Information theoretic perspectives on learning algorithms

Varun Jog

University of Wisconsin - Madison
Departments of ECE and Mathematics

Shannon Channel Hangout!
May 8, 2018

Jointly with Adrian Tovar-Lopez (Math), Ankit Pensia (CS), Po-Ling Loh (Stats)
Curve fitting

![Graph showing points in \mathbb{R}^2](image)

Figure: Given N points in \mathbb{R}^2, fit a curve
Curve fitting

Figure: Given N points in \mathbb{R}^2, fit a curve

- **Forward problem**: From dataset to curve
Finding the right “fit”

Left is fit, right is overfit
Too wiggly
Not stable
Finding the right “fit”

- Left is fit, right is overfit
Finding the right “fit”

- Left is **fit**, right is **overfit**
- Too **wiggly**
Finding the right “fit”

- Left is **fit**, right is **overfit**
- Too **wiggly**
- Not **stable**
Guessing points from curve

Figure: Given curve, find N points

Backward problem: From curve to dataset

Backward problem easier for overfitted curve!

Curve contains more information about dataset
Guessing points from curve

Figure: Given curve, find N points
Guessing points from curve

Figure: Given curve, find \(N \) points

- **Backward problem**: From curve to dataset
Guessing points from curve

Figure: Given curve, find N points

- **Backward problem**: From curve to dataset
- Backward problem easier for overfitted curve!
Guessing points from curve

- **Backward problem**: From curve to dataset
- Backward problem easier for overfitted curve!
- Curve contains *more information* about dataset

Figure: Given curve, find N points
Explore information and overfitting connection (Xu & Raginsky, 2017)
Explore information and overfitting connection (Xu & Raginsky, 2017)

Analyze generalization error in a large and general class of learning algorithms (Pensia, J., Loh, 2018)
This talk

- Explore information and overfitting connection (Xu & Raginsky, 2017)
- Analyze generalization error in a large and general class of learning algorithms (Pensia, J., Loh, 2018)
- Measuring information via optimal transport theory (Tovar-Lopez, J., 2018)
This talk

- Explore information and overfitting connection (Xu & Raginsky, 2017)
- Analyze generalization error in a large and general class of learning algorithms (Pensia, J., Loh, 2018)
- Measuring information via optimal transport theory (Tovar-Lopez, J., 2018)
- Speculations, open problems, etc.
Learning algorithm as a channel

- **Input**: Dataset S with N i.i.d. samples $(X_1, X_2, \ldots, X_n) \sim \mu^\otimes n$
- **Output**: W
Learning algorithm as a channel

- **Input:** Dataset S with N i.i.d. samples $(X_1, X_2, \ldots, X_n) \sim \mu \otimes^n$
- **Output:** W
- Algorithm equivalent to designing $\mathbb{P}_{W \mid S}$. Very different from channel coding!
Goal of $P_{W|S}$

- **Loss function:** $\ell : \mathcal{W} \times \mathcal{X} \rightarrow \mathbb{R}$

Can’t always get what we want...
Minimize empirical loss instead

$$\ell_N(w, S) = \frac{1}{N} \sum_{i=1}^{N} \ell(w, X_i)$$
Goal of $\mathbb{P}_W|S$

- **Loss function:** $\ell : \mathcal{W} \times \mathcal{X} \to \mathbb{R}$
- Best choice is w^*

$$w^* = \arg\min_{w \in \mathcal{W}} \mathbb{E}_{X \sim \mu} [\ell(w, X)]$$

Can't always get what we want... Minimize empirical loss instead

$$\ell_N(w, S) = \frac{1}{N} \sum_{i=1}^{N} \ell(w, X_i)$$
Goal of $\mathbb{P}_{W|S}$

- **Loss function**: $\ell : \mathcal{W} \times \mathcal{X} \to \mathbb{R}$
- Best choice is w^*

$$w^* = \arg\min_{w \in \mathcal{W}} \mathbb{E}_{X \sim \mu} [\ell(w, X)]$$

- Can’t always get what we want...
Goal of $\mathbb{P}_{W|S}$

- **Loss function:** $\ell : \mathcal{W} \times \mathcal{X} \rightarrow \mathbb{R}$
- Best choice is w^*

$$w^* = \arg\min_{w \in \mathcal{W}} \mathbb{E}_{X \sim \mu}[\ell(w, X)]$$

- Can’t always get what we want...
- Minimize empirical loss instead

$$\ell_N(w, S) = \frac{1}{N} \sum_{i=1}^{N} \ell(w, X_i)$$
Define expected loss $= \mathbb{E}_{X \sim \mu} \ell(W, X)$ (test error)

Expected empirical loss $= \mathbb{E}_{P_{WS}} \ell_{N}(W, S)$ (train error)

Loss has two parts:
- Expected loss
- Expected empirical loss
 - $(\text{test error} - \text{train error}) + \text{train error}$

Generalization error $= \text{test error} - \text{train error}$

Ideally, we want both small. Often, both are analyzed separately.
Generalization error

- Define expected loss $= \mathbb{E}_{x \sim \mu, p_{W|S} p_S} \ell(W, X)$ (test error)
- Expected empirical loss $= \mathbb{E}_{p_{WS}} \ell_N(W, S)$ (train error)
Generalization error

- Define expected loss $= \mathbb{E}_{X \sim \mu} \ell(W, X)$ (test error)
- Expected empirical loss $= \mathbb{E}_{P_W S} \ell_N(W, S)$ (train error)
- Loss has two parts:

 Expected loss

 $= (\text{Expected loss} - \text{Expected empirical loss}) + \text{Expected empirical loss}$

 $= (\text{test error} - \text{train error}) + \text{train error}$
Generalization error

