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Curve fitting
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Figure: Given N points in R?, fit a curve
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Curve fitting

A
\

Figure: Given N points in R?, fit a curve

@ Forward problem: From dataset to curve
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Finding the right “fit”
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Finding the right “fit”

o Left is fit, right is overfit
o Too wiggly
@ Not stable
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Guessing points from curve
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Guessing points from curve

Figure: Given curve, find N points

@ Backward problem: From curve to dataset
@ Backward problem easier for overfitted curve!

@ Curve contains more information about dataset
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This talk

@ Explore information and overfitting connection (Xu & Raginsky, 2017)
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algorithms (Pensia, J., Loh, 2018)
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This talk

@ Explore information and overfitting connection (Xu & Raginsky, 2017)

@ Analyze generalization error in a large and general class of learning
algorithms (Pensia, J., Loh, 2018)

@ Measuring information via optimal transport theory (Tovar-Lopez, J.,
2018)
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This talk

@ Explore information and overfitting connection (Xu & Raginsky, 2017)

@ Analyze generalization error in a large and general class of learning
algorithms (Pensia, J., Loh, 2018)

@ Measuring information via optimal transport theory (Tovar-Lopez, J.,
2018)

@ Speculations, open problems, etc.

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 5/35



Learning algorithm as a channel

|
S |:> Algorithm |:> W

@ Input: Dataset S with N i.i.d. samples (X1, Xa,...,Xp) ~ pu®"
o Output: W
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Learning algorithm as a channel

|
S |:> Algorithm |:> W

@ Input: Dataset S with N i.i.d. samples (X1, Xa,...,Xp) ~ pu®"

o Output: W
@ Algorithm equivalent to designing IP\y/|s. Very different from channel
coding!

May 8, 2018 6 /35
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Goal of Pyys

@ Loss function: /: W x X — R
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Goal of Pyys

Loss function: £: W x X — R

Best choice is w*

w* = argmin,, ey Ex~u[l(w, X)]

Can't always get what we want...

Minimize empirical loss instead

N
1
ﬁN(W,S) = N E e(Wa Xl)
i=1
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Generalization error

o Define expected loss = E x.,, ¢(W, X) (test error)
Py sPs
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Generalization error

o Define expected loss = E x.,, ¢(W, X) (test error)
Py sPs

o Expected empirical loss = Ep,,.¢n(W,S) (train error)

@ Loss has two parts:

Expected loss
= (Expected loss - Expected empirical loss) + Expected empirical loss

= (test error - train error) + train error

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 8/35



Generalization error

o Define expected loss = E x.,, ¢(W, X) (test error)
Py sPs

o Expected empirical loss = Ep,,.¢n(W,S) (train error)

@ Loss has two parts:

Expected loss
= (Expected loss - Expected empirical loss) + Expected empirical loss

= (test error - train error) + train error

@ Generalization error = test error - train error

gen(p, Pw)s) = Epgxpy In(W, S) — Ep,sIn(W, S)
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Generalization error

o Define expected loss = E x.,, ¢(W, X) (test error)
Py sPs

Expected empirical loss = Ep,,.fn(W, S) (train error)

@ Loss has two parts:

Expected loss
= (Expected loss - Expected empirical loss) + Expected empirical loss

= (test error - train error) + train error

@ Generalization error = test error - train error

gen(p, Pw)s) = Epgxpy In(W, S) — Ep,sIn(W, S)

Ideally, we want both small. Often, both are analyzed separately.
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Basics of mutual information

@ Mutual information /(X; Y) precisely quantifies information between
(X, Y) ~Pxy:

/(X; Y) = KL(nyHPX X Py)
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Basics of mutual information

@ Mutual information /(X; Y) precisely quantifies information between
(X, Y) ~Pxy:

/(X; Y) = KL(nyHPX X Py)

@ Satisfies two nice properties—
e Data processing inequality:

Chinese Whisper
e

Figure: If X = Y — Z then I(X;Y) > I(X; Z)
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Basics of mutual information

@ Mutual information /(X; Y) precisely quantifies information between
(X, Y) ~Pxy:

/(X; Y) = KL(nyHPX X Py)

@ Satisfies two nice properties—
e Data processing inequality:

