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Abstract— We consider the problem of establishing reliable in this figure allows the destination to recover two packets
unicast connections in the presence of edge failures. In i ¢ ¢ GF(2) andb € GF(2) sent by the source nodeeven if
problem, a source nodes needs to deliver h packets to the gne of the intermediate edges fails, without any need toghan

destination node t, even if one of the edges in the network : . : .
fails. We apply the the technique of networkgcoding in order o _ the encoding or routing at intermediate nodes. We assunte tha

guarantee an instantaneous recovery from edge failures. Easing all operation are performed ovérr'(2) and all packets sent
on the case ofh = 2, we show that the underlying communication over a failed edge carry the zero symbol. It can be verified

network has an elegant combinatorial structure which enabés that without network coding, the instantaneous recovemea
design of efficient network codes ovelGF(2). guaranteed for at most one packet per communication round.
I. INTRODUCTION ~ Contribution: We consider the problem of designing
In thi _ . h bl f blishi efficient network codes for instantaneous recovery fromeedg
In this paper we Investigate the problem of establishing;,;.es Our contribution can be summarized as followsstFi
reliable unicast connections in the presence of edge &slur,,  itroduce the concept ofsimpleunicast network and show

Edge failures are frequent in communication networks due .+ gesigning a linear network code for any unicast network

the inherent vulnerability of existing network infrasttue. ;g equivalent to designing a code for the corresponding l§mp

Hbtwork. The key property of simple networks is minimality,

major service disruptions to many users. In past years,m
effort was undertaken to improve the resilience of netwaoks
failures and increase their survivability. In particufamviding

instantaneous recoverfrom edge failures has become a

restoration) from the source to destination. Then, we show
that simple unicast networks have a very elegant combiigétor
tructure which enables the design of efficient network sode

important goal for many service providers. With instantare o GF(2); whereas the best known bound on the field size
recovery, the lost data can be recovered at the destinatiQlyaorin’ the number of edges in the network [2].

eliminating the need to introduce any changes at internedia Related work: The study of network codes for the

nodes (such as reroutingic). . instantaneous recovery from edge failures was done in [1].
Recently, it was _recognlzed that the _n_ovel_ technique 9%\ggi et al. [2] presented a randomized polynomial algorith

network coding is instrumental for providing instantan®ou, " jing network codes that provide instantaneous regove

recovery from edge failures [1], [2]. Network coding Wasfrgm edge failures. In [7], an information-theoretic framuek

@ntroduqed in a seminal paper by Ahlswed(_a etal. as a way @ network management was presented. In [8], [9], the astho
increasing throughput of multicast connections [3]. Theiba escribe a practical implementation of network codes, and

idea of network coding is to allow the intermediate networky, o that it has a high potential for providing resilience to
nodes to generate new packets by combining packets recei¥8fres in practical networks

over their incoming edges. Network coding techniques & “Due to space limitation, some proofs and technical details

tracted a large bpdy of rgsearch (see_ [1], [.2]’ [4], [5], Hid are omitted from this paper and can be found in [10].
references therein). In this paper, we investigate netwodes

that enable instantaneous recovery from a single edgedailu II. M ODEL AND PRELIMINARIES
Previous works [1], [2] showed that this task can be achieved |, . :
by employinglinear network codes, in which all packets are - Unicast ann-ecnons . )
symbols of some finite field?, and each packet is a linear A communication network is modeled by a directed graph
combination of the packets generated by soutce G(V, E), whereV is the set of nodes anfl is the set of edges
We focus on unicast connections that need to deliyeack- Or spans We consider ainicastsetting in which the source
ets per communication round from source nede destination nodes € V' sends data packets to the destination nodeV/,
node t. The network coding technique allows to maximize
the number of packets that can be delivered throughout the
network with instantaneous recovery from an edge failure. a’b/'
For instance, consider the communication network depiicted
Fig. 1. In this network, edge@n, v3) and(vy, v2) can deliver s
two packets per communication round, whereas all the other )
edges can only deliver one packet. The network code shown  Facets:ab

1The authors are with the Department of Electrical and Coepén-
gineering, Texas A&M University, College Station, TexasSAl Email: Fig. 1. An example of a robust network.
{salim,spalex,georghiadg@ece.tamu.edu



each packet is a symbol of some alphaketThe packets to a single edge failure if and only if for every cdt =

are transmitted in rounds, at each roungackets need to be (V1,V,) of G(V, E) that separates from ¢ it holds that
delivered froms to t. Each edge € E is associated with the > . 5y, v, c(€) = h + max.epv; 13 c(€).

