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Abstract— We consider the problem of establishing reliable
unicast connections in the presence of edge failures. In this
problem, a source nodes needs to deliver h packets to the
destination node t, even if one of the edges in the network
fails. We apply the the technique of network coding in order to
guarantee an instantaneous recovery from edge failures. Focusing
on the case ofh = 2, we show that the underlying communication
network has an elegant combinatorial structure which enables
design of efficient network codes overGF (2).

I. I NTRODUCTION

In this paper we investigate the problem of establishing
reliable unicast connections in the presence of edge failures.
Edge failures are frequent in communication networks due to
the inherent vulnerability of existing network infrastructure.
With the dramatic increase in the rate of data transmission,
even a single failure may result in vast data loss and cause
major service disruptions to many users. In past years, major
effort was undertaken to improve the resilience of networksto
failures and increase their survivability. In particular,providing
instantaneous recoveryfrom edge failures has become an
important goal for many service providers. With instantaneous
recovery, the lost data can be recovered at the destination,
eliminating the need to introduce any changes at intermediate
nodes (such as rerouting,etc.).

Recently, it was recognized that the novel technique of
network coding is instrumental for providing instantaneous
recovery from edge failures [1], [2]. Network coding was
introduced in a seminal paper by Ahlswede et al. as a way of
increasing throughput of multicast connections [3]. The basic
idea of network coding is to allow the intermediate network
nodes to generate new packets by combining packets received
over their incoming edges. Network coding techniques at-
tracted a large body of research (see [1], [2], [4], [5], [6],and
references therein). In this paper, we investigate networkcodes
that enable instantaneous recovery from a single edge failure.
Previous works [1], [2] showed that this task can be achieved
by employinglinear network codes, in which all packets are
symbols of some finite fieldF, and each packet is a linear
combination of the packets generated by sources.

We focus on unicast connections that need to deliverh pack-
ets per communication round from source nodes to destination
node t. The network coding technique allows to maximize
the number of packets that can be delivered throughout the
network with instantaneous recovery from an edge failure.
For instance, consider the communication network depictedin
Fig. 1. In this network, edges(v1, v3) and(v1, v2) can deliver
two packets per communication round, whereas all the other
edges can only deliver one packet. The network code shown
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in this figure allows the destination to recover two packets
a ∈ GF (2) andb ∈ GF (2) sent by the source nodet even if
one of the intermediate edges fails, without any need to change
the encoding or routing at intermediate nodes. We assume that
all operation are performed overGF (2) and all packets sent
over a failed edge carry the zero symbol. It can be verified
that without network coding, the instantaneous recovery can be
guaranteed for at most one packet per communication round.

Contribution: We consider the problem of designing
efficient network codes for instantaneous recovery from edge
failures. Our contribution can be summarized as follows. First,
we introduce the concept of asimpleunicast network and show
that designing a linear network code for any unicast network
is equivalent to designing a code for the corresponding simple
network. The key property of simple networks is minimality,
ı.e, the deletion of any edge from the network decreases the
number of packets that can be reliably sent (with immediate
restoration) from the source to destination. Then, we show
that simple unicast networks have a very elegant combinatorial
structure which enables the design of efficient network codes
over GF (2); whereas the best known bound on the field size
is linear in the number of edges in the network [2].

Related work: The study of network codes for the
instantaneous recovery from edge failures was done in [1].
Jaggi et al. [2] presented a randomized polynomial algorithm
for finding network codes that provide instantaneous recovery
from edge failures. In [7], an information-theoretic framework
for network management was presented. In [8], [9], the authors
describe a practical implementation of network codes, and
show that it has a high potential for providing resilience to
failures in practical networks.

Due to space limitation, some proofs and technical details
are omitted from this paper and can be found in [10].

II. M ODEL AND PRELIMINARIES

A. Unicast Connections

A communication network is modeled by a directed graph
G(V, E), whereV is the set of nodes andE is the set of edges
or spans. We consider aunicastsetting in which the source
nodes ∈ V sends data packets to the destination nodet ∈ V ,
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Fig. 1. An example of a robust network.



each packet is a symbol of some alphabetΣ. The packets
are transmitted in rounds, at each roundh packets need to be
delivered froms to t. Each edgee ∈ E is associated with the
capacityc(e) that specifies the maximum number of packets
that can be sent on edgee at each communication round. For
clarity of presentation, we assume that each edgee(v, u) ∈ E
comprisesc(e) parallel links, each link can deliver one packet
from s to t per communication round. The set of links that
corresponds to a set of edgesE is denoted byL(E).