Chinese Whisper
e

Figure: If X = Y — Z then I(X;Y) > I(X; Z)

e Chain rule:
I(X17X2; Y) = I(X]_; Y) —|— /(XQ; Y|X1)
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Bounding generalization error using I(W;S)

Theorem (Xu & Raginsky (2017))

Assume that {(w, X) is R-subgaussian for every w € W. Then the
following bound holds:

lgen(y, Buis)] < 1 2-1(5; W) (1)
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Bounding generalization error using I(W;S)

Theorem (Xu & Raginsky (2017))

Assume that {(w, X) is R-subgaussian for every w € W. Then the
following bound holds:

lgen(y, Buis)] < 1 2-1(5; W) (1)
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Bounding generalization error using I(W;S)

Theorem (Xu & Raginsky (2017))

Assume that {(w, X) is R-subgaussian for every w € W. Then the
following bound holds:

lgen(y, Buis)] < 1 2-1(5; W) (1)

@ Data-dependent bounds on generalization error
o If I(W;S) < ¢, then call Pys as (e, i) stable

@ Notion of stability different from traditional notions
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Proof sketch
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Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))
If f(X,Y) is o-subgaussian under Px x Py, then

IEf(X,Y) - Ef(X, V)| < \/2021(X; Y),

where (X, Y) ~ Pxy and (X, Y) ~ Px x Py.
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Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))
If f(X,Y) is o-subgaussian under Px x Py, then

IEf(X,Y) - Ef(X, V)| < \/2021(X; Y),

where (X, Y) ~ Pxy and (X, Y) ~ Px x Py.

o Recall I(X;Y) = KL(Pxy|[Px x Py)

o Follows directly by alternate characterization of KL(u||v) as
KL(p||v) = sup (/ Fdu — Iog/eFdV>
F
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How to use it: key insig
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How to use it: key insight

Figure: Update W; using some update rule to generate W; 1

@ Many learning algorithms are iterative
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How to use it: key insight

Figure: Update W; using some update rule to generate W; 1

@ Many learning algorithms are iterative

e Generate Wy, Wy, Wa, ..., W7, and output W = f(Wy, ..., Wr).
For example, W = Wy or W =15, W,
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How to use it: key insight

Figure: Update W; using some update rule to generate W; 1

@ Many learning algorithms are iterative

e Generate Wy, Wy, Wa, ..., W7, and output W = f(Wy, ..., Wr).
For example, W = Wy or W =15, W,

e Bound /(W; S) by controlling information at each iteration
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Noisy, iterative algorithms

e For t > 1, sample Z; C S and compute a direction F(W;_1, Z;) € RY
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@ Move in the direction after scaling by a stepsize 7;
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Noisy, iterative algorithms

e For t > 1, sample Z; C S and compute a direction F(W;_1, Z;) € RY
@ Move in the direction after scaling by a stepsize 7;

@ Perturb it by isotropic Gaussian noise &; ~ N(0,0214)
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Noisy, iterative algorithms

For t > 1, sample Z; C S and compute a direction F(W;_1, Z;) € RY
Move in the direction after scaling by a stepsize 7

Perturb it by isotropic Gaussian noise & ~ N(0,0214)

Overall update equation:

Wy = W1 — e F(We1, Ze) + &, Vt>1
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Noisy, iterative algorithms

For t > 1, sample Z; C S and compute a direction F(W;_1, Z;) € RY
Move in the direction after scaling by a stepsize 7

Perturb it by isotropic Gaussian noise & ~ N(0,0214)

Overall update equation:

Wy = W1 — e F(We1, Ze) + &, Vt>1

Run for T steps, output W = f(Wo, ..., Wr)
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Main assumptions

Update equation:

W = Wi1 — e F(We1, Zy) + &, Vt>1
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Update equation:

W = Wi1 — e F(We1, Zy) + &, Vt>1

e Assumption 1: ¢(w, Z) is R-subgaussian
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Main assumptions

Update equation:

W = Wi1 — e F(We1, Zy) + &, Vt>1

e Assumption 1: ¢(w, Z) is R-subgaussian

@ Assumption 2: Bounded updates; i.e.

sup ||F(w,z)|| <L

w,z
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Main assumptions

Update equation:
Wi = Wiy — neF(We—1, Ze) + ¢, Vt>1
e Assumption 1: ¢(w, Z) is R-subgaussian
@ Assumption 2: Bounded updates; i.e.

sup ||F(w,z)|| <L

w,z

@ Assumption 3: Sampling is done without looking at W;'s; i.e.,

P(Ze1 | 20, WO, ) = P(Z,14|20, S)
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Graphical model

Figure: Graphical model illustrating Markov properties among random variables in
the algorithm
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Main result
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Main result

Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

1S W) < z;’ 2 (1+25).
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Main result

Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

I(S; W) < i%’ ( 7)2UL22>.