capacityc(e) that specifies the maximum number of packets  Proof: Follows directly from [1]. u
that can be sent on edgeat each communication round. For We refer to a unicast network that satisfies the condition of
clarity of presentation, we assume that each edgeu) € E  Theorem 4 as deasibleunicast network. Menger’s theorem
comprises:(e) parallellinks, each link can deliver one packef[11] implies that a unicast network(G(V, E),c, s,t,h) is

) Yy

from s to ¢t per communication round. The set of links thafeasible if and only if for every edge € E it holds that the

corresponds to a set of edggsis denoted byL(E). graph(V, L(E \ {e})) hash link-disjoint paths froms to ¢.
Definition 1 (Unicast Network)A unicast network

N(G(V, E),c,s,t,h) is a 5-tuple that includes a directed Ill. SIMPLE UNICAST NETWORKS

graph G(V, E), a capacity functiorc : £ — {1,2,...}, a In this section we present a special classiofiple unicast

sources, a destinatiort, and the required numbérof packets networks Simple unicast networks have a special structure
that must be delivered from to ¢ at each communication which enables us to find a corresponding robust network code

round. in a fast and efficient manner.
) Definition 5 (Simple Unicast Network)A unicast network
B. Coding Network N(G(V,E),c,s,t,h) is said to besimpleif and only if it

We focus onlinear network codesn which the alphabet satisfies the following properties: (IN(G(V, E), ¢, s, t,h) is a
¥ is a finite fieldF, and the encoding functions implementedninimal network, i.eN stops being feasible upon the deletion
at each node are linear ovEr Such codes are sufficient forof any link of G. (2) The source node has exactlyh + 1
providing an instantaneous recovery from edge failures [1] outgoing edges. (3) The destination nadeas exactlys + 1

We associate each linkv, ) € L(E) in the network with incoming edges . (4) The total degree of every node V,
an encoding functiory; that specifies the packet transmitted ¢ {s,t}, is exactly 3; (5) For every two nodesandv, there
on link 1. For each linki(s,u) € L(E), f; is a function of the is at most one edge i from u to v.
h packets sent by the source nogdei.e., f; : ¥ — X. For The following theorem shows that designing a linear net-
each linki(v,u) € L(E), v # s, f is a function of packets work code for any unicast network is equivalent to designing
received by node within the same communication round@ code for the corresponding simple network.
i.e., fi : ¥ — ¥, wherem is the number of incoming links Theorem 6:For every feasible unicast network
of . N(G(V,E),c,s,t,h) there exists a corresponding simple

Definition 2 (Network code)Let N(G(V, E),¢,s,t,h) be network N(G(V, E),¢,3,t,h) such that the existence of a
a unicast network. A network cod& C' for N is the set robust linear network code fd¥ implies existence of a robust
of encoding functions associated to the linksfiQF), i.e., code forN over the same field.
NC={fi|leL(E)}

We assume that a failure of an edgec E may result IV. STRUCTURE OF SIMPLE NETWORKS
in a failure of an arbitrary subset of links that comprise  In this section we focus on simple unicast networks for
Typically, such a failure will result in a failure of all suchh = 2, and show that such networks have a special structure
links. As a failed link transmits no information, we assume¢hat enables efficient construction of robust network codes
that its encoding function is identically zero, i.g;,= 0 for

every failed edgd, (where 0 is the additive identity of theA- Flow network

field). ~ We begin with a definiton of a flow network
Definition 3 (Robust network code)et N(G(V, E),¢,s,t, h).
N(G(V,E),c,s,t,h) be a unicast network. A network Definition 7 (Flow Network):A flow network

code is said to beobustor resilient to a single edge failure N(G(V, E), ¢, s,t,h) is a 5-tuple that includes a directed
if at each communication round the destination nedean graphG(V, E), a capacity functiore : £ — R*, a source
reconstruct theh packets sent by the source nodeven if nodes, and a destination node and a flow requiremerit.

one of the edges € E in the network fails. The cost of a flow in N is defined to be __ ;, b(e). We say
. that a flow networkN(G(V, E), ¢, s, t, h) is feasible if there
C. Cut conditions exists a flow of valué: in N between source and destination

