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DMCs with Feedback

» Given:
- Input alphabet: X (finite)
- output alphabet: V (finite)
- channel matrix: W(y|x) (indep. over time)

Ul llll Ul( Xl, X2 ..... Xn
> Encoder l
i [ W) J
01 ----- 0/( Yl, Y2 ..... Yn ‘
< Decoder [¢

[Real feedback is never so ideal ....]
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> Encoder l

lllll

< Decoder [¢

» Number of bits sent: k

» Transmission time: n

» Rate R = k/n

» Error probability: P. = P(UX # UK)
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For symmetric channels, feedback does not improve:

the error exponent (for large rates) iHaroutunian '77; Dobrushin '62]

the order of the polynomial pre-factor in the error exponent
(for large rates) iaitug-wagner '21]

the third-order Coding rate [polyanskiy et al. 11, Altug-Wagner '21]
the moderate deviations performance [aitug-poor-verdd ('15)]

For asymmetric channels,

The high-rate error exponent is not improved by feedback
[Nakiboglu "19, Augustin ‘78]

We will show that the second-order coding rate can be
iImproved by feedback via a novel mechanism.
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A Puzzle

Two coins:

You begin with $0
You select which coin to flip at each of n steps

How to minimize chance that your final wealth is < $a ?
Does “feedback” help?
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Play Bold

With feedback, we can do better.
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On the Web

FiveThirtyEight

[a] SNEws

Politics Sports Science & Health Economics Culture

FEB. 21, 2020, AT 8:00 AM

Can You Flip Your Way To Victory?

By Zach Wissner-Gross

Filed under The Riddler ° ° °

Riddler Classic

From Abijith Krishnan comes a game of coin flipping madness:

You have two fair coins, labeled A and B. When you flip coin A, you get 1
point if it comes up heads, but you lose 1 point if it comes up tails. Coin B is
worth twice as much — when you flip coin B, you get 2 points if it comes up
heads, but you lose 2 points if it comes up tails.

To play the game, you make a total of 100 flips. For each flip, you can choose
either coin, and you know the outcomes of all the previous flips. In order to
win, you must finish with a positive total score. In your eyes, finishing with 2
points is just as good as finishing with 200 points — any positive score is a
win. (By the same token, finishing with 0 or -2 points is just as bad as
finishing with 200 points.)

If you optimize your strategy, what percentage of games will you win?
(Remember, one game consists of 100 coin flips.)

Extra credit: What if coin A isn’t fair (but coin B is still fair)? That is, if coin A
comes up heads with probability p and you optimize your strategy, what
percentage of games will you win?

Submit your answer

RECOMMENDED

Why Younger Democrats
Are Overwhelmingly
Rejecting Biden

Trump Approval Ratings
UPDATED 2 HOURS AGO
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Strategies: Continuous-Time

» Let B(:) be a standard Brownian motion.

t

» Let X(t) =J o(X(s),s) dB(s) be a controlled diffusion
0

where o(-,-) € [01,02]; 01 >0
» How to select o(:,:) to minimize P(X(1) < a)?

» Theorem mcnamara's3): The bang-bang controller

(07 Ifx>a

U(X'S)={02 if X <o

\

Is optimal.
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| 4 VAN =1 3r0[10:03]

‘/Q

» McNamara '83: foraging animals
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The McNamara Threshold

» Let MUPI(g, 01, 02) = max{a : with feedback, Pr(failure) <e}.

» Let I'(g, 01, 02) = max{a : without feedback, Pr(failure) <e}.

» Both expressible in terms of inv. Gaussian CDF

» Lemma: (g, 01, 02) < IVP)(g, g1, 07) iff 01 < 07
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A Key Lemma

» Def: a controller is a function
fi(@xY)* = P(x)
which along with the channel W defines a joint distribution

(Fe W)X,y =] |FOL y = NxW(yilx:)
(=1

» Lemma (cf. shannon '57, Fong-Tan '17; Wang et al. '09; Blahut '74): The SOCR with
feedback, BY?)(€), is the largest a such that

o ¢ W(YilX:)
n||—>rTo]o |?f (f o W) (Z (Iog FW(YY1) — C) < a«/ﬁ) <€

(=1

» Non-feedback version as well.