@ Depends on T — longer you optimize, higher the risk of overfitting
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Implications for gen(, Py s)
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Implications for gen(, Py s)

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

lgen(i1, Pws)| <
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Implications for gen(, Py s)

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

lgen(i, Pws)| <

Corollary (High-probability bound)

Lete:ZZ_zlglog(l%—Zifj). Foranya >0and0< 3 <1, if

n > 8a—R22 (% + Iog(%)), we have

Psw (|Lu(W) — Ls(W)| > a) < 8, (2)

where the probability is with respect to S ~ p®" and W.

v
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Applications: SGLD

@ SGLD iterates are

Wit1 = Wy — e VU(We, Z4) + 0422
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Applications: SGLD

@ SGLD iterates are
Wi = We — e VU W, Zt) + 0+ Z:

e Common experimental practices for SGLD [Welling & Teh, 2011]:
@ the noise variance o2 = 7,
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Applications: SGLD

@ SGLD iterates are
Wi = We — e VU W, Zt) + 0+ Z:

e Common experimental practices for SGLD [Welling & Teh, 2011]:

@ the noise variance 02 = 7,
@ the algorithm is run for K epochs; i.e., T = nK,
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@ SGLD iterates are
Wi = We — e VU W, Zt) + 0+ Z:

e Common experimental practices for SGLD [Welling & Teh, 2011]:

@ the noise variance 02 = 7,
@ the algorithm is run for K epochs; i.e., T = nK,

© for a constant ¢ > 0, the stepsizes are 7, = ;.

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 18 / 35



Applications: SGLD

@ SGLD iterates are
Wi = We — e VU W, Zt) + 0+ Z:

e Common experimental practices for SGLD [Welling & Teh, 2011]:

@ the noise variance 02 = 7,
@ the algorithm is run for K epochs; i.e., T = nK,
c

© for a constant ¢ > 0, the stepsizes are 7, = ;.

@ Expectation bounds: Using 2;1 1 <log(T)+1

RL
’gen(MaPWLS)’ < \ﬁ
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Applications: SGLD

@ SGLD iterates are
Wi = We — e VU W, Zt) + 0+ Z:

e Common experimental practices for SGLD [Welling & Teh, 2011]:

@ the noise variance 02 = 7,
@ the algorithm is run for K epochs; i.e., T = nK,
© for a constant ¢ > 0, the stepsizes are 1; = %

@ Expectation bounds: Using 2;1 1 <log(T)+1

RL
]gen(u,IP’W|5)] < \ﬁ

-
Z \/clogT—i—c

@ Best known bounds by Mou et al. (2017) are O(1/n)—but our
bounds more general

S
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Application: Perturbed SGD

@ Noisy versions of SGD proposed to escape saddle points Ge et al.
(2015), Jin et al. (2017)
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Application: Perturbed SGD

@ Noisy versions of SGD proposed to escape saddle points Ge et al.
(2015), Jin et al. (2017)

@ Similar to SGLD, but different noise distribution:
We = Wee1 = (Vul(We—1, Ze) + &)

where &; ~ Unif(By) (unit ball in RY)
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Application: Perturbed SGD

@ Noisy versions of SGD proposed to escape saddle points Ge et al.
(2015), Jin et al. (2017)

@ Similar to SGLD, but different noise distribution:
We = Wee1 = (Vul(We—1, Ze) + &)

where &; ~ Unif(By) (unit ball in RY)

@ Our bound:
I(W;S) < Tdlog(1+ L)
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Application: Perturbed SGD

@ Noisy versions of SGD proposed to escape saddle points Ge et al.
(2015), Jin et al. (2017)

@ Similar to SGLD, but different noise distribution:
We = Wee1 = (Vul(We—1, Ze) + &)

where &; ~ Unif(By) (unit ball in RY)
@ Our bound:
I(W;S) < Tdlog(1+ L)