- Define expected loss $= \mathbb{E}_{X \sim \mu} \mathbb{P}_{W \mid S} \mathbb{P}_S \ell(W, X)$ (test error)
- Expected empirical loss $= \mathbb{E}_{P_{WS}} \ell_N(W, S)$ (train error)
- Loss has two parts:

 Expected loss

 $= (\text{Expected loss} - \text{Expected empirical loss}) + \text{Expected empirical loss}$

 $= (\text{test error} - \text{train error}) + \text{train error}$

- **Generalization error** $= \text{test error} - \text{train error}$

$$\text{gen}(\mu, \mathbb{P}_W \mid S) = \mathbb{E}_{P_S \times P_W} \ell_N(W, S) - \mathbb{E}_{P_{WS}} \ell_N(W, S)$$
Define expected loss $= \mathbb{E}_{x \sim \mu} \ell(W, X)$ (test error)

Expected empirical loss $= \mathbb{E}_{P_{WS}} \ell_N(W, S)$ (train error)

Loss has two parts:

Expected loss

$= (\text{Expected loss} - \text{Expected empirical loss}) + \text{Expected empirical loss}$

$= (\text{test error} - \text{train error}) + \text{train error}$

Generalization error $= \text{test error} - \text{train error}$

$$\text{gen}(\mu, P_{W|S}) = \mathbb{E}_{P_S \times P_W} \ell_N(W, S) - \mathbb{E}_{P_{WS}} \ell_N(W, S)$$

Ideally, we want both small. Often, both are analyzed separately.
Basics of mutual information

- Mutual information $I(X; Y)$ precisely quantifies information between $(X, Y) \sim P_{XY}$:

$$I(X; Y) = KL(P_{XY} || P_X \times P_Y)$$
Basics of mutual information

- Mutual information $I(X; Y)$ precisely quantifies information between $(X, Y) \sim P_{XY}$:

 $$I(X; Y) = KL(P_{XY} \parallel P_X \times P_Y)$$

- Satisfies two nice properties—
Basics of mutual information

- Mutual information $I(X; Y)$ precisely quantifies information between $(X, Y) \sim \mathbb{P}_{XY}$:

 $$I(X; Y) = KL(\mathbb{P}_{XY} \| \mathbb{P}_X \times \mathbb{P}_Y)$$

- Satisfies two nice properties—
 - Data processing inequality:

 ![Figure: If $X \rightarrow Y \rightarrow Z$ then $I(X; Y) \geq I(X; Z)$](image)

 Figure: If $X \rightarrow Y \rightarrow Z$ then $I(X; Y) \geq I(X; Z)$
Basics of mutual information

- Mutual information $I(X; Y)$ precisely quantifies information between $(X, Y) \sim P_{XY}$:

 $$I(X; Y) = KL(P_{XY} || P_X \times P_Y)$$

- Satisfies two nice properties—
 - Data processing inequality:
 - Chain rule:

![Chinese Whisper](image)

Figure: If $X \rightarrow Y \rightarrow Z$ then $I(X; Y) \geq I(X; Z)$

$$I(X_1, X_2; Y) = I(X_1; Y) + I(X_2; Y | X_1)$$
Bounding generalization error using $I(W; S)$

Theorem (Xu & Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$|\text{gen}(\mu, P_{W|S})| \leq \sqrt{\frac{2R^2}{n}} I(S; W).$$

(1)
Bounding generalization error using $I(W; S)$

Theorem (Xu & Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$|\text{gen}(\mu, \mathbb{P}_W|S)| \leq \sqrt{\frac{2R^2}{n} I(S; W)}.$$ \hfill (1)

- Data-dependent bounds on generalization error
Theorem (Xu & Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$ |\text{gen}(\mu, \mathbb{P}_{W|S})| \leq \sqrt{\frac{2R^2}{n}} I(S; W). $$ (1)

- Data-dependent bounds on generalization error
- If $I(W; S) \leq \epsilon$, then call $\mathbb{P}_{W|S}$ as ϵ-stable
Bounding generalization error using $I(W; S)$

Theorem (Xu & Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$|\text{gen}(\mu, \mathbb{P}_{W|S})| \leq \sqrt{\frac{2R^2}{n}} I(S; W).$$ \hspace{1cm} (1)

- Data-dependent bounds on generalization error
- If $I(W; S) \leq \epsilon$, then call $\mathbb{P}_{W|S}$ as (ϵ, μ) stable
- Notion of stability different from traditional notions
Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))

If \(f(X, Y) \) is \(\sigma \)-subgaussian under \(P_{X \times Y} \), then

\[
|E f(X, Y) - E f(\bar{X}, \bar{Y})| \leq \sqrt{2 \sigma^2 I(X; Y)}
\]

where \((X, Y) \sim P_{X \times Y}\) and \((\bar{X}, \bar{Y}) \sim P_X \times P_Y\).

Recall

\(I(X; Y) = KL(P_{X \times Y} || P_X \times P_Y) \)

Follows directly by alternate characterization of \(KL(\mu || \nu) \) as

\[
KL(\mu || \nu) = \sup F \left(\int F d\mu - \log \int e^F d\nu \right)
\]
Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))

If $f(X, Y)$ is σ-subgaussian under $\mathbb{P}_X \times \mathbb{P}_Y$, then

$$|\mathbb{E}f(X, Y) - \mathbb{E}f(\tilde{X}, \tilde{Y})| \leq \sqrt{2\sigma^2 I(X; Y)},$$

where $(X, Y) \sim \mathbb{P}_{XY}$ and $(\tilde{X}, \tilde{Y}) \sim \mathbb{P}_X \times \mathbb{P}_Y$.