Definition 1 (Unicast Network):A unicast network
N(G(V, E), c, s, t, h) is a 5-tuple that includes a directed
graph G(V, E), a capacity functionc : E → {1, 2, ...}, a
sources, a destinationt, and the required numberh of packets
that must be delivered froms to t at each communication
round.

B. Coding Network

We focus onlinear network codesin which the alphabet
Σ is a finite fieldF, and the encoding functions implemented
at each node are linear overF. Such codes are sufficient for
providing an instantaneous recovery from edge failures [1].

We associate each linkl(v, u) ∈ L(E) in the network with
an encoding functionfl that specifies the packet transmitted
on link l. For each linkl(s, u) ∈ L(E), fl is a function of the
h packets sent by the source nodes, i.e., fl : Σh → Σ. For
each link l(v, u) ∈ L(E), v 6= s, fl is a function of packets
received by nodev within the same communication round,
i.e., fl : Σm → Σ, wherem is the number of incoming links
of v.

Definition 2 (Network code):Let N(G(V, E), c, s, t, h) be
a unicast network. A network codeNC for N is the set
of encoding functions associated to the links inL(E), i.e.,
NC = {fl | l ∈ L(E)}.

We assume that a failure of an edgee ∈ E may result
in a failure of an arbitrary subset of links that comprisee.
Typically, such a failure will result in a failure of all such
links. As a failed link transmits no information, we assume
that its encoding function is identically zero, i.e.,fl ≡ 0 for
every failed edgel, (where 0 is the additive identity of the
field).

Definition 3 (Robust network code):Let
N(G(V, E), c, s, t, h) be a unicast network. A network
code is said to berobust or resilient to a single edge failure
if at each communication round the destination nodet can
reconstruct theh packets sent by the source nodes even if
one of the edgese ∈ E in the network fails.

C. Cut conditions

A natural question that arises is what are the necessary and
sufficient conditions for the existence of a robust network code
for a given unicast networkN(G(V, E), c, s, t, h). It turns out
that the feasibility of a unicast networkN(G(V, E), c, s, t, h)
can be fully characterized by a condition on the cuts of the
graphG(V, E). A cut C = (V1, V2) in graphG(V, E) is a
partition of the nodes ofV into two subsetsV1 and V2 =
V \V1. We say that a cutC = (V1, V2) separates nodess and
t if s ∈ V1 and t ∈ V2. We denote byE(V1, V2) that set of
edges that connect a node inV1 to a node inV2. The capacity
of a cutC is equal to the total capacity of edges inE(V1, V2).

Theorem 4:Let N(G(V, E), c, s, t, h) be a unicast network.
Then, there exists a network code forN that is resilient

to a single edge failure if and only if for every cutC =
(V1, V2) of G(V, E) that separatess from t it holds that
∑

e∈E(V1,V2)
c(e) ≥ h + maxe∈E(V1,V2) c(e).

Proof: Follows directly from [1].
We refer to a unicast network that satisfies the condition of

Theorem 4 as afeasibleunicast network. Menger’s theorem
[11] implies that a unicast networkN(G(V, E), c, s, t, h) is
feasible if and only if for every edgee ∈ E it holds that the
graph(V, L(E \ {e})) hash link-disjoint paths froms to t.

III. S IMPLE UNICAST NETWORKS

In this section we present a special class ofsimple unicast
networks. Simple unicast networks have a special structure
which enables us to find a corresponding robust network code
in a fast and efficient manner.

Definition 5 (Simple Unicast Network):A unicast network
N(G(V, E), c, s, t, h) is said to besimple if and only if it
satisfies the following properties: (1)N(G(V, E), c, s, t, h) is a
minimal network, i.e.N stops being feasible upon the deletion
of any link of G. (2) The source nodes has exactlyh + 1
outgoing edges. (3) The destination nodet has exactlyh + 1
incoming edges . (4) The total degree of every nodev ∈ V ,
v /∈ {s, t}, is exactly 3; (5) For every two nodesu andv, there
is at most one edge inE from u to v.