» $64K guestion: can we control the variance of the increments?
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Vimax = max Varpow | log
P:I(P;W)=C T 0*(Y)
| - W(Y[x)
Vmin = MINVary(.|x) log 0 (V) [assumed > 0
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i W(Y|x) |
Vmax = m}ngarW(.|x) _Iog o (V)
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Variance Definitions

Fact: PW=Q* forall P:I(P; W)=C
- W(YIX) ]
Def: Vmin=min Varp.w | l0g
P:I(P;W)=C I Q*(Y) _
i W(Y|X)
V = max Varp.w |l0Qg
P:I(P;W)=C T 0*(Y)
| - W(Y[x) ]
Vmin = MINVary(.|x) log 0 (V) [assumed > 0
- - throughout]
i W(Y|x) |
Vmax = m}ngarW(.|x) _Iog o (V)

Compound dispersion if Vmin < Vmax. Otherwise simple dispersion.
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Variance Definitions

Fact: PW=Q* forall P:I(P; W)=C
i W(Y|X)
Def: Vmin= min Varp.w | l0g )
P:I(P;W)=C I Q*(Y) _
i W(Y|X) |
V = max Varp.w |l0Qg
P:I(P;W)=C I Q*(Y)
, - W(YIx) ]
Vmin = MINVary(.|x) log 0 (V) [assumed > 0
- throughout]
i W(Y|x) |
Vmax = m}ngarW(.|x) _Iog o (V)

A channel with a unique capacity-achieving input
distribution is necessarily simple dispersion.
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A Compound Dispersion Example

p 0.5(1—p) 0.5(1—p) |
0.5(1—p) p 0.5(1—p)
0.5(1 — 0.5(1 —
W(y|x) = (q p) 1(_q/o) g
0 q 1-q
l1—q 0 q
if p=20.8
and qg=0.337

then Vmin=.102
Vmax — 692
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A Compound Dispersion Example

W(y|x) =

p 0.5(1—p) 0.5(1—p)
0.5(1—p) p 0.5(1—p)
0.5(1—p) 0.5(1—p) p

q 1—q 0

0 q 1—q

1—q 0 q
if p=0.8

and qg=0.337

then Vmin=.102
Vmax — 692

1/3
1/3 Pmin
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A Compound Dispersion Example

p 0.5(1—p) 0.5(1—p) |
0.5(1—p) p 0.5(1—p)
0.5(1— 0.5(1 —
W(y|x) = (q P) 1(_q/o) g
0 q 1—q
. 1—q 0 q _
if p=0.8
and qg=0.337
Vmax=.692

[Many more examples when we consider cost constraints ...]
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SOCR without Feedback

» Theorem 0: (strassen '62) FOr any DMC, the SOCR satisfies:

B(e) =T(€, vV Vmin, \/Vmax)
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SOCR without Feedback

» Theorem 0: (strassen '62) FOr any DMC, the SOCR satisfies:

B(e) =T(€, vV Vmin, \/Vmax)

» Intuition: By the key lemma, SOCR is the max a such that

S L W(YilX:)
e 1 e W) (Z ('Og FW)(Y Y1)

=l

—C)Sa«/ﬁ) <€

where fis “open-loop.” Intuitively, optimal choice should be:

erin if (€, v/ Vmin, \/Vmax) <0
Pmax 1T (€, v/ Vimin, v/ Vimax) > 0

.
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Second-Order Coding Rate w/ Feedback

-

-
» Theorem 1 (wagnershende-aitug 20 FOr any DMC with feedback,

IBUb)(G) > rb) (E, V Vmin, \/Vmax)

> [° (E, vV Vmin, \/Vmax) If Vmax = Vmin
= B(€)
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Second-Order Coding Rate w/ Feedback

4 I
» Theorem 1 (wagnershende-aitug 20 FOr any DMC with feedback,

IB(fb)(e) > rb) (E, V Vmin, \/Vmax)

> [° (E, vV Vmin, \/Vmax) If Vmax = Vmin
= B(€)

- J

4 I
> Corollary (wagnershende-aitug 20): Feedback improves the second-

order coding rate for any compound-dispersion DMC.
\ %
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» Key lemma:
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L
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Proof of Theorem 1

» Key lemma:

o ¢ W(YilX:)
lim |?f (f o W) (Z (Iog D C) < cx«/ﬁ) <e€

(=1

» Choose f(xk,yk) to be capacity-achieving for each (xk, yk):

- |Increment is zero mean
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» Choose f(xk,yk) to be capacity-achieving for each (xk, yk):
- Increment is zero mean
» Select bang-bang f:

'Pmin if running sum > a+/n)

kK ky _
JF(X5, y°) = *meax if running sum < a+/n)
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Proof of Theorem 1

Key lemma:

o ¢ W(YilX:)
lim |?f (f o W) (Z (Iog D C) < a«/ﬁ) <e€

(=1

Choose f(xk,yk) to be capacity-achieving for each (xk, yk):
- Increment is zero mean
Select bang-bang f:

'Pmin if running sum > a+/n)

kK ky _
JF(X5, y°) = *meax if running sum < a+/n)

Show convergence to cont.-time controlled diffusion
- Not Lipschitz ...