Recall $I(X; Y) = \text{KL}(\mathbb{P}_{XY} || \mathbb{P}_X \times \mathbb{P}_Y)$ follows directly by alternate characterization of $\text{KL}(\mu || \nu)$ as $\text{KL}(\mu || \nu) = \sup_F \mathbb{E}F - \log \mathbb{E}e^F$.

Varun Jog (UW-Madison)
Information theory in learning
May 8, 2018
11 / 35
Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))

If $f(X, Y)$ is σ-subgaussian under $\mathbb{P}_X \times \mathbb{P}_Y$, then

$$|\mathbb{E}f(X, Y) - \mathbb{E}f(\tilde{X}, \tilde{Y})| \leq \sqrt{2\sigma^2 I(X; Y)},$$

where $(X, Y) \sim \mathbb{P}_{XY}$ and $(\tilde{X}, \tilde{Y}) \sim \mathbb{P}_X \times \mathbb{P}_Y$.

- Recall $I(X; Y) = KL(\mathbb{P}_{XY} \| \mathbb{P}_X \times \mathbb{P}_Y)$
Proof sketch

Lemma (Key Lemma in Raginsky & Xu (2017))

If \(f(X, Y) \) is \(\sigma \)-subgaussian under \(\mathbb{P}_X \times \mathbb{P}_Y \), then

\[
|\mathbb{E}f(X, Y) - \mathbb{E}f(\tilde{X}, \tilde{Y})| \leq \sqrt{2\sigma^2 I(X; Y)},
\]

where \((X, Y) \sim \mathbb{P}_{XY}\) and \((\tilde{X}, \tilde{Y}) \sim \mathbb{P}_X \times \mathbb{P}_Y\).

- Recall \(I(X; Y) = KL(\mathbb{P}_{XY}||\mathbb{P}_X \times \mathbb{P}_Y) \)
- Follows directly by alternate characterization of \(KL(\mu||\nu) \) as

\[
KL(\mu||\nu) = \sup_{F} \left(\int Fd\mu - \log \int e^{F} d\nu \right)
\]
How to use it: key insight

Many learning algorithms are iterative.

Generate $W_0, W_1, W_2, ..., W_T$, and output $W = f(W_0, ..., W_T)$.

For example, $W = W_T$ or $W = \frac{1}{T} \sum_i W_i$.

Bound $I(W; S)$ by controlling information at each iteration.
How to use it: key insight

Many learning algorithms are iterative

Figure: Update W_t using some update rule to generate W_{t+1}
How to use it: key insight

Many learning algorithms are **iterative**

- Generate $W_0, W_1, W_2, \ldots, W_T$, and output $W = f(W_0, \ldots, W_T)$. For example, $W = W_T$ or $W = \frac{1}{T} \sum_i W_i$.

Figure: Update W_t using some update rule to generate W_{t+1}
How to use it: key insight

Many learning algorithms are iterative

Generate $W_0, W_1, W_2, \ldots, W_T$, and output $W = f(W_0, \ldots, W_T)$. For example, $W = W_T$ or $W = \frac{1}{T} \sum_i W_i$

Bound $I(W; S)$ by controlling information at each iteration

Figure: Update W_t using some update rule to generate W_{t+1}
Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_t \subseteq S$ and compute a direction $F(W_{t-1}, Z_t) \in \mathbb{R}^d$
Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_t \subseteq S$ and compute a direction $F(W_{t-1}, Z_t) \in \mathbb{R}^d$
- Move in the direction after scaling by a stepsize η_t
For $t \geq 1$, sample $Z_t \subseteq S$ and compute a direction $F(W_{t-1}, Z_t) \in \mathbb{R}^d$

Move in the direction after scaling by a stepsize η_t

Perturb it by isotropic Gaussian noise $\xi_t \sim N(0, \sigma_t^2 I_d)$
Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_t \subseteq S$ and compute a direction $F(W_{t-1}, Z_t) \in \mathbb{R}^d$
- Move in the direction after scaling by a stepsize η_t
- Perturb it by isotropic Gaussian noise $\xi_t \sim N(0, \sigma_t^2 I_d)$
- Overall update equation:

 $$W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t, \quad \forall t \geq 1$$
For $t \geq 1$, sample $Z_t \subseteq S$ and compute a direction $F(W_{t-1}, Z_t) \in \mathbb{R}^d$

- Move in the direction after scaling by a stepsize η_t
- Perturb it by isotropic Gaussian noise $\xi_t \sim N(0, \sigma_t^2 I_d)$
- Overall update equation:

$$W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t, \quad \forall t \geq 1$$

- Run for T steps, output $W = f(W_0, \ldots, W_T)$
Main assumptions

Update equation:

\[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t, \quad \forall t \geq 1 \]
Update equation:

\[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t, \quad \forall t \geq 1 \]

- **Assumption 1:** \(\ell(w, Z) \) is \(R \)-subgaussian
Main assumptions

Update equation:

\[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t, \quad \forall t \geq 1 \]

- Assumption 1: \(\ell(w, Z) \) is \(R \)-subgaussian
- Assumption 2: Bounded updates; i.e.

\[
\sup_{w,z} \| F(w, z) \| \leq L
\]
Main assumptions

Update equation:

\[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t, \quad \forall t \geq 1 \]

- **Assumption 1:** \(\ell(w, Z) \) is \(R \)-subgaussian
- **Assumption 2:** Bounded updates; i.e.
 \[\sup_{w,z} \| F(w, z) \| \leq L \]
- **Assumption 3:** Sampling is done without looking at \(W_t \)'s; i.e.,
 \[\mathbb{P}(Z_{t+1} \mid Z^{(t)}, W^{(t)}, S) = \mathbb{P}(Z_{t+1} \mid Z^{(t)}, S) \]
Figure: Graphical model illustrating Markov properties among random variables in the algorithm
Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

\[I(S; W) \leq T \sum_{t=1}^{T} d^2 \log \left(1 + \eta^2 t^L d^2 \sigma^2 t \right). \]

