Table 2 to

interact with the large LED screen S4 in Table 1. The detection

results of the position and posture are illustrated in Fig. 13. We find

that there is an optimal distance range for each camera to achieve

optimal performance, and the accuracy can be different for each

camera-screen pair. The optimal distance range for each camera is

decided by the device parameters, including the focal length and
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Figure 13: Impact of the distance in far-field scenarios

the pixel size, i.e., the frequency of the CFA grating. Specifically,

Galaxy note 8 and Galaxy S20 FE perform well at the distance range

of 2.7m ∼ 3.5m, while Xperia XZ1 is suitable for longer interaction

distance, i.e., 3.75m ∼ 4m or even farther.

8.4 Impact of Screen Brightness

MoiréPose achieves fairly good performance with mutable screen

brightness. We evaluate the performance in four screen brightness

levels, i.e., the brightness percentage is set to 100%, 70%, 40%, and

10%. Fig. 14 shows the corresponding results. Note that lower bright-

ness may increase the instability of the estimation results, i.e., the

pose estimation results of 70%, 40%, and 10% brightnesses possess

more extensive error ranges than the brightness of 100%. Never-

theless, dark screen brightness does not significantly change the

contrast between the captured moiré pattern and the image back-

ground. The position and posture errors with 10% brightness can

still reach 6.12mm and 1.36◦, which is even lower than the errors

with 100% brightness. This is attributed to the camera’s adaptive

adjustment for the light source of the screen.

8.5 Impact of Screen Content

Conventional patterns displayed on the screen do not significantly

influence the pose estimation result. We evaluate three color back-

grounds and three kinds of patterns. The specific screen contents

and the experiment results are shown in Fig. 10(d) and Fig. 15.

Notably, the pose error derived from the green background is the

minimum. It is because green units account for the largest pro-

portion in the CFA with a conventional Bayer filter [1], which

effectively increases the sensitivity of green light. Besides, we also

evaluate a game background (GM) and two stripes backgrounds (S1

and S2). Note that convention patterns, e.g., the game background,

can achieve even higher accuracy than a pure color background,

since some curves and patterns exactly make it easier for the cam-

era to focus. However, horizontal and vertical stripes, especially

periodic and high-frequency stripes, may cause severe impact on

the pose estimation, as shown by pattern “S1” and “S2” in Fig. 10(d).

8.6 Impact of Device Type

To evaluate the generalization of MoiréPose with different devices,

we test four kinds of screens in Table 1. For each screen, we test

seven cameras with different CFA parameters in Table 2. Notably,

since the CFA pixel sizes of different cameras are almost the same

order of magnitude, the key factor that determines whether the

interaction distance is near-field or far-field is the screen’s size.

Therefore, the interaction distance from the camera to a laptop

or a monitor is near-field, while the distance to the large LED
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Figure 14: Impact of the

screen brightness

Figure 15: Impact of the

screen content

S1 S2 S3 S4
Screen ID

0

1

2

3

4

5

P
os

iti
on

 E
rr

or
 (

cm
)

Galaxy note8
Galaxy S20 FE
iPhone X
iPhone XR
Mi 10S
RedMi 10X
Xperia XZ1

Figure 16: Impact of device

types on position

S1 S2 S3 S4
Screen ID

0

3

6

9

P
os

tu
re

 E
rr

or
 (

°)

Galaxy note8
Galaxy S20 FE
iPhone X
iPhone XR
Mi 10S
RedMi 10X
Xperia XZ1

Figure 17: Impact of device

types on posture
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Figure 18: Performance in macro-benchmark

screen is far-field. For each device pair, we evaluate the performance

within the working range according to Table 3. The position and

posture errors are shown in Fig. 16 and Fig. 17, respectively. The

average position error in the near-field interaction, i.e., S1, S2, and

S3, achieves 8.87 mm, and the average posture error is about 2.14◦.

The average position error in the far-field interaction, i.e., the large

LED screen, reaches about 3.39 cm, and the average posture error is

about 3.64◦. Although the position error reaches centimeter-level,

the ratio between the position bias and the far-filed interaction

distance is still minimal.

