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Curve fitting

Figure: Given N points in R2, fit a curve

Forward problem: From dataset to curve

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 2 / 35



Curve fitting

Figure: Given N points in R2, fit a curve

Forward problem: From dataset to curve

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 2 / 35



Finding the right “fit”

Left is fit, right is overfit

Too wiggly

Not stable
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Guessing points from curve

Figure: Given curve, find N points

Backward problem: From curve to dataset

Backward problem easier for overfitted curve!

Curve contains more information about dataset
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This talk

Explore information and overfitting connection (Xu & Raginsky, 2017)

Analyze generalization error in a large and general class of learning
algorithms (Pensia, J., Loh, 2018)

Measuring information via optimal transport theory (Tovar-Lopez, J.,
2018)

Speculations, open problems, etc.
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Learning algorithm as a channel

S Algorithm W

Input: Dataset S with N i.i.d. samples (X1,X2, . . . ,Xn) ∼ µ⊗n
Output: W

Algorithm equivalent to designing PW |S . Very different from channel
coding!
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Goal of PW |S

Loss function: ` :W ×X → R

Best choice is w?

w? = argminw∈WEX∼µ[`(w ,X )]

Can’t always get what we want...

Minimize empirical loss instead

`N(w ,S) =
1

N

N∑
i=1

`(w ,Xi )
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Generalization error

Define expected loss = E X∼µ

PW |SPS

`(W ,X ) (test error)

Expected empirical loss = EPWS
`N(W , S) (train error)

Loss has two parts:

Expected loss

= (Expected loss - Expected empirical loss) + Expected empirical loss

= (test error - train error) + train error

Generalization error = test error - train error

gen(µ,PW |S) = EPS×PW
`N(W ,S)− EPWS

`N(W , S)

Ideally, we want both small. Often, both are analyzed separately.
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Basics of mutual information

Mutual information I (X ;Y ) precisely quantifies information between
(X ,Y ) ∼ PXY :

I (X ;Y ) = KL(PXY ||PX × PY )

Satisfies two nice properties—

Data processing inequality:

X Y Z

Figure: If X → Y → Z then I (X ;Y ) ≥ I (X ;Z )

Chain rule:
I (X1,X2;Y ) = I (X1;Y ) + I (X2;Y |X1)
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Bounding generalization error using I (W ; S)

Theorem (Xu & Raginsky (2017))

Assume that `(w ,X ) is R-subgaussian for every w ∈ W. Then the
following bound holds:

|gen(µ,PW |S)| ≤
√

2R2

n
I (S ;W ). (1)

Data-dependent bounds on generalization error

If I (W ;S) ≤ ε, then call PW |S as (ε, µ) stable

Notion of stability different from traditional notions
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Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))

If f (X ,Y ) is σ-subgaussian under PX × PY , then

|Ef (X ,Y )− Ef (X̄ , Ȳ )| ≤
√

2σ2I (X ;Y ),

where (X ,Y ) ∼ PXY and (X̄ , Ȳ ) ∼ PX × PY .

Recall I (X ;Y ) = KL(PXY ||PX × PY )

Follows directly by alternate characterization of KL(µ||ν) as

KL(µ||ν) = sup
F

(∫
Fdµ− log

∫
eFdν

)
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How to use it: key insight

Figure: Update Wt using some update rule to generate Wt+1

Many learning algorithms are iterative

Generate W0,W1,W2, . . . ,WT , and output W = f (W0, . . . ,WT ).
For example, W = WT or W = 1

T

∑
i Wi

Bound I (W ;S) by controlling information at each iteration
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Noisy, iterative algorithms

For t ≥ 1, sample Zt ⊆ S and compute a direction F (Wt−1,Zt) ∈ Rd

Move in the direction after scaling by a stepsize ηt

Perturb it by isotropic Gaussian noise ξt ∼ N(0, σ2
t Id)

Overall update equation:

Wt = Wt−1 − ηtF (Wt−1,Zt) + ξt , ∀t ≥ 1

Run for T steps, output W = f (W0, . . . ,WT )
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Main assumptions

Update equation:

Wt = Wt−1 − ηtF (Wt−1,Zt) + ξt , ∀t ≥ 1

Assumption 1: `(w ,Z ) is R-subgaussian

Assumption 2: Bounded updates; i.e.

sup
w ,z
‖F (w , z)‖ ≤ L

Assumption 3: Sampling is done without looking at Wt ’s; i.e.,

P(Zt+1 | Z (t),W (t),S) = P(Zt+1|Z (t),S)
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Graphical model

S

· · ·

· · ·

· · ·

Z1 Z2 Z3 ZT�1 ZT

W0 W1 W2 W3 WT�1 WT

⇠1 ⇠2 ⇠3 ⇠T�1 ⇠T

Figure: Graphical model illustrating Markov properties among random variables in
the algorithm
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Main result

Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

I (S ;W ) ≤
T∑
t=1

d

2
log

(
1 +

η2
t L

2

dσ2
t

)
.