@ Bounds in expectation and high probability follow directly from this
bound
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Application: Noisy momentum

@ A modified version of stochastic gradient Hamiltonian Monte-Carlo,
Chen et al. (2014):

Ve = 7 Vic1 + eV l(We—1, Z2) + &4,
Wy = W1 — Vi1 — 0V l(Wi—1, Zy) + &,

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 20 /



Application: Noisy momentum

@ A modified version of stochastic gradient Hamiltonian Monte-Carlo,
Chen et al. (2014):

Ve = 7 Vic1 + eV l(We—1, Z2) + &4,
Wy = W1 — Vi1 — 0V l(Wi—1, Zy) + &,

@ Difference is addition of noise to the “velocity” term V;

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 20 /



Application: Noisy momentum

@ A modified version of stochastic gradient Hamiltonian Monte-Carlo,
Chen et al. (2014):

Ve = 7 Vic1 + eV l(We—1, Z2) + &4,
Wy = W1 — Vi1 — 0V l(Wi—1, Zy) + &,

@ Difference is addition of noise to the “velocity” term V;

o Treat (Vi, W;) as single parameter, to get

nf2L2>

T 2d
ISswy<y 5 log <1 +
t=1 ¢
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Application: Noisy momentum

@ A modified version of stochastic gradient Hamiltonian Monte-Carlo,
Chen et al. (2014):

Ve = 7 Vic1 + eV l(We—1, Z2) + &4,
Wy = W1 — Vi1 — 0V l(Wi—1, Zy) + &,

Difference is addition of noise to the “velocity” term V;

Treat (V;, W;) as single parameter, to get

.
2d n2212
I(S;W) < T log <1 n 2th? >
t=1

Same bound also holds for “noisy” Nesterov's accelerated gradient
descent method (1983)
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Proof sketch

Lots of Markov chains!
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Proof sketch

Lots of Markov chains!
o I(W;S) < (W ;Z) because
S =zl - wi-w

Figure: Data processing inequality
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Proof sketch

Lots of Markov chains!
o I(W;S) < (W ;Z) because
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Figure: Data processing inequality

@ lterative structure means
Wo—) Z1W1—>ZQW2—>23W3 —>WT
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Proof sketch

Lots of Markov chains!
o I(W;S) < (W ;Z) because
S =zl - wi-w

Figure: Data processing inequality

@ lterative structure means
Wo—) Z1W1—>ZQW2—>23W3 —>WT

@ Use Markovity with chain rule to get

;
NZ7WoT) =D 1(Ze; We|Weq)

t=1
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Proof sketch

Lots of Markov chains!
o I(W;S) < (W ;Z) because
S =zl - wi-w

Figure: Data processing inequality

@ lIterative structure means
W()—) Z1W1—>ZQW2—>23W3 —>WT

@ Use Markovity with chain rule to get

;
NZ7WoT) =D 1(Ze; We|Weq)

t=1

@ Bottom line: Bound “one step” information between W; and Z;
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Proof sketch

@ Recall
Wi = W1 — e F(We—1, Zt) + &;
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Proof sketch

@ Recall
Wi = W1 — e F(We—1, Zt) + &;

@ Using the entropy form of mutual information,

[(We; Ze|We—1) = h(We|W;_1) — h(We| W1, Z¢)
—_—— —_—
Variance(We|wi—1) < n2L2+40? =h(&:)
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Proof sketch

@ Recall
Wi = W1 — e F(We—1, Zt) + &;

@ Using the entropy form of mutual information,

I(Wt;Zt‘Wt—l) = h(Wt‘Wt—l) _h(Wt‘Wt—be)
——— ——
Variance(We|wi—1) < n2L2+40? =h(&:)

@ Gaussian distribution maximizes entropy for fixed variance, giving

d 212
[(Ws; Ze|Wer) < 5 log (1 + ’30_2>
t

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 22 /35



What's wrong with mutual information

@ Mutual information is great, but ...
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@ Mutual information is great, but ...

e If 1 is not absolutely continuous w.r.t. v, then KL(u||v) = 400
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What's wrong with mutual information

@ Mutual information is great, but ...
e If 1 is not absolutely continuous w.r.t. v, then KL(u||v) = 400

@ Many cases when mutual information /(W; S) shoots to infinity
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What's wrong with mutual information

Mutual information is great, but ...
If 1 is not absolutely continuous w.r.t. v, then KL(u||lv) = +o0

Many cases when mutual information /(W; S) shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD) :(
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What's wrong with mutual information

Mutual information is great, but ...