8.7 Impact of Screen Display Technology

The mainstream screen display technology includes Liquid Crystal

Display (LCD) and Organic Light Emitting Diode (OLED). Most LCD

screens adopt Direct Current (DC) dimming, while OLED screens

use Pulse-Width Modulation (PWM) dimming [47]. Specifically, DC

dimming controls the display brightness by adjusting the electric

power. This continuous luminous solution does not interfere with

the production of moiré pattern. In contrast, PWM dimming varies

the duty cycle of a constant current to effectively change the average

current, i.e., controlling the brightness by setting the time ratio of

the pixel on or off. Thus, when we use a rolling shutter [57] to shoot

OLED screens, stroboscope stripes may appear in the image’s screen

area due to the PWM modulation mode [26, 63], and the width of

the stroboscope stripes is related to the modulation frequency, duty

cycle, exposure time, etc.

We evaluate the performance of different display technologies,

including the LCD screen (Device ID: S1), OLED screen (Device ID:

C3), and Light-Emitting Diode (LED) screen (Device ID: S4). Partic-

ularly, we adopt the smartphone C3 as the typical OLED screen to

evaluate the impact of the PWM dimming mode of OLED technol-

ogy, which may cause stroboscope stripes in the captured image.

The modulation frequency of the smartphone C3 is 120 Hz, so we

adjust the shutter speed (“S” in Fig. 19.) to generate the stroboscope

stripe with different widths and intensities. The stroboscope stripes

and the corresponding detection result of the camera’s position are
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Figure 19: Impact of the screen display technology

shown in Fig. 19. Particularly, the working ranges of the screens

with different display technologies are different. Thus, we use the

ratio of the detected camera-to-screen distance to the ground truth

to represent the detection accuracy. We can observe that OLED

screens can achieve comparable performance to LCD and LED

screens at lower shutter speeds. When the shutter speed becomes

extremely high, e.g., S=1/640s, the wide stroboscope stripes roll

rapidly, causing the camera to lose focus. Therefore, the camera

cannot capture clear moiré patterns, and the detection accuracy

drops rapidly.

Fortunately, the existing modulation frequency of OLED screens

can reach 60 Hz, 120 Hz, or even higher, while the frame rate of

the ordinary camera is about 30 fps. The stroboscope stripes can

be completely eliminated since the camera’s frame rate is much

lower than the screen’s modulation frequency. Besides, adopting

a global shutter is also an alternative solution for eliminating the

stroboscope stripes.

8.8 Comparison with Other Solutions

We compare MoiréPose with a widely adopted checkerboard-based

method [61] and the state-of-the-art solution ArUco [33]. To evalu-

ate the robustness of MoiréPose and visual-marker-based methods,

we adjust the ambient illumination and conduct experiments in

well-lit and dimly-lit conditions, respectively. The corresponding

performance results are shown in Fig. 18(a) and Fig. 18(b), includ-

ing both near-filed (denoted as “N”) and far-field (denoted as “F”)

interaction scenarios. For the near-filed interaction with well-lit

illumination, MoiréPose achieves performance comparable to the

advanced ArUco solution. However, for far-field interaction and

dimly-lit scenarios, MoiréPose demonstrates obvious superiority

over other methods. It is because long distances and dim illumina-

tion can enormously increase the detection error of feature points

in the captured 2D image. Besides, when the camera is in front of

the visual marker with a far interaction distance, subtle perspective

transformation cannot be reconstructed precisely, since a slight

change of camera posture does not significantly affect the cap-

tured marker’s shape in the image. In contrast, for the moiré-based
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method, the low-frequency property of moiré pattern guarantees

good enough performance in the far-field scenarios. The camera’s

adaptive adjustment for screen light sources also makes MoiréPose

robust for the various illumination.

9 LIMITATION AND DISCUSSION

Camera’s 6-DoF Tracking: The purpose of MoiréPose is to out-

put a 6-DoF pose estimation result of the camera according to an

image, which is consistent with conventional image-based pose

estimation tasks. Notably, the screen occupies the main part of the

image, and the pose detection result of the camera is relative to the

screen’s virtual origin. Such an image-based pose estimation mech-

anism provides an interface to implement extensive applications.

For example, to realize the 6-DoF tracking of the camera, we only

need to restore the virtual origin’s translation between consecutive

frames, which can be deduced by the camera’s translation. Actually,

the investigation of this problem has been done in some state-of-art

works [8, 58], i.e., the camera translation can be characterized by

the phase information of the moiré pattern. Thus, it is possible to

estimate the changes of the screen’s virtual origin so as to realize

the continuous 6-DoF tracking of the camera.