Depends on T — longer you optimize, higher the risk of overfitting
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Implications for gen(µ,PW |S)

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

|gen(µ,PW |S)| ≤

√√√√R2

n

T∑
t=1

η2
t L

2

σ2
t

.

Corollary (High-probability bound)

Let ε =
∑T

t=1
d
2 log

(
1 + η2

t L
2

dσ2
t

)
. For any α > 0 and 0 < β ≤ 1, if

n > 8R2

α2

(
ε
β + log( 2

β )
)

, we have

PS ,W (|Lµ(W )− LS(W )| > α) ≤ β, (2)

where the probability is with respect to S ∼ µ⊗n and W .
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Applications: SGLD

SGLD iterates are

Wt+1 = Wt − ηt∇`(Wt ,Zt) + σtZt

Common experimental practices for SGLD [Welling & Teh, 2011]:

1 the noise variance σ2
t = ηt ,

2 the algorithm is run for K epochs; i.e., T = nK ,
3 for a constant c > 0, the stepsizes are ηt = c

t .

Expectation bounds: Using
∑T

t=1
1
t ≤ log(T ) + 1

|gen(µ,PW |S)| ≤ RL√
n

√√√√ T∑
t=1

ηt ≤
RL√
n

√
c logT + c

Best known bounds by Mou et al. (2017) are O(1/n)—but our
bounds more general
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Application: Perturbed SGD

Noisy versions of SGD proposed to escape saddle points Ge et al.
(2015), Jin et al. (2017)

Similar to SGLD, but different noise distribution:

Wt = Wt−1 − η (∇w `(Wt−1,Zt) + ξt) ,

where ξt ∼ Unif(Bd) (unit ball in Rd)

Our bound:
I (W ;S) ≤ Td log(1 + L)

Bounds in expectation and high probability follow directly from this
bound
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Application: Noisy momentum

A modified version of stochastic gradient Hamiltonian Monte-Carlo,
Chen et al. (2014):

Vt = γtVt−1 + ηt∇w `(Wt−1,Zt) + ξ′t ,

Wt = Wt−1 − γtVt−1 − ηt∇w `(Wt−1,Zt) + ξ′′t ,

Difference is addition of noise to the “velocity” term Vt

Treat (Vt ,Wt) as single parameter, to get

I (S ;W ) ≤
T∑
t=1

2d

2
log

(
1 +

η2
t 2L2

2dσ2
t

)
Same bound also holds for “noisy” Nesterov’s accelerated gradient
descent method (1983)
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Proof sketch

Lots of Markov chains!

I (W ;S) ≤ I (W T
0 ;ZT

1 ) because

S !ZT
1 WT

0 W! !

Figure: Data processing inequality

Iterative structure means

W0 W1 W2 W3 WTZ1 Z2 Z3! ! ! · · · !

Use Markovity with chain rule to get

I (ZT
1 ;W T

0 ) =
T∑
t=1

I (Zt ;Wt |Wt−1)

Bottom line: Bound “one step” information between Wt and Zt
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Proof sketch

Recall
Wt = Wt−1 − ηtF (Wt−1,Zt) + ξt

Using the entropy form of mutual information,

I (Wt ;Zt |Wt−1) = h(Wt |Wt−1)︸ ︷︷ ︸
Variance(Wt |wt−1) ≤ η2

t L
2+σ2

t

− h(Wt |Wt−1,Zt)︸ ︷︷ ︸
=h(ξt)

Gaussian distribution maximizes entropy for fixed variance, giving

I (Wt ;Zt |Wt−1) ≤ d

2
log

(
1 +

η2
t L

2

dσ2
t

)
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What’s wrong with mutual information

Mutual information is great, but ...

If µ is not absolutely continuous w.r.t. ν, then KL(µ||ν) = +∞
Many cases when mutual information I (W ;S) shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD) :(

“Noisy” algorithms are essential for using mutual information based
bounds

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 23 / 35



What’s wrong with mutual information

Mutual information is great, but ...

If µ is not absolutely continuous w.r.t. ν, then KL(µ||ν) = +∞

Many cases when mutual information I (W ;S) shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD) :(

“Noisy” algorithms are essential for using mutual information based
bounds

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 23 / 35



What’s wrong with mutual information

Mutual information is great, but ...

If µ is not absolutely continuous w.r.t. ν, then KL(µ||ν) = +∞
Many cases when mutual information I (W ; S) shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD) :(

“Noisy” algorithms are essential for using mutual information based
bounds

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 23 / 35



What’s wrong with mutual information

Mutual information is great, but ...