If 1 is not absolutely continuous w.r.t. v, then KL(u||v) = +o0
Many cases when mutual information /(W; S) shoots to infinity
Cannot use bounds for stochastic gradient descent (SGD) :(

“Noisy” algorithms are essential for using mutual information based
bounds

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 23 /35
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Wasserstein metric

~

AN

}
" v

@ Wasserstein distance given by

1/p
W, = inf E|X — Y|P
P(M7 V) <nyé?](,u,,ll) || || >

where IN(u, ) is the set of coupling such that marginals are p and v
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W, for p =1 and 2

o W also called “Earth Mover distance” or Kantorovich-Rubinstein
distance

Wi (p,v) = sup {/ f(dp — dl/)‘f continuous and 1 — Lipschitz}

' Topics in Optimal Transportation by Cedric Villani
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distance
Wi (p,v) = sup {/ f(dp — dl/)‘f continuous and 1 — Lipschitz}

e Lots of fascinating theory! for W,
e Optimal coupling in M(y,v) is a function T such that Ty, =v

' Topics in Optimal Transportation by Cedric Villani
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W, for p =1 and 2

o W also called “Earth Mover distance” or Kantorovich-Rubinstein
distance

Wi (p,v) = sup {/ f(dp — dl/)‘f continuous and 1 — Lipschitz}

e Lots of fascinating theory! for W,
e Optimal coupling in M(y,v) is a function T such that Ty, =v
e For ppand v in R,

W2(u, v / F1(x) — G1(x)2dx

where F and G are cdf's of y and v

'Topics in Optimal Transportation by Cedric Villani
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Wasserstein bounds on gen(y, Pyys)

@ Assumption: #(w,x) is Lipschitz in x for each fixed w; i.e.

6w, x1) = £(w, x2)| < Llxi = llp
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Wasserstein bounds on gen(y, Pyys)

@ Assumption: #(w,x) is Lipschitz in x for each fixed w; i.e.

6w, x1) = £(w, x2)| < Llxi = llp

Theorem (Tovar-Lopez & J., (2018))

If ¢{(w,-) is L-Lipschitz in || - |
bound:

p, generalization error satisfies the following

1

gen(p, Pyys) < —+ (/ WE(Ps, Ps,)dPuw (w )) ’
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Wasserstein bounds on gen(y, Pyys)

@ Assumption: #(w,x) is Lipschitz in x for each fixed w; i.e.

6w, x1) = £(w, x2)| < Llxi = llp

Theorem (Tovar-Lopez & J., (2018))

If ¢{(w,-) is L-Lipschitz in || - |
bound:

p, generalization error satisfies the following

1

gen(u,PW|s)<—( [ we@s. g )apuu))”

@ Measure average separation of Py from Ps (looks like a p-th
moment in the space of distributions)
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Wasserstein and KL

Definition

We say (u satisfies a T,(c) transportation inequality with constant ¢ > 0 if
for all v, we have
Wp(p,v) < v/ 2eKL(v|| 1)
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Wasserstein and KL

Definition

We say (u satisfies a T,(c) transportation inequality with constant ¢ > 0 if
for all v, we have
Wp(p,v) < v/ 2eKL(v|| 1)

e Example: standard normal satisfies T2(1) inequality

@ Transport inequalities used to show concentration phenomena
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Wasserstein and KL

Definition

We say (u satisfies a T,(c) transportation inequality with constant ¢ > 0 if

for all v, we have
Wp(p,v) < v/ 2eKL(v|| 1)

e Example: standard normal satisfies T2(1) inequality
@ Transport inequalities used to show concentration phenomena

@ For p € [1,2] this inequality tensorizes! This means p®" satisfies
inequality T,(cn?/P~1)
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Comparison to I(W;5)

@ In general, not comparable
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Comparison to I(W;5)

@ In general, not comparable
o If y satisfies a Ty(c)-transportation inequality, can directly compare

Theorem (Tovar-Lopez & J., (2018))