Bright application perspective: MoiréPose can be applied not

only to the camera-to-screen interactions but also to the pervasive

camera-to-texture scenarios. The interaction target can be pervasive

objects in daily life with dense periodic textures, including stripe

clothes, buildings with period textures, or any artificial gratings

with high frequency [42]. For example, artificial moiré gratings can

help the camera realize much higher localization precision than tra-

ditional visual markers, which can be applied to Human-Computer

Interaction (HCI) [59] and mobile robot localization [17, 49]. Fur-

thermore, the artificial gratings can also enable the camera to real-

ize the 3D shape reconstruction [22, 25, 37, 41] and the integrated

sensing and communication [14, 30, 34]. Thus, MoiréPose has a

bright perspective for both enhancing the localization precision

and extending the sensing dimensions.

Focus of the camera: The camera’s fast movement and the

ambient brightness changes can trigger the camera’s auto focus.

Specifically, smartphone cameras leverage autofocus algorithms

and lens motors to achieve the sharpest images. The autofocus

algorithms evaluate the sharpness of the image by calculating the

contrast value of the image. The lens motor then controls the lens

movement until it finds the correct position for the sharpest image.

Fortunately, the screens we interact with in real scenarios usu-

ally show the interaction content, e.g., the game interface. These

complex background patterns can help the autofocus algorithm

rapidly converge the contrast calculation so as to realize fast focus.

Note that the refocusing phenomenon is not frequent. When using

MoiréPose for continuous 6-DoF tracking, the influence of the refo-

cusing can be effectively reduced by leveraging the continuity of

the camera pose.

Working range: The working range of MoiréPose is related to

the screen’s pixel size, which is usually proportional to the screen

size. Large screens with wide pixel size usually require a far interac-

tion distance to produce clear moiré patterns since the far distance

can help the projective screen grating’s frequency approach that

of CFA. In contrast, smaller screens with narrower pixels usually

require a closer interaction distance to generate clear moiré pat-

terns. Therefore, the effective working range of MoiréPose exactly

matches the accustomed usage habits of screens with different

sizes. Different working ranges can support different applications.

Motion-sensing games with active body stretch usually need an

open area, i.e., the far-field interaction scenarios. Whereas implicit

interactions, including mouse control [18] and vision care (distance

and direction monitoring when using screens), with laptops and

displays are suited to near-field scenarios.

Symmetric distance solution: Due to the non-directivity of

the moiré pattern’s splines, the observed propagation direction θm
in Eq. (9) can be expressed as:

θm =

{
θ ′m, fc > fp

θ ′m + π , fc < fp
, −

π

2
≤ θ ′m <

π

2
, (14)

where θ ′m represents the included angle between the line of propa-

gation direction and the positive horizontal axis of the image. When

the spatial frequencies of the CFA and the projective screen are

equal, i.e., fc = fp , the frequency of the moiré pattern becomes

zero, which corresponds to a critical distance dc =
fc f
fs

. Thus, the

distance solutions from the moiré feature lie in two symmetric

intervals bounded by dc . The ambiguity of the distance can be

eliminated according to the effective working range limited by the

device parameters. Without loss of generality, we choose the closer

interval in this paper to ensure the sufficient screen resolution.

Large perspective angle: Since the camera lens is equivalent

to a convex lens, the screen grating projected onto the CFA layer

has undergone the deformation caused by the convex effect, i.e.,

moiré pattern’s one of the sub-gratings to be superimposed has

been deformed. It will cause a significant distortion on the final

superimposed moiré pattern, especially for large perspective an-

gles between the screen and camera. Such severe pattern distortion

cannot be simply eliminated by image distortion correction. Nev-

ertheless, it is still possible to make a special correction according

to the characteristics of the convex lens to restore a more accurate

moiré pattern.

10 CONCLUSION

In this paper, we propose a novel sensing method MoiréPose to

achieve ultra-high precision on the camera’s 6-DoF pose estimation.

We extend the localization precision from the conventional pixel

level to the spline level based on the low-frequency property of

moiré pattern. We explore a mathematical model to associate the

6-DoF camera pose with the extracted moiré features and effectively

extend the working range of moiré-based mechanism. Extensive

experiment results show that our system achieves average position

error of 7.5 mm and overall posture error of 1.66◦.
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