The following theorem shows that designing a linear net-
work code for any unicast network is equivalent to designing
a code for the corresponding simple network.

Theorem 6:For every feasible unicast network
N(G(V, E), c, s, t, h) there exists a corresponding simple
network N̂(Ĝ(V̂ , Ê), ĉ, ŝ, t̂, h) such that the existence of a
robust linear network code for̂N implies existence of a robust
code forN over the same field.

IV. STRUCTURE OF SIMPLE NETWORKS

In this section we focus on simple unicast networks for
h = 2, and show that such networks have a special structure
that enables efficient construction of robust network codes.

A. Flow network

We begin with a definition of a flow network
N̄(G(V, E), c̄, s, t, h̄).

Definition 7 (Flow Network):A flow network
N̄(G(V, E), c̄, s, t, h̄) is a 5-tuple that includes a directed
graphG(V, E), a capacity function̄c : E → R

+, a source
nodes, and a destination nodet, and a flow requirement̄h.

The cost of a flowb in N̄ is defined to be
∑

e∈E b(e). We say
that a flow networkN̄(G(V, E), c̄, s, t, h̄) is feasible if there
exists a flow of valuēh in N̄ between sources and destination
t.

For a given unicast networkN(G(V, E), c, s, t, 2), the cor-
responding flow network̄N(G(V, E), c̄, s, t, 3) is defined by
setting c̄(e) = 1.5 for any edgee ∈ G of capacity two and
c̄(e) = 1 for each edge of unit capacity.,

Theorem 8:A unicast network N(G(V, E), c, s, t, 2) is
feasible if and only if the corresponding flow network
N̄(G(V, E), c̄, s, t, 3) is feasible.

Proof: First, let N(G(V, E), c, s, t, 2) be a feasible uni-
cast network and let̄N(G(V, E), c̄, s, t, 3) be the correspond-
ing flow network. LetC be a cut inG(V, E) that separatess
from t. We show that

∑

e∈E(C) c̄(e) ≥ 3. This certainly holds
if E(C) includes at least three edges, because the capacity
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of each edge in̄N(G(V, E), c̄, s, t, 3) is at least one. IfE(C)
includes only two edges, then the capacityc(e) of each edge
e ∈ C is at least 2, otherwiseN(G(V, E), c, s, t, 2) would
not be feasible. Therefore,̄c(e) = 1.5 for eache ∈ E(C).
Hence,

∑

e∈E(C) c̄(e) ≥ 3. The Min-Cut max-flow theorem
[1] implies thatN̄(G(V, E), c̄, s, t, 3) is a feasible network.

Second, let N(G(V, E), c, s, t, 2) be a unicast net-
work and suppose that the corresponding flow network
N̄(G(V, E), c̄, s, t, 3) is feasible. We show that for each cutC
in G(V, E) that separatess andt it holds that

∑

e∈E(C) c(e) ≥
h+maxe∈E(C) c(e), which, in turn, implies thatN is a feasible
network. SincēN admits an(s, t)-flow of value3, it holds that
∑

e∈E(C) b̄e ≥ 3. Let e′ be the edge with the maximum value
of c(e) in E(C). If C includes at least three edges, there are
at least two edges inE(C) \ {e′} of capacity one. Otherwise,
since c̄(e′) ≤ 1.5, there must be at least one edgee in E(C)
for which it holds that̄c(e) = 1.5. For this edge it holds that
c(e) = 2 and the theorem follows.

By integrality property [12, Theorem 9.10], there always
exists a minimum cost flow such thatbe ∈ {0, 0.5, 1, 1.5} for
∀e ∈ E. We refer to such flow as ahalf-integral flow.

B. Properties of simple unicast networks

We begin by proving two properties of simple networks.
Lemma 9:Let N(G(V, E), c, s, t, 2) be a simple unicast

network,N̄(G(V, E), c̄, s, t, 3) be the corresponding flow net-
work andb be a half-integral 3-flow in̄N(G(V, E), c̄, s, t, 3).
Then, for every edgee ∈ E it holds that if c(e) = 2
(c̄(e) = 1.5) thenbe = 1.5 and if c̄(e) = 1 thenbe ∈ {0.5, 1}.