A natural question that arises is what are the necessary @nd
sufficient conditions for the existence of a robust netwarttee ~ For a given unicast networl(G(V, E), ¢, s, t, 2), the cor-
for a given unicast networkl(G(V, E), ¢, s, t, h). It turns out responding flow networkN(G(V, E), ¢, s,t,3) is defined by
that the feasibility of a unicast netwotk(G(V, E),c,s,t,h) settingé(e) = 1.5 for any edgee € G of capacity two and
can be fully characterized by a condition on the cuts of thée) = 1 for each edge of unit capacity.,
graphG(V, E). A cut C = (V4,V,) in graphG(V, E) is a Theorem 8:A unicast network N(G(V, E), ¢, s,t,2) is
partition of the nodes o¥ into two subsets/; and 1, = feasible if and only if the corresponding flow network
V \ Vi. We say that a cuf’ = (V;, V») separates nodesand N(G(V, E), ¢, s,t,3) is feasible.
tif s € V4 andt € V. We denote byE(V;, V2) that set of Proof: First, letN(G(V, E), ¢, s,t,2) be a feasible uni-
edges that connect a nodelif to a node inl,. The capacity cast network and IeN(G(V, E), ¢, s, t,3) be the correspond-
of a cutC is equal to the total capacity of edgesfiiV;, V;). ing flow network. LetC' be a cut inG(V, E) that separates
Theorem 4:LetN(G(V, E), ¢, s,t, h) be a unicast network. from ¢. We show thad__ . - ¢(e) = 3. This certainly holds
Then, there exists a network code fdf that is resilient if F(C) includes at least three edges, because the capacity



C. Residual Graphs

_Let N(G(V,E),c,s,t,2) be a simple network,
N(G(V, E),¢,s,t,3) be the corresponding flow network,
and b be a half-integer 3-flow ilN. We denote byE the
set of edges of capacity 1 that have 0.5 units of flow, i.e.,
' _ E ={e€ E|¢cl) =1and b = 0.5} Then we fix a
Fcl)g'azh oaur ::)%%o(ré?sao; Jodes t(;’g & node of tybéh) a node of typels subset’”’ of £. This subset defines@loring of the edges in
G(V, E) in the following way. All edges int’ are referred to
o _ asred edges. All edges iy \ E’ and all edges witlt = 1.5
of each edge iN(G(V, E), ¢, s,t,3) is at least one. IE(C)  are referred to ablue edges. All other edges in the network
includes only two edges, then the capacity) of each edge are referred to ablack edges.
e € Cis at least 2, otherwis®(G(V, E), ¢, s,t,2) would e proceed to discuss a concept of a residual graph. The
not be feasible. Therefore(e) = 1.5 for eache € E(C). definition of the residual graph depends on the way the edges
Hence,} .. () cle) = 3. The Min-Cut max-flow theorem are colored.
[1] implies thatN(G(V, E), ¢, s, t,3) is a feasible network. Definition 12 (Residual Graph, Residual Cycla)et £ be
Second, let N(G(V,E),c,s,t,2) be a unicast net- a subset of. Then, theresidual graphG, (b) of G(V, E) is
work and suppose that the corresponding flow netwof&rmed by reversing all blue and red edge<i(V, E), where
N(G(V, E), ¢, s,t,3) is feasible. We show that for each dalit the edges are colored according to the suligetAll edges
in G(V, E) that separatesandt it holds that) .. ) c(e) > in the residual graph retain their original color. A cydlgin
h+max.cg(c) c(e), which, in turn, implies thalN is a feasible G, (b) is referred to agesidual cycleif it includes at least
network. SinceN admits an(s, ¢)-flow of value3, it holds that one blue edge.
> ecr(c) be > 3. Lete be the edge with the maximum value Lemma 13:If N(G(V, E),c,s,t,2) is a simple network,
of ¢(e) in E(C). If C includes at least three edges, there atbenG ;, (b) does not have a residual cycle.
at least two edges iv(C) \ {¢'} of capacity one. Otherwise, ~ Proof: Suppose, by way of contradiction, that there
sincec(e’) < 1.5, there must be at least one edgén E(C) exists a cycleC in G, (b) that includes a blue edge.
for which it holds thatz(e) = 1.5. For this edge it holds that We now create a new flow’ by augmenting) along C. In
c(e) = 2 and the theorem follows. m particular, for each red edgee C we identify the edge’
By integrality property [12, Theorem 9.10], there alway#hat corresponds te in the original graph. Then, i is a red
exists a minimum cost flow such that € {0,0.5,1,1.5} for ~edge we seb), = b, + 0.5, otherwise we sef;, = b. — 0.5.