Depends on \(T \) — longer you optimize, higher the risk of overfitting.
Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

\[I(S; W) \leq \sum_{t=1}^{T} \frac{d}{2} \log \left(1 + \frac{\eta_t^2 L^2}{d \sigma_t^2} \right). \]
Main result

Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

$$I(S; W) \leq \sum_{t=1}^{T} \frac{d}{2} \log \left(1 + \frac{\eta_t^2 L^2}{d\sigma_t^2}\right).$$

- Depends on T — longer you optimize, higher the risk of overfitting
Implications for \(\text{gen}(\mu, \mathbb{P}_W|s) \)

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

\[
| \text{gen}(\mu, \mathbb{P}_W|s) | \leq \mathbb{P} \sum_{t=1}^{T} \eta^2 t L^2 \sigma^2 t.
\]

Corollary (High-probability bound)

Let \(\epsilon = \sum_{t=1}^{T} d^2 \log \left(1 + \eta^2 t L^2 d \sigma^2 t \right) \). For any \(\alpha > 0 \) and \(0 < \beta \leq 1 \), if

\[
n > 8 R^2 \alpha^2 (\epsilon \beta + \log(2 \beta))
\]

we have

\[
\mathbb{P}_{S, W}(\| L\mu(W) - Ls(W) \| > \alpha) \leq \beta,
\]

where the probability is with respect to \(S \sim \mu \otimes n \) and \(W \).
Implications for $\text{gen}(\mu, P_W | S)$

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

$$|\text{gen}(\mu, P_W | S)| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^{T} \eta_t^2 L^2 \frac{\sigma_t^2}{\sigma_t^2}}.$$
Implications for \(\text{gen}(\mu, P_W|S) \)

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

\[
|\text{gen}(\mu, P_W|S)| \leq \sqrt{\frac{R^2}{n} \sum_{t=1}^{T} \eta_t^2 L^2 \sigma_t^2}.
\]

Corollary (High-probability bound)

Let \(\epsilon = \sum_{t=1}^{T} \frac{d}{2} \log \left(1 + \frac{\eta_t^2 L^2}{d\sigma_t^2}\right) \). For any \(\alpha > 0 \) and \(0 < \beta \leq 1 \), if

\[
n > \frac{8R^2}{\alpha^2} \left(\frac{\epsilon}{\beta} + \log \left(\frac{2}{\beta} \right) \right),
\]

we have

\[
\mathbb{P}_{S,W} (|L_\mu(W) - L_S(W)| > \alpha) \leq \beta,
\]

where the probability is with respect to \(S \sim \mu \otimes^n \) and \(W \).
SGLD iterates are

\[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]
Applications: SGLD

- SGLD iterates are
 \[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]

- Common experimental practices for SGLD [Welling & Teh, 2011]:
Applications: SGLD

- SGLD iterates are

\[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]

- Common experimental practices for SGLD [Welling & Teh, 2011]:
 1. the noise variance \(\sigma^2_t = \eta_t \),
SGLD iterates are

\[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]

Common experimental practices for SGLD [Welling & Teh, 2011]:

1. the noise variance \(\sigma^2_t = \eta_t \),
2. the algorithm is run for \(K \) epochs; i.e., \(T = nK \),
Applications: SGLD

- SGLD iterates are

\[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]

- Common experimental practices for SGLD [Welling & Teh, 2011]:
 1. the noise variance \(\sigma^2_t = \eta_t \)
 2. the algorithm is run for \(K \) epochs; i.e., \(T = nK \)
 3. for a constant \(c > 0 \), the stepsizes are \(\eta_t = \frac{c}{t} \).
Applications: SGLD

- SGLD iterates are

\[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]

- Common experimental practices for SGLD [Welling & Teh, 2011]:
 1. the noise variance \(\sigma^2_t = \eta_t \),
 2. the algorithm is run for \(K \) epochs; i.e., \(T = nK \),
 3. for a constant \(c > 0 \), the stepsizes are \(\eta_t = \frac{c}{t} \).

- Expectation bounds: Using \(\sum_{t=1}^{T} \frac{1}{t} \leq \log(T) + 1 \)

\[|\text{gen}(\mu, \mathbb{P}_W|s)| \leq \frac{RL}{\sqrt{n}} \sqrt{\sum_{t=1}^{T} \eta_t} \leq \frac{RL}{\sqrt{n}} \sqrt{c \log T + c} \]
Applications: SGLD

- SGLD iterates are
 \[W_{t+1} = W_t - \eta_t \nabla \ell(W_t, Z_t) + \sigma_t Z_t \]

- Common experimental practices for SGLD [Welling & Teh, 2011]:
 1. the noise variance \(\sigma_t^2 = \eta_t \),
 2. the algorithm is run for \(K \) epochs; i.e., \(T = nK \),
 3. for a constant \(c > 0 \), the stepsizes are \(\eta_t = \frac{c}{t} \).