If µ is not absolutely continuous w.r.t. ν, then KL(µ||ν) = +∞
Many cases when mutual information I (W ; S) shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD) :(

“Noisy” algorithms are essential for using mutual information based
bounds

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 23 / 35



What’s wrong with mutual information

Mutual information is great, but ...

If µ is not absolutely continuous w.r.t. ν, then KL(µ||ν) = +∞
Many cases when mutual information I (W ; S) shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD) :(

“Noisy” algorithms are essential for using mutual information based
bounds

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 23 / 35



Wasserstein metric

µ ⌫

Wasserstein distance given by

Wp(µ, ν) =

(
inf

PXY∈Π(µ,ν)
E‖X − Y ‖p

)1/p

where Π(µ, ν) is the set of coupling such that marginals are µ and ν
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Wp for p = 1 and 2

W1 also called “Earth Mover distance” or Kantorovich-Rubinstein
distance

W1(µ, ν) = sup

{∫
f (dµ− dν)

∣∣∣f continuous and 1− Lipschitz

}

Lots of fascinating theory1 for W2

Optimal coupling in Π(µ, ν) is a function T such that T#µ = ν

For µ and ν in R,

W 2
2 (µ, ν) =

∫
|F−1(x)− G−1(x)|2dx

where F and G are cdf’s of µ and ν

1Topics in Optimal Transportation by Cedric Villani
Varun Jog (UW-Madison) Information theory in learning May 8, 2018 25 / 35
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Wasserstein bounds on gen(µ,PW |S)

Assumption: `(w , x) is Lipschitz in x for each fixed w ; i.e.

|`(w , x1)− `(w , x2)| ≤ L‖x1 − x2‖p

Theorem (Tovar-Lopez & J., (2018))

If `(w , ·) is L-Lipschitz in ‖ · ‖p, generalization error satisfies the following
bound:

gen(µ,PW |S) ≤ L

n
1
p

(∫
W

W p
p (PS ,PS |w )dPW (w)

) 1
p

Measure average separation of PS |W from PS (looks like a p-th
moment in the space of distributions)
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Wasserstein and KL

Definition

We say µ satisfies a Tp(c) transportation inequality with constant c > 0 if
for all ν, we have

Wp(µ, ν) ≤
√

2cKL(ν||µ)

Example: standard normal satisfies T2(1) inequality

Transport inequalities used to show concentration phenomena

For p ∈ [1, 2] this inequality tensorizes! This means µ⊗n satisfies
inequality Tp(cn2/p−1)
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Comparison to I (W ; S)

In general, not comparable

If µ satisfies a T2(c)-transportation inequality, can directly compare:

Theorem (Tovar-Lopez & J., (2018))

Suppose p = 2, then

W2(PS ,PS |W ) ≤
√

2cKL(PS |W ||PS)

and so

L

n
1
2

(∫
W

W 2
2 (PS ,PS |w )dPW (w)

) 1
2

≤ L

√
2c

n
I (PS ;PW )

In particular, for Gaussian data, Wasserstein bound strictly stronger
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Coupling based bound on gen(µ,PW |S)

Recall generalization error expression:

gen(µ,PW |S) = |E`N(S̄ , W̄ )− E`N(S ,W )|,

where (S̄ , W̄ ) ∼ PS × PW and (S ,W ) ∼ PWS .

Key insight: Any coupling of (S̄ , W̄ ,S ,W ) that has the “correct”
marginals on (S ,W ) and (S̄ , W̄ ) leads to the same expected value
above
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Proof sketch

We have

gen(µ,PW |S) =
∣∣∣ ∫ `N(s,w)dPSW −

∫
`N(s̄, w̄)dPS̄×W̄

∣∣∣
=
∣∣∣ESWS̄W̄ `N(S ,W )− `N(S̄ , W̄ )

∣∣∣

Pick W = W̄ , use Lipschitz property in x

Pick optimal joint distribution of PS ,S̄ |W to minimize bound
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Speculations: Forward and backward channels

Stability: How much does W change with S changes a little?

Property of the forward channel PW |S

Generalization: How much does S change when W changes a little?

Property of the backward channel PS |W

Pre-process data to deliberately make backward channel noisy (data
augmentation, smoothing, etc.)
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Speculations: Relation to rate distortion theory

Branch of information theory dealing with lossy data compression

X Y

min
PY |X

Ed(X, Y ) subject to I(X; Y )  R

Minimize distortion given by `N(W ,S) subject to mutual information
constraint I (W ; S) ≤ ε
Existing theory applies to d(xn, yn) =

∑
i d(xi , yi ); however, we have

`(w , xn) :=
∑
i

`(w , xi )

Essentially same problem, but connections still unclear
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Open problems

Evaluating Wasserstein bounds for specific cases, in particular for SGD

Information theoretic lower bounds on generalization error?

Wasserstein bounds rely on new notion of “information”

IW (X ,Y ) = W (PX × PY ,PXY )

Chain rule? Data processing?
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Thank you!
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