Ve € E. We refer to such flow as half-integral flow. It is easy to verify that is a feasible half-integer flow in
_ _ _ N(G(V, E),¢,s,t,3). Leté' be the edge that correspondsito
B. Properties of simple unicast networks in the original network. If¢’ belongs toE then it holds that

We begin by proving two properties of simple networks. b;; = 0, which, by Lemma 9, contradicts the minimality of
Lemma 9:Let N(G(V, E),c,s,t,2) be a simple unicast N(G(V E), ¢, s,t,2). Otherwise, it holds that(é’) = 1.5 and
network,N(G(V, E), ¢, s, t,3) be the corresponding flow net_b’é,_ = 1, which again and by the same lemma contradicts the
work andb be a half-integral 3-flow ilN(G(V, E), ¢, s, t,3). minimality of N(G(V, E), ¢, s, t,2). u
Then, for every edgee € E it holds that if c(e) = 2 :
(e(e) = 1.5) thenb, = 1.5 and if &(e) = 1 thenb, € {0.5,1}. D- Topological Cuts
Lemma 10:Let N(G(V, E), ¢, s,t) be a minimal unicast We begin by defining a notion dabpological cut
network. ThenG(V, E) is a directed acyclic graph. Definition 14 (Topological Cut)Let G(V, E) be an acyclic
We proceed by classifying the nodestin\ {s,¢}. directed graph. A cuf’ = (V4, V») is said to be d@opological
Lemma 11:Let N(G(V, E), ¢, s,t,2) be a simple network. cut if there is no edge irG that connects a node W, to a
Then, each node € V' \ {s,t} belong to one of the typed, node inV;.
B, C, or D depicted in Figure 2. We visit the nodes of7 in topological order [12, Section
Proof: (sketch) LetN(G(V, E),¢,s,t,3) be the flow 3.4]. NoteG has a topological ordering because it is acyclic
network that corresponds 1. By Theorem 8N is a feasible (by Lemma 10). The first topological cut that we encounter is
network. Letb be a minimum cost half-integral flow of valueC(s, £\ s) that consists of three edges(vi, u1), e2(v2, u2),
3 in N. First, consider a node € V \ {s,¢} that has one andes(vs, us3), each of unit capacity. We refer to all topolog-
incoming edgee; and two outgoing edges, and e3. The ical cuts that include three edges of capacity one as cuts of
flow b., on edgee; is either equal tol or 1.5. Indeed, by type I.
Lemma 9, it holds thab., > 0. If b; = 0.5, then the flow of For each node:;, 1 < i < 3, in a cut of type |, it holds
on one of the outgoing edges or e; would be 0, in violation thatu; is either of typeA, D, or identical to a terminal node
of Lemma 9. Ifb., = 1, then it holds thabt., = b, = 0.5 t. Clearly, a node cannot be of tyge because edges, e,
and, by Lemma 9¢(e1) = c(e2) = ¢(es) = 1, hencev is a andes have unit capacity. We also observe that fpr = 1
node of typeA. If b., = 1.5, then it holds that., = 1 and for 1 <+ < 3. This fact, coupled with Lemma 9 rules out the
be, = 0.5, or b, = 0.5 andb., = 1. Again, by Lemma 9, possibility that any of nodes,, us, andus is of type B.

c(er) = 2 ande(ez) = c(es) = 1, hencev is a node of type”. Next, we show that at most one of the nodes us, or
Similarly, we prove that nodes of in-degree 2 and out-degrag is of type A. We consider two cases. First, we assume,
1 are either of type B or D. by way of contradiction that all three nodes, us, or uz are

B type A nodes. In this case all of the outgoing edgesuof



us, andug belong toFE. It is easy to verify that we can pick
three edges!, ¢?, ande?® such that forl < i < 3 it holds
that ¢! is an outgoing edge ofi; and there does not exist a e &
node v which is incident to any two edges', ¢, and ¢®.
We setE’ = {e!,e?, ¢*}. Let G5, (b) be the residual graph = |
of G(V, E) with respect toE’ and letG’ be the subgraph of Block A Block B Block C
G £, (b) induced by nodes iV, determined by the cut’. It . o _ _

is easy to verify that each node @& has outdegree at least Fig. 3. Basic building blocks for a simple unicast netwoik=£ 2).
1, henceG’ contains a cycle. Such a cycle must include an
edgee?, for somel < i < 3, because if we exclude edges
{e!, €2, e3} from G’ then the resulting graph would be acyclic.
This implies, that a cycle includes at least one blue edge,
which is the edge incident to;. We conclude that’ and, in

turn, G, (b), includes a residual cycle, which, by Lemma 13

contradicts the minimality oN(G(V, E), ¢, s, t,3). Similarly, m] [ m, m) [m,

we prove that we cannot have two nodes in the{set us, us}

that are of typed, and the other node is of typ®. 7 meka Blook B PE mee B
Next, we prove that if one of the nodds, us, us} is of . . .