- **Expectation bounds:** Using \(\sum_{t=1}^T \frac{1}{t} \leq \log(T) + 1 \)
 \[
 |\text{gen}(\mu, \mathbb{P}_W|S)| \leq \frac{RL}{\sqrt{n}} \sqrt{\sum_{t=1}^T \eta_t} \leq \frac{RL}{\sqrt{n}} \sqrt{c \log T + c}
 \]

- Best known bounds by Mou et al. (2017) are \(O(1/n) \)—but our bounds more general
Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)

Similar to SGLD, but different noise distribution:

\[W_t = W_{t-1} - \eta (\nabla w \ell (W_{t-1}, Z_t) + \xi_t), \]

where \(\xi_t \sim \text{Unif}(B_d) \) (unit ball in \(\mathbb{R}^d \))

Our bound:

\[I(W; S) \leq T_d \log(1 + L) \]

Bounds in expectation and high probability follow directly from this bound.
Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)

Similar to SGLD, but different noise distribution:

$$W_t = W_{t-1} - \eta \left(\nabla_w \ell(W_{t-1}, Z_t) + \xi_t \right),$$

where $\xi_t \sim \text{Unif}(B_d)$ (unit ball in \mathbb{R}^d)
Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)

Similar to SGLD, but different noise distribution:

\[W_t = W_{t-1} - \eta (\nabla_w \ell(W_{t-1}, Z_t) + \xi_t), \]

where \(\xi_t \sim \text{Unif}(B_d) \) (unit ball in \(\mathbb{R}^d \))

Our bound:

\[I(W; S) \leq Td \log(1 + L) \]
Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)

Similar to SGLD, but different noise distribution:

\[W_t = W_{t-1} - \eta \left(\nabla_w \ell(W_{t-1}, Z_t) + \xi_t \right), \]

where \(\xi_t \sim \text{Unif}(B_d) \) (unit ball in \(\mathbb{R}^d \))

Our bound:

\[I(W; S) \leq Td \log(1 + L) \]

Bounds in expectation and high probability follow directly from this bound
Application: Noisy momentum

- A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

\[
V_t = \gamma_t V_{t-1} + \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi'_t,
\]
\[
W_t = W_{t-1} - \gamma_t V_{t-1} - \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi''_t,
\]
A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

\[V_t = \gamma_t V_{t-1} + \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi'_t, \]
\[W_t = W_{t-1} - \gamma_t V_{t-1} - \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi''_t, \]

Difference is addition of noise to the “velocity” term \(V_t \)
A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

\[V_t = \gamma_t V_{t-1} + \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi'_t, \]
\[W_t = W_{t-1} - \gamma_t V_{t-1} - \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi''_t, \]

- Difference is addition of noise to the “velocity” term \(V_t \)
- Treat \((V_t, W_t)\) as single parameter, to get

\[
I(S; W) \leq \sum_{t=1}^{T} \frac{2d}{2} \log \left(1 + \frac{\eta_t^2 2L^2}{2d\sigma_t^2} \right)
\]
Application: Noisy momentum

- A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

\[
V_t = \gamma_t V_{t-1} + \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi_t', \\
W_t = W_{t-1} - \gamma_t V_{t-1} - \eta_t \nabla_w \ell(W_{t-1}, Z_t) + \xi''_t,
\]

- Difference is addition of noise to the “velocity” term \(V_t \)
- Treat \((V_t, W_t)\) as single parameter, to get

\[
I(S; W) \leq \sum_{t=1}^{T} \frac{2d}{2} \log \left(1 + \frac{\eta_t^2 2L^2}{2d\sigma_t^2} \right)
\]

- Same bound also holds for “noisy” Nesterov’s accelerated gradient descent method (1983)
Proof sketch

Lots of Markov chains!
Proof sketch

Lots of Markov chains!

- \(I(W; S) \leq I(W_0^T; Z_1^T) \) because

\[
S \rightarrow Z_1^T \rightarrow W_0^T \rightarrow W
\]

Figure: Data processing inequality
Proof sketch

Lots of Markov chains!

- \(I(W; S) \leq I(W_0^T; Z_1^T) \) because

 \[
 S \rightarrow Z_1^T \rightarrow W_0^T \rightarrow W
 \]

 Figure: Data processing inequality

- Iterative structure means

 \[
 W_0 \rightarrow Z_1 \ W_1 \rightarrow Z_2 \ W_2 \rightarrow Z_3 \ W_3 \cdots \rightarrow W_T
 \]
Proof sketch

Lots of Markov chains!

- $I(W; S) \leq I(W_0^T; Z_1^T)$ because

 $S \rightarrow Z_1^T \rightarrow W_0^T \rightarrow W$

 Figure: Data processing inequality

- Iterative structure means

 $W_0 \rightarrow Z_1 W_1 \rightarrow Z_2 W_2 \rightarrow Z_3 W_3 \cdots \rightarrow W_T$

- Use Markovity with chain rule to get

 $$I(Z_1^T; W_0^T) = \sum_{t=1}^{T} I(Z_t; W_t|W_{t-1})$$
Proof sketch

Lots of Markov chains!

- $I(W; S) \leq I(W_0^T; Z_1^T)$ because

\[S \rightarrow Z_1^T \rightarrow W_0^T \rightarrow W \]

Figure: Data processing inequality

- Iterative structure means

\[W_0 \rightarrow Z_1 \ W_1 \rightarrow Z_2 \ W_2 \rightarrow Z_3 \ W_3 \cdots \rightarrow W_T \]

- Use Markovity with chain rule to get

\[I(Z_1^T; W_0^T) = \sum_{t=1}^{T} I(Z_t; W_t | W_{t-1}) \]

- **Bottom line:** Bound “one step” information between W_t and Z_t
Proof sketch

- Recall

\[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t \]
Proof sketch

- Recall
 \[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t \]

- Using the entropy form of mutual information,
 \[
 I(W_t; Z_t \mid W_{t-1}) = \underbrace{h(W_t \mid W_{t-1})}_{\text{Variance}(W_t \mid w_{t-1}) \leq \eta_t^2 L^2 + \sigma_t^2} - \underbrace{h(W_t \mid W_{t-1}, Z_t)}_{= h(\xi_t)}
 \]