Lemma 10:Let N(G(V, E), c, s, t) be a minimal unicast
network. ThenG(V, E) is a directed acyclic graph.

We proceed by classifying the nodes inV \ {s, t}.
Lemma 11:Let N(G(V, E), c, s, t, 2) be a simple network.

Then, each nodev ∈ V \ {s, t} belong to one of the typesA,
B, C, or D depicted in Figure 2.

Proof: (sketch) Let N̄(G(V, E), c̄, s, t, 3) be the flow
network that corresponds toN. By Theorem 8,̄N is a feasible
network. Letb be a minimum cost half-integral flow of value
3 in N̄. First, consider a nodev ∈ V \ {s, t} that has one
incoming edgee1 and two outgoing edgese2 and e3. The
flow be1

on edgee1 is either equal to1 or 1.5. Indeed, by
Lemma 9, it holds thatbe1

> 0. If b1 = 0.5, then the flow of
on one of the outgoing edgese1 or e2 would be 0, in violation
of Lemma 9. If be1

= 1, then it holds thatbe2
= be3

= 0.5
and, by Lemma 9,c(e1) = c(e2) = c(e3) = 1, hencev is a
node of typeA. If be1

= 1.5, then it holds thatbe2
= 1 and

be3
= 0.5, or be2

= 0.5 and be1
= 1. Again, by Lemma 9,

c(e1) = 2 andc(e2) = c(e3) = 1, hencev is a node of typeC.
Similarly, we prove that nodes of in-degree 2 and out-degree
1 are either of type B or D.

C. Residual Graphs

Let N(G(V, E), c, s, t, 2) be a simple network,
N̄(G(V, E), c̄, s, t, 3) be the corresponding flow network,
and b be a half-integer 3-flow inN̄. We denote byÊ the
set of edges of capacity 1 that have 0.5 units of flow, i.e.,
Ê = {e ∈ E | c̄(e) = 1 and be = 0.5}. Then we fix a
subsetÊ′ of Ê. This subset defines acoloring of the edges in
G(V, E) in the following way. All edges inÊ′ are referred to
as red edges. All edges in̂E \ Ê′ and all edges with̄c = 1.5
are referred to asblue edges. All other edges in the network
are referred to asblack edges.

We proceed to discuss a concept of a residual graph. The
definition of the residual graph depends on the way the edges
are colored.

Definition 12 (Residual Graph, Residual Cycle):Let Ê′ be
a subset ofÊ. Then, theresidual graphG

Ê′(b) of G(V, E) is
formed by reversing all blue and red edges inG(V, E), where
the edges are colored according to the subsetÊ′. All edges
in the residual graph retain their original color. A cycleC in
G

Ê′(b) is referred to asresidual cycleif it includes at least
one blue edge.

Lemma 13:If N(G(V, E), c, s, t, 2) is a simple network,
thenG

Ê′(b) does not have a residual cycle.
Proof: Suppose, by way of contradiction, that there

exists a cycleC in G
Ê′(b) that includes a blue edgêe.

We now create a new flowb′ by augmentingb along C. In
particular, for each red edgee ∈ C we identify the edgee′

that corresponds toe in the original graph. Then, ife is a red
edge we setb′e′ = be′ + 0.5, otherwise we setb′e′ = be′ − 0.5.
It is easy to verify thatb′e is a feasible half-integer flow in
N̄(G(V, E), c̄, s, t, 3). Let ê′ be the edge that corresponds toê
in the original network. Ifê′ belongs toÊ then it holds that
b′ê′ = 0, which, by Lemma 9, contradicts the minimality of
N(G(V, E), c, s, t, 2). Otherwise, it holds that̄c(ê′) = 1.5 and
b′ê′ = 1, which again and by the same lemma contradicts the
minimality of N(G(V, E), c, s, t, 2).

D. Topological Cuts

We begin by defining a notion oftopological cut.
Definition 14 (Topological Cut):Let G(V, E) be an acyclic

directed graph. A cutC = (V1, V2) is said to be atopological
cut if there is no edge inG that connects a node inV2 to a
node inV1.

We visit the nodes ofG in topological order [12, Section
3.4]. NoteG has a topological ordering because it is acyclic
(by Lemma 10). The first topological cut that we encounter is
C(s, E \ s) that consists of three edgese1(v1, u1), e2(v2, u2),
ande3(v3, u3), each of unit capacity. We refer to all topolog-
ical cuts that include three edges of capacity one as cuts of
type I.