Suppose p = 2, then
Wa(Ps, Psjw) < \/2CKL(IP’5|WHPS)

and so
! 1
L </ W2(Ps, Ps, )dPW(w)> < L\/—I(IP’S Pw)
n2
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Comparison to I(W;5)

@ In general, not comparable

o If y satisfies a T,(c)-transportation inequality, can directly compare:

Theorem (Tovar-Lopez & J., (2018))
Suppose p = 2, then

Wa(Ps, Psjw) < \/2CKL(IF’5|WHP5)

1
L 2 [2¢
- </ W22(P5,P5|W)dpw(w)> < L _I(PS;PW)
n2 w w

@ In particular, for Gaussian data, Wasserstein bound strictly stronger

and so
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Comparison to I(W;5)

o If u satisfies a T1(c)-transportation inequality:
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Comparison to I(W;5)

o If u satisfies a T1(c)-transportation inequality:

Theorem (Tovar-Lopez & J., (2018))

Suppose p =1, then

Wi(Ps,Psjiw) < \/2C” - KL(Psjw||Ps)

and so

/ Wi(Ps, Psj)dPy (w) < L /(]P’s Pw)
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Coupling based bound on gen(y, Py s)

@ Recall generalization error expression:
gen(M’PWLS) = |E€N(§> V_V) - EEN(57 W)|7

where (S, W) ~ Ps x Py and (S, W) ~ Pys.
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Coupling based bound on gen(y, Py s)

@ Recall generalization error expression:
gen(M’PWLS) = |E€N(§> V_V) - ]EEN(57 W)|7

where (S, W) ~ Ps x Py and (S, W) ~ Pys.

o Key insight: Any coupling of (5, W,S, W) that has the “correct”
marginals on (S, W) and (S, W) leads to the same expected value
above

Varun Jog (UW-Madison) Information theory in learning May 8, 2018
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Proof sketch

o We have

gen(u, Pyys) = )/EN(S, w)dPsy — /KN(§, v'v)dIP’ng-V‘

~ [Eswswtn(S, W) - tu(3, W)|
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Proof sketch

@ We have
gen(u, Pyys) = )/EN(S, w)dPsy — /KN(§, v'v)dIP’ng-V‘
~ [Eswswtn(S, W) - tu(3, W)|

e Pick W = W, use Lipschitz property in x

@ Pick optimal joint distribution of Pg 5w to minimize bound
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Speculations: Forward and backward channels

@ Stability: How much does W change with S changes a little?
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Property of the forward channel Py s
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Speculations: Forward and backward channels

Stability: How much does W change with S changes a little?
Property of the forward channel Py s
Generalization: How much does S change when W changes a little?

Property of the backward channel Py

Pre-process data to deliberately make backward channel noisy (data
augmentation, smoothing, etc.)
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Speculations: Relation to rate distortion theory

@ Branch of information theory dealing with lossy data compression

=

min Ed(X,Y) subject to I(X;Y) < R

Y|X
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constraint I(W;S) <e

Varun Jog (UW-Madison) Information theory in learning May 8, 2018 33 /35



Speculations: Relation to rate distortion theory
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=

min Ed(X,Y) subject to I(X;Y) < R

Y|X

@ Minimize distortion given by ¢y(W, S) subject to mutual information
constraint I(W;S) <e

e Existing theory applies to d(x",y") = 3. d(x;, yi); however, we have

Uw,x") = ZK(W,X,-)
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Speculations: Relation to rate distortion theory

@ Branch of information theory dealing with lossy data compression

=

min Ed(X,Y) subject to I(X;Y) < R

Y|X

@ Minimize distortion given by ¢y(W, S) subject to mutual information
constraint I(W;S) <e

e Existing theory applies to d(x",y") = 3. d(x;, yi); however, we have
Uw,x") = ZK(W,X,-)

@ Essentially same problem, but connections still unclear
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Open problems

o Evaluating Wasserstein bounds for specific cases, in particular for SGD
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Open problems

o Evaluating Wasserstein bounds for specific cases, in particular for SGD
@ Information theoretic lower bounds on generalization error?

@ Wasserstein bounds rely on new notion of “information”
/W(X, Y) = W(PX X Py,ny)

@ Chain rule? Data processing?
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Thank you!
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