Gaussian distribution maximizes entropy for fixed variance, giving
\[
I(W_t; Z_t \mid W_{t-1}) \leq d^2 \log \left(1 + \eta_t^2 L^2 + \sigma_t^2\right)
\]
Proof sketch

- Recall

\[W_t = W_{t-1} - \eta_t F(W_{t-1}, Z_t) + \xi_t \]

- Using the entropy form of mutual information,

\[
I(W_t; Z_t \mid W_{t-1}) = h(W_t \mid W_{t-1}) - h(W_t \mid W_{t-1}, Z_t)
\]

Variance \(W_t \mid w_{t-1}\) \(\leq \eta_t^2 L^2 + \sigma_t^2\)

- Gaussian distribution maximizes entropy for fixed variance, giving

\[
I(W_t; Z_t \mid W_{t-1}) \leq \frac{d}{2} \log \left(1 + \frac{\eta_t^2 L^2}{d \sigma_t^2}\right)
\]
Mutual information is great, but ...

If μ is not absolutely continuous w.r.t. ν, then $\text{KL}(\mu || \nu) = +\infty$

Many cases when mutual information $I(W; S)$ shoots to infinity

Cannot use bounds for stochastic gradient descent (SGD):(

"Noisy" algorithms are essential for using mutual information based bounds
What’s wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $KL(\mu||\nu) = +\infty$
What’s wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $KL(\mu||\nu) = +\infty$
- Many cases when mutual information $I(W;S)$ shoots to infinity
What’s wrong with mutual information

- Mutual information is great, but ...
- If \(\mu \) is not absolutely continuous w.r.t. \(\nu \), then \(KL(\mu||\nu) = +\infty \)
- Many cases when mutual information \(I(W; S) \) shoots to infinity
- Cannot use bounds for stochastic gradient descent (SGD) :(
What’s wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $KL(\mu||\nu) = +\infty$
- Many cases when mutual information $I(W; S)$ shoots to infinity
- Cannot use bounds for stochastic gradient descent (SGD) :
- “Noisy” algorithms are essential for using mutual information based bounds
Wasserstein metric

The Wasserstein distance given by

$$W_p(\mu, \nu) = \left(\inf_{P: X \sim \mu, Y \sim \nu} \mathbb{E}_{(X,Y) \sim P} \|X - Y\|^p \right)^{1/p}$$

where $\Pi(\mu, \nu)$ is the set of coupling such that marginals are μ and ν.

Varun Jog (UW-Madison)
Wasserstein metric

The Wasserstein distance given by

\[W_p(\mu, \nu) = \left(\inf_{P_{XY} \in \Pi(\mu, \nu)} \mathbb{E} \|X - Y\|^p \right)^{1/p} \]

where \(\Pi(\mu, \nu) \) is the set of coupling such that marginals are \(\mu \) and \(\nu \).
W_p for $p = 1$ and 2

- W_1 also called “Earth Mover distance” or Kantorovich-Rubinstein distance

$$W_1(\mu, \nu) = \sup \left\{ \int f(d\mu - d\nu) \bigg| f \text{ continuous and } 1 - \text{Lipschitz} \right\}$$

\(^1\)Topics in Optimal Transportation by Cedric Villani
W_p for $p = 1$ and 2

- W_1 also called "Earth Mover distance" or Kantorovich-Rubinstein distance

\[
W_1(\mu, \nu) = \sup \left\{ \int f(d\mu - d\nu) \mid f \text{ continuous and } 1 - \text{Lipschitz} \right\}
\]

- Lots of fascinating theory\(^1\) for W_2

\(^1\)Topics in Optimal Transportation by Cedric Villani
W_p for $p = 1$ and 2

- W_1 also called “Earth Mover distance” or Kantorovich-Rubinstein distance

$$W_1(\mu, \nu) = \sup \left\{ \int f(d\mu - d\nu) \middle| f \text{ continuous and } 1-Lipschitz \right\}$$

- Lots of fascinating theory\(^1\) for W_2
- Optimal coupling in $\Pi(\mu, \nu)$ is a function T such that $T\#\mu = \nu$

\(^1\)Topics in Optimal Transportation by Cedric Villani
W_p for $p = 1$ and 2

- W_1 also called "Earth Mover distance" or Kantorovich-Rubinstein distance

$$W_1(\mu, \nu) = \sup \left\{ \int f(d\mu - d\nu) \left| f \text { continuous and } 1-Lipschitz \right. \right\}$$

- Lots of fascinating theory\(^1\) for W_2
- Optimal coupling in $\Pi(\mu, \nu)$ is a function T such that $T\#\mu = \nu$
- For μ and ν in \mathbb{R},

$$W_2^2(\mu, \nu) = \int |F^{-1}(x) - G^{-1}(x)|^2 dx$$

where F and G are cdf’s of μ and ν

\(^1\)Topics in Optimal Transportation by Cedric Villani
Wasserstein bounds on \(\text{gen}(\mu, \mathbb{P}_W|S) \)

- **Assumption:** \(\ell(w, x) \) is Lipschitz in \(x \) for each fixed \(w \); i.e.

 \[
 |\ell(w, x_1) - \ell(w, x_2)| \leq L \|x_1 - x_2\|_p
 \]
Wasserstein bounds on $\text{gen}(\mu, \mathbb{P}_W S)$

- **Assumption:** $\ell(w, x)$ is Lipschitz in x for each fixed w; i.e.
 $$|\ell(w, x_1) - \ell(w, x_2)| \leq L\|x_1 - x_2\|_p$$

Theorem (Tovar-Lopez & J., (2018))