For each nodeui, 1 ≤ i ≤ 3, in a cut of type I, it holds
that ui is either of typeA, D, or identical to a terminal node
t. Clearly, a node cannot be of typeC because edgese1, e2,
and e3 have unit capacity. We also observe that forbei

= 1
for 1 ≤ i ≤ 3. This fact, coupled with Lemma 9 rules out the
possibility that any of nodesu1, u2, andu3 is of typeB.

Next, we show that at most one of the nodesu1, u2, or
u3 is of type A. We consider two cases. First, we assume,
by way of contradiction that all three nodesu1, u2, or u3 are
type A nodes. In this case all of the outgoing edges ofu1,



u2, andu3 belong toÊ. It is easy to verify that we can pick
three edgese1, e2, and e3 such that for1 ≤ i ≤ 3 it holds
that ei is an outgoing edge ofui and there does not exist a
node v which is incident to any two edgese1, e2, and e3.
We setÊ′ = {e1, e2, e3}. Let G

Ê′(b) be the residual graph
of G(V, E) with respect toÊ′ and letG′ be the subgraph of
G

Ê′(b) induced by nodes inV2 determined by the cutC. It
is easy to verify that each node inG′ has outdegree at least
1, henceG′ contains a cycle. Such a cycle must include an
edgeei, for some1 ≤ i ≤ 3, because if we exclude edges
{e1, e2, e3} from G′ then the resulting graph would be acyclic.
This implies, that a cycle includes at least one blue edge,
which is the edge incident toui. We conclude thatG′ and, in
turn, G

Ê′(b), includes a residual cycle, which, by Lemma 13
contradicts the minimality of̄N(G(V, E), c̄, s, t, 3). Similarly,
we prove that we cannot have two nodes in the set{u1, u2, u3}
that are of typeA, and the other node is of typeD.

Next, we prove that if one of the nodes{u1, u2, u3} is of
typeA, then it must be connected to the two other nodes which
are of typeD. We assume, without loss of generality, thatu1 is
a typeA node andu2 andu3 are of typeD. Suppose, by way
of contradiction, thatu1 is not connected to, say,u2. Then, we
denote bye the outgoing edge ofu1 which is not connected
to u3 and setÊ′ = {e}. Let G

Ê′(b) be the residual graph
of G(V, E) with respect toÊ′ and letG′ be the subgraph of
G

Ê′(b) induced by nodes inV2. It is easy to verify that each
node inG′ has outdegree at least1, henceG′ includes a cycle.
Such a cycle must include edgee, and, in turn, one blue edge
which is incident tou1. As a result,G′ and, in turn,G

Ê′(b)
include a residual cycle, in contradiction to Lemma 13.

It can be proven, by using a similar argument that if one of
the nodes{u1, u2, u3} is identical tot, then all other nodes
in {u1, u2, u3} are identical tot, otherwise at least one of the
nodes{u1, u2, u3} must be of typeA.

We conclude our discussion by the following theorem.
Theorem 15:Let N(G(V, E), c, s, t, 2) be a simple net-

work. Let C = (V1, V2) be a topological cut ofG(V, E) such
thatE(V1, V2) includes three edgese1(v1, u1), e2(v2, u2), and
e3(v3, u3), each one of them of unit capacity. Then it either
holds thatu1 = u2 = u3 = t or it holds that one of the nodes
u1, u2, or u3 is of typeA, while two other nodes are of type
D and the node of typeA is connected to two other nodes by
two edges.

Thus, starting by a topological cut of type I, and if it is
not the last topological cut in the network(C(E\, t), we will
end up with a topological cut which consists of two edges of
capacity 2. We refer to such cuts as Type II cuts.

Theorem 16:Let N(G(V, E), c, s, t, 2) be a simple net-
work. Let C = (V1, V2) be a topological cut ofG(V, E) such
thatE(V1, V2) includes two edgese1(v1, u1), e2(v2, u2), each
one of them of capacity of two units. Then, there exist either
a typeB nodew ∈ V2 and two edges(u1, w) and (u2, w) of
capacity 1, or two type-D nodesw1 and w2 and four edges
(u1, w1), (u1, w2), (u2, w1), and(u2, w2) of capacity 1.