type A, then it must be connected to the two other nodes which Fig. 4. Network code for simple unicast networks.

are of typeD. We assume, without loss of generality, thatis

a type A node anduy andug are of typeD. Suppose, by way ) ] ) ]

of contradiction, that; is not connected to, say,. Then, we the following rules: (1) the first block is a block ands is
denote bye the outgoing edge ofi; which is not connected connected to all its input edges (2) the last block is a blBck
to uz and setE’ = {e}. Let G (b) be the residual graph and the destination nodeis connected to all its output edges
of G(V, E) with respect tof’ and letG be the subgraph of (3) block A can be be followed by block® or C' (4) Block

G -, (b) induced by nodes ifis. It is easy to verify that each B, if not the last, must be followed by block (5) Block C'

n(ﬁjé inG’ has outdegree at leasthenceGG’ includes a cycle. must be followed by blockss or C.

Such a cycle must include edggeand, in turn, one blue edge

which is incident tou;. As a result,G’ and, in turn,G gz, (b) . }

include a residual cycle, in contradiction to Lemma 13. In this section, we present a robust network code over
It can be proven, by using a similar argument that if one 6fF'(2) for a simple unicast networ(G(V, E), ¢, s, ,2). As

the nodes{uy, us, us} is identical tot, then all other nodes We proved in the previous section, a simple unicast network

in {uy,us,us} are identical tof, otherwise at least one of theconsists of blocks of typed, B, andC, as depicted in Figure

nodes{u;, uz,us3} must be of type. 3. The_network co_de for all blocks is presented in Figure 4.
We conclude our discussion by the following theorem. In particular, the figure shows for each edgeof capacity
Theorem 15:Let N(G(V, E), ¢, s,t,2) be a simple net- one, the corresponding link. For each edge; of capacity

work. LetC' = (Vi, V») be a topological cut o&(V, E) such two the figure shows two corresponding Im@sandlf_. We

that E(V, V») includes three edges (v1, u1), ea(v2, uz), and choose the notation of tlhe links in such a way that .|f edge

es(vs, us), each one of them of unit capacity. Then it eithef block X coincides with edge; of block Y then link /}

holds thatu; = us = us = ¢ or it holds that one of the nodesOf block X coincides with Ilnkljl- of block Y and link /? of

u1, ug, Of uz is of type A, while two other nodes are of typeblock X coincides with linki? of block Y.

D and the node of typel is connected to two other nodes by Note that all the nodes of blocks of typeor C just forward

two edges. incoming packets. In blocks of typB, one node forwards the
Thus, starting by a topological cut of type I, and if it isncoming packets while other two nodes output a sum (over

not the last topological cut in the netwo(k'(E\, t), we will GF(2) of their incoming packets.

end up with a topological cut which consists of two edges of To complete the definition of the encoding scheme, we need

capacity 2. We refer to such cuts as Type Il cuts. to define the encoding performed by the source naddé/e
Theorem 16:Let N(G(V, E),c,s,t,2) be a simple net- denote bya € GF(2) andb € GF(2) the two packets that

work. LetC' = (V1, V») be a topological cut of7(V, E') such the source node has to transmit to the destinatiat the

that £(V1, V) includes two edges; (v1, u1), e2(ve, us), €ach current round. By Theorem 17, the source node is connected

one of them of capacity of two units. Then, there exist eithéwy three edges of capacity one to the nodes of the first block.

a type B nodew € V5 and two edge$ui,w) and (us, w) of The source node sends packet$, anda + b on these edges,

capacity 1, or two typd> nodesw; andws and four edges in an arbitrary order.

(u1,w1), (u1,ws), (uz,wsr), and(ug,ws) of capacity 1. We proceed to prove that the network code described above

. is robust. Due to space constraints, we only consider the

E. Block Decomposition case in which the networki only includes blocks of type
The previous discussion leads to the following result. A and B.? Such networks are formed by the sequence of
Theorem 17:Let N(G(V, E), ¢, s, t,2) be a simple unicast blocks A followed by a blockB. We enumerate the blocks

network with |[V| > 2. Then,N(G(V, E),¢,s,t,2) can be of the network byA;, By, A3, B> ..., A;, B, such thats is

decomposed into blockd, B, C, as depicted in Figure 3.