If $\ell(w, \cdot)$ is L-Lipschitz in $\|\cdot\|_p$, generalization error satisfies the following bound:

$$\text{gen}(\mu, \mathbb{P}_W S) \leq \frac{L}{n^{\frac{1}{p}}} \left(\int_W W_p^p(\mathbb{P}_S, \mathbb{P}_S|w) d\mathbb{P}_W(w) \right)^{\frac{1}{p}}$$
Wasserstein bounds on $\text{gen}(\mu, P_{W|S})$

- **Assumption:** $\ell(w, x)$ is Lipschitz in x for each fixed w; i.e.
 $$|\ell(w, x_1) - \ell(w, x_2)| \leq L \|x_1 - x_2\|_p$$

Theorem (Tovar-Lopez & J., (2018))

If $\ell(w, \cdot)$ is L-Lipschitz in $\|\cdot\|_p$, generalization error satisfies the following bound:

$$\text{gen}(\mu, P_{W|S}) \leq \frac{L}{n^p} \left(\int_{W} W_p^p(P_S, P_{S|W}) dP_W(w) \right)^{\frac{1}{p}}$$

- Measure **average separation** of $P_{S|W}$ from P_S (looks like a p-th moment in the space of distributions)
We say μ satisfies a $T_p(c)$ transportation inequality with constant $c > 0$ if for all ν, we have

$$W_p(\mu, \nu) \leq \sqrt{2cKL(\nu||\mu)}$$
Wasserstein and KL

Definition

We say μ satisfies a $T_p(c)$ transportation inequality with constant $c > 0$ if for all ν, we have

$$W_p(\mu, \nu) \leq \sqrt{2cKL(\nu||\mu)}$$

- Example: standard normal satisfies $T_2(1)$ inequality
Wasserstein and KL

Definition

We say μ satisfies a $T_p(c)$ transportation inequality with constant $c > 0$ if for all ν, we have

$$W_p(\mu, \nu) \leq \sqrt{2cKL(\nu||\mu)}$$

- Example: standard normal satisfies $T_2(1)$ inequality
- Transport inequalities used to show concentration phenomena
We say μ satisfies a $T_p(c)$ transportation inequality with constant $c > 0$ if for all ν, we have

$$W_p(\mu, \nu) \leq \sqrt{2cKL(\nu||\mu)}$$

- Example: standard normal satisfies $T_2(1)$ inequality
- Transport inequalities used to show concentration phenomena
- For $p \in [1, 2]$ this inequality tensorizes! This means $\mu \otimes n$ satisfies inequality $T_p(cn^2/p^{-1})$
Comparison to $I(W; S)$

- In general, not comparable
Comparison to $I(W; S)$

- In general, not comparable
- If μ satisfies a $T_2(c)$-transportation inequality, can directly compare:

Theorem (Tovar-Lopez & J., (2018))

Suppose $p = 2$, then

$$W_2(\mathbb{P}_S, \mathbb{P}_{S|W}) \leq \sqrt{2cKL(\mathbb{P}_{S|W} \Vert \mathbb{P}_S)}$$

and so

$$\frac{L}{n^{\frac{1}{2}}} \left(\int_{W} W_2^2(\mathbb{P}_S, \mathbb{P}_{S|W}) d\mathbb{P}_W(w) \right)^{\frac{1}{2}} \leq L \sqrt{\frac{2c}{n}} I(\mathbb{P}_S; \mathbb{P}_W)$$
Comparison to $I(W; S)$

- In general, not comparable
- If μ satisfies a $T_2(c)$-transportation inequality, can directly compare:

Theorem (Tovar-Lopez & J., (2018))

Suppose $p = 2$, then

$$W_2(\mathbb{P}_S, \mathbb{P}_{S\mid W}) \leq \sqrt{2cKL(\mathbb{P}_{S\mid W} \parallel \mathbb{P}_S)}$$

and so

$$\frac{L}{n^{\frac{1}{2}}} \left(\int_{W} W_2^2(\mathbb{P}_S, \mathbb{P}_{S\mid W}) \mathbb{P}_W(w) \right)^{\frac{1}{2}} \leq L \sqrt{\frac{2c}{n} I(\mathbb{P}_S; \mathbb{P}_W)}$$

- In particular, for Gaussian data, Wasserstein bound strictly stronger
Comparison to $I(W; S)$

- If μ satisfies a $T_1(c)$-transportation inequality:

\[
\text{Theorem (Tovar-Lopez & J., (2018))}
\]
Comparison to $I(W; S)$

- If μ satisfies a $T_1(c)$-transportation inequality:

Theorem (Tovar-Lopez & J., (2018))

Suppose $p = 1$, then

$$W_1(\mathbb{P}_S, \mathbb{P}_{S|W}) \leq \sqrt{2cn \cdot KL(\mathbb{P}_{S|W} || \mathbb{P}_S)}$$

and so

$$\frac{L}{n} \int_W W_1(\mathbb{P}_S, \mathbb{P}_{S|w}) d\mathbb{P}_W(w) \leq L \sqrt{\frac{2c}{n} I(\mathbb{P}_S; \mathbb{P}_W)}$$
Recall generalization error expression:

\[
\text{gen}(\mu, \mathbb{P}_{\mathcal{W}|\mathcal{S}}) = |\mathbb{E}\ell_N(\bar{S}, \bar{\mathcal{W}}) - \mathbb{E}\ell_N(S, \mathcal{W})|,
\]

where \((\bar{S}, \bar{\mathcal{W}}) \sim \mathbb{P}_S \times \mathbb{P}_W\) and \((S, \mathcal{W}) \sim \mathbb{P}_{\mathcal{W}_S}\).
Recall generalization error expression:

\[\text{gen}(\mu, P_{W|S}) = |\mathbb{E}\ell_N(\bar{S}, \bar{W}) - \mathbb{E}\ell_N(S, W)|, \]

where \((\bar{S}, \bar{W}) \sim P_S \times P_W\) and \((S, W) \sim P_{WS}\).