E. Block Decomposition

The previous discussion leads to the following result.
Theorem 17:Let N(G(V, E), c, s, t, 2) be a simple unicast

network with |V | > 2. Then, N(G(V, E), c, s, t, 2) can be
decomposed into blocksA, B, C, as depicted in Figure 3.
The blocks can be connected in an arbitrary order, subject to
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Fig. 3. Basic building blocks for a simple unicast network (h = 2).
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Fig. 4. Network code for simple unicast networks.

the following rules: (1) the first block is a blockA and s is
connected to all its input edges (2) the last block is a blockB
and the destination nodet is connected to all its output edges
(3) block A can be be followed by blocksB or C (4) Block
B, if not the last, must be followed by blockA (5) Block C
must be followed by blocksB or C.

V. NETWORK CODES FORSIMPLE NETWORKS

In this section, we present a robust network code over
GF (2) for a simple unicast networkN(G(V, E), c, s, t, 2). As
we proved in the previous section, a simple unicast network
consists of blocks of typesA, B, andC, as depicted in Figure
3. The network code for all blocks is presented in Figure 4.
In particular, the figure shows for each edgeei of capacity
one, the corresponding linkli. For each edgeei of capacity
two the figure shows two corresponding linksl1i and l2i . We
choose the notation of the links in such a way that if edgeei

of block X coincides with edgeej of block Y then link l1i
of block X coincides with linkl1j of block Y and link l2i of
block X coincides with linkl2j of block Y .

Note that all the nodes of blocks of typeA or C just forward
incoming packets. In blocks of typeB, one node forwards the
incoming packets while other two nodes output a sum (over
GF (2) of their incoming packets.

To complete the definition of the encoding scheme, we need
to define the encoding performed by the source nodes. We
denote bya ∈ GF (2) and b ∈ GF (2) the two packets that
the source node has to transmit to the destinationt at the
current round. By Theorem 17, the source node is connected
by three edges of capacity one to the nodes of the first block.
The source node sends packetsa, b, anda+ b on these edges,
in an arbitrary order.

We proceed to prove that the network code described above
is robust. Due to space constraints, we only consider the
case in which the networkN only includes blocks of type
A and B.2 Such networks are formed by the sequence of
blocks A followed by a blockB. We enumerate the blocks
of the network byA1, B1, A2, B2 . . . , Ax, Bx such thats is

2Extension for general case is presented in [10]



connectedA1, Ai is connected toBi for 1 ≤ i ≤ x, Bi is
connected toAi+1 for 1 ≤ i ≤ x − 1 andBx is connected to
t. We also denote byCi, 1 ≤ i ≤ x− 1 the cut that separates
blocks Bi from Ai+1. We also denote byC0 (resp.Cx) the
cut that separate the source (resp. the destination node) from
the rest of the network.

We now pick an arbitrary edgêe ∈ E and suppose that
ê fails. We denote bŷi the smallest value ofi such thatê
belongs to blockAi or Bi.

Recall that upon a failure of the edge every link correspond-
ing to this edge carries a packet identically equal to zero. For
each link l ∈ L(E) we denote byml the packet carried by
link l.

Lemma 18:Consider a cutCi, 0 ≤ i < î. We denote by
l1, l2, andl3 the set of the links in this cut. Then, the packets
{ml1 , ml2 , ml3} carry the symbols{a, b, a+b} in an arbitrary
order.

Definition 19 (Valid Cut):Consider a cutCi, 0 ≤ i ≤ x.
We denote byl1, l2, and l3 the set of the links in this cut.
Then Ci is said to bevalid if at least two of the packets in
the set{ml1 , ml2 , ml3} are linearly independent.

Lemma 20:The cutCî is a valid cut.
Proof: We depict blocksAî and Bî on Figure 5 and

show that upon the failure of any edge inAî or Bî, the cut
formed by edgese12, e13, ande14 remains valid.
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î

andB
î
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Let m1, m2, and m3 be the packets received on the
incoming edgese1, e2, and e3 of block Aî. The following
table lists the outputs of this block upon the failure of eachof
its edges.

failure (m12, m13, m14) failure (m12, m13, m14)
φ (m3, m1, m2) e7 (m3, m2, 0)
e1 (m2, m1, m2) e10 (m3, m3, m2)
e2 (m1, m3, 0) e11 (m3, m2, m2)
e3 (m3, m2, m2) e12 (0, m1, m2)
e4 (m1, m3, m2) e13 (m3, 0, m2)
e5 (m3, m1, 0) e14 (m3, m1, 0)
e6 (0, m3, m2)

By Lemma 18, the packetsm1, m2, andm3 carry symbols
{a, b, a + b} in an arbitrary order. This implies that the cut
formed by edgese12, e13, and e14 remains valid under any
failure.

Lemma 21:Each cutCi, î < i ≤ x is a valid cut.
Proof: The proof is by induction oni. As a basis step of

the induction, consider two blocksAî+1 andBî+1. We assume
that the edges inAî+1 and Bî+1 are denoted as shown in
Figure 5. Then, it holds that

(

m8

m10

m12

)

=

(

1 1 0
0 1 1
0 1 0

)(

m1

m2

m3

)

(1)

Since the matrix in Equation 1 is of full rank, and since
at least two of the packetsm1, m2, and m3 are linearly
independent, it holds that at least two of the packetsm8, m10,
andm12 are linearly independent. The inductive step follows
from the same argument.

By Lemma 21,Cx is a valid cut. This implies that the
destination node receives at least two linearly independent
packets. We conclude that the destination node can always
reconstruct the two original packetsa and b, which, in turn,
implies that the network code described above is robust.

We summarize our discussion in the following theorem.
Theorem 22:There exists a robust linear code overGF (2)

for any feasible networkN(G(V, E), c, s, t, 2).

VI. CONCLUSION

In this paper, we addressed the problem of constructing
robust network codes for unicast networks. We defined an
important class of simple unicast network. We showed that, for
h = 2, simple unicast networks have an elegant combinatorial
structure. This structure enables the design of a robust linear
network code overGF (2) for any feasible network.

Many open questions, that are the topics of our current
research, naturally arise here: For arbitraryh (h > 2), what is
the structure of feasible and minimal unicast networks? What
is the minimum field size over which a robust code exists
for a feasible unicast network whenh > 2? How can these
results be used to derive an efficient algorithm for finding
robust network codes for unicast networks?

As a partial answer to the second open question, we conjec-
ture that the minimum field size is linear inh, independently
of the size of the underlying network.

REFERENCES

[1] R. Koetter and M. Medard. An Algebraic Approach to Network Coding.
IEEE/ACM Transactions on Networking, 11(5):782 – 795, 2003.

[2] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen. Polynomial Time Algorithms for Multicast Network Code
Construction.To appear in IEEE Transactions on Information Theory,
2005.

[3] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network Information
Flow. IEEE Transactions on Information Theory, 46(4):1204–1216,
2000.

[4] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear Network Coding. IEEE
Transactions on Information Theory, 49(2):371 – 381, 2003.

[5] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros. TheBenefits
of Coding over Routing in a Randomized Setting. InProceedings of the
IEEE International Symposium on Information Theory, 2003.

[6] M. Charikar and A. Agarwal. On the Advantage of Network Coding for
Improving Network Throughput. InProceedings of IEEE Information
Theory Workshop, San Antonio, 2004.

[7] T. Ho, M. Médard, and R. Koetter. An Information-Theoretic View
of Network Management.IEEE Transactions on Information Theory,
51(4), April 2005.

[8] Y. Wu, P. A. Chou, and K. Jain. A Comparison of Network Coding and
Tree Packing. InProceedings of ISIT, 2004.

[9] P. A. Chou, Y. Wu, and K. Jain. Practical Network Coding. In
Proceedings of Allerton Conference on Communication, Control, and
Computing, Monticello, IL, October 2003.

[10] S. Y. El Rouayheb, A. Sprintson, and C. Georghiades. Simple Network
Codes for Instantaneous Recovery from Edge Failures in Unicast Con-
nections. Technical Report WCL-TR-06-101, Texas A&M University,
College Staion, Texas, January 2006.

[11] K. Menger. Zur allgemeinen Kurventheorie.Fund. Math, 10:95–115,
1927.

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Networks Flows. Prentice-
Hall, NJ, USA, 1993.