The blocks can be connected in an arbitrary order, subject tExtension for general case is presented in [10]

V. NETWORK CODES FORSIMPLE NETWORKS



connectedA4;, A; is connected taB; for 1 < ¢ < z, B; is m 11 0 m
connected tad;; for 1 <i <z — 1 and B, is connected to m 8\ o1 1 ml
t. We also denote by, 1 <i < z — 1 the cut that separates o= 010 2
blocks B; from A;,,. We also denote by, (resp.C,) the 2 s

cut that separate the source (resp. the destination noate) fr Since the matrix in Equation 1 is of full rank, and since

the rest of the network. at least two _of the packetsi;, mo, and mg are linearly
We now pick an arbitrary edgé € E and suppose that|ndependent,.|t holds. that at least two of the p_acboegsmlo,

¢ fails. We denote byi the smallest value of such thaté andm;. are linearly independent. The inductive step follows

: from the same argument. [ ]

belongs to blockd; or B;. By Lemma 21,C, is a valid cut. This implies that the
Recall that upon a failure of the edge every link correspond- _:: _.: S ' . .

ing to this edgtlao carries a packet ider?tically )équal ” zeog Fgesunauon node receives at least two linearly independen

; . packets. We conclude that the destination node can always
ﬁgg} linkl & L(E) we denote bym, the packet carried by reconstruct the two original packetsand b, which, in turn,

. . implies that the network code described above is robust.
Lemma 18:Consider a cu’;, 0 < 7 < ¢. We denote by e symmarize our discussion in the following theorem.
l1, I3, andl3 the set of the links in this cut. T_hen, the _packets Theorem 22:There exists a robust linear code ov&F (2)
{Tréll,mb,mlg} carry the symbolga, b, a+b} in an arbitrary 5, any feasible networki(G(V, E), c, s, t, 2).
order.
Definition 19 (Valid Cut):Consider a cuC;, 0 < i < z. VI. CONCLUSION
We denote byl, I, andls the set of the links in this cut. In this paper, we addressed the problem of constructing
Then C; is said to bevalid if at least two of the packets in robust network codes for unicast networks. We defined an
the set{m,;,, m;,,m;,} are linearly independent. important class of simple unicast network. We showed tloat,
Lemma 20:The cutC; is a valid cut. h = 2, simple unicast networks have an elegant combinatorial
Proof: We depict blocks4; and B; on Figure 5 and structure. This structure enables the.design of a robusétin
show that upon the failure of any edge i} or B;, the cut network code ovetF(2) for any feasible network.
formed by edgesi, €13, ande;4 remains valid. Many open questions, that are the topics of our current
research, naturally arise here: For arbitrargh > 2), what is
the structure of feasible and minimal unicast networks? tWha
my is the minimum field size over which a robust code exists
for a feasible unicast network whéen > 2? How can these
results be used to derive an efficient algorithm for finding

1)

(1]
(2]

Fig. 5.

Blocks A; and B;.

Let mi, msy, and ms be the packets received on the
incoming edges;, ez, andez of block A;. The following
table lists the outputs of this block upon the failure of eath
its edges.

(3]

(4]

failure (m12, mais, m14) failure (771127 mais, m14) [5]
¢ (m;;, mi, 7712) er (m;;, ma, 0)

e1 (m2,m1,m2) || e (ms,ms,m2) 6]
e (m1,ms,0) e (m3, m2, m2)

es (ms3, ma, m2) e12 (0, m1,m2)

e4 (m1,ms, m2) e13 (ms3,0,m2) (7]
es (m3,ma,0) el (m3,m1,0)

€6 (07 mas, m2)

(8]

By Lemma 18, the packets;, mq, andmg carry symbols [9]

{a,b,a + b} in an arbitrary order. This implies that the cut

formed by edge®;s, e13, and ey remains valid under any

failure. m [
Lemma 21:Each cutC;, i < < z is a valid cut.

Proof: The proof is by induction on. As a basis step of
the induction, consider two blocks; | andB; . We assume
that the edges iM;, , and B; , are denoted as shown in[12]
Figure 5. Then, it holds that

[11]

robust network codes for unicast networks?
" As a partial answer to the second open question, we conjec-

ture that the minimum field size is linear in independently
2 of the size of the underlying network.
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