Key insight: Any coupling of \((\bar{S}, \bar{W}, S, W)\) that has the “correct” marginals on \((S, W)\) and \((\bar{S}, \bar{W})\) leads to the same expected value above.
We have

\[
\text{gen}(\mu, P_W|S) = \left| \int \ell_N(s, w) dP_{SW} - \int \ell_N(\bar{s}, \bar{w}) dP_{\bar{S} \times \bar{W}} \right| \\
= \left| \mathbb{E}_{SW\bar{S}\bar{W}} \ell_N(S, W) - \ell_N(\bar{S}, \bar{W}) \right|
\]
Proof sketch

- We have

\[
\text{gen}(\mu, \mathbb{P}_{W|S}) = \left| \int \ell_N(s, w) d\mathbb{P}_{SW} - \int \ell_N(\tilde{s}, \tilde{w}) d\mathbb{P}_{\tilde{S} \times \tilde{W}} \right|
\]

\[
= \left| \mathbb{E}_{SW} \tilde{s} \tilde{w} \ell_N(S, W) - \ell_N(\tilde{S}, \tilde{W}) \right|
\]

- Pick \(W = \tilde{W} \), use Lipschitz property in \(x \)
Proof sketch

We have

\[\text{gen}(\mu, \mathbb{P}_W|S) = \left| \int \ell_N(s, w) d\mathbb{P}_{SW} - \int \ell_N(\bar{s}, \bar{w}) d\mathbb{P}_{\bar{S}\times\bar{W}} \right| \]

\[= \left| \mathbb{E}_{S\bar{W}} s\bar{w} \ell_N(S, W) - \ell_N(\bar{S}, \bar{W}) \right| \]

Pick \(W = \bar{W} \), use Lipschitz property in \(x \)

Pick optimal joint distribution of \(\mathbb{P}_{S,\bar{S}|W} \) to minimize bound
Speculations: Forward and backward channels

- **Stability**: How much does W change with S changes a little?
Speculations: Forward and backward channels

- **Stability:** How much does W change with S changes a little?
- Property of the forward channel $\mathbb{P}_W|S$
Speculations: Forward and backward channels

- **Stability**: How much does W change with S changes a little?
- Property of the **forward channel** $\mathbb{P}_{W|S}$
- **Generalization**: How much does S change when W changes a little?
Speculations: Forward and backward channels

- **Stability:** How much does W change with S changes a little?
- **Property of the forward channel** $\mathbb{P}_{W|S}$
- **Generalization:** How much does S change when W changes a little?
- **Property of the backward channel** $\mathbb{P}_{S|W}$

Pre-process data to deliberately make backward channel noisy (data augmentation, smoothing, etc.)
Speculations: Forward and backward channels

- **Stability**: How much does W change with S changes a little?
- Property of the **forward channel** $\mathbb{P}_{W|S}$
- **Generalization**: How much does S change when W changes a little?
- Property of the **backward channel** $\mathbb{P}_{S|W}$
- Pre-process data to deliberately make backward channel noisy (data augmentation, smoothing, etc.)
Speculations: Relation to rate distortion theory

- Branch of information theory dealing with **lossy data compression**

\[
\min_{P(Y|X)} \mathbb{E}d(X, Y) \text{ subject to } I(X; Y) \leq R
\]
Speculations: Relation to rate distortion theory

- Branch of information theory dealing with **lossy data compression**

\[
\min_{F_{Y|X}} \mathbb{E}d(X,Y) \quad \text{subject to} \quad I(X;Y) \leq R
\]

- Minimize distortion given by \(\ell_N(W, S) \) subject to mutual information constraint \(I(W; S) \leq \epsilon \)
Speculations: Relation to rate distortion theory

- Branch of information theory dealing with *lossy data compression*

\[
\min_{\mathbb{F}_{Y|X}} \mathbb{E}d(X,Y) \text{ subject to } I(X;Y) \leq R
\]

- Minimize distortion given by \(\ell_N(W, S)\) subject to mutual information constraint \(I(W; S) \leq \epsilon\)

- Existing theory applies to \(d(x^n, y^n) = \sum_i d(x_i, y_i)\); however, we have

\[
\ell(w, x^n) := \sum_i \ell(w, x_i)
\]
Speculations: Relation to rate distortion theory

- Branch of information theory dealing with **lossy data compression**

\[
\min_{\mathbb{F}_{Y|X}} \mathbb{E}d(X, Y) \text{ subject to } I(X; Y) \leq R
\]

- **Minimize distortion given by** \(\ell_N(W, S) \) **subject to mutual information constraint** \(I(W; S) \leq \epsilon \)

- Existing theory applies to \(d(x^n, y^n) = \sum_i d(x_i, y_i) \); however, we have

\[
\ell(w, x^n) := \sum_i \ell(w, x_i)
\]

- Essentially same problem, but connections still unclear
Evaluating Wasserstein bounds for specific cases, in particular for SGD
Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD
- Information theoretic lower bounds on generalization error?
Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD
- Information theoretic **lower bounds** on generalization error?
- Wasserstein bounds rely on new notion of “information”

\[I_W(X, Y) = W(P_X \times P_Y, P_{XY}) \]
Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD
- Information theoretic lower bounds on generalization error?
- Wasserstein bounds rely on new notion of “information”

\[I_W(X, Y) = W(P_X \times P_Y, P_{XY}) \]

- Chain rule? Data processing?
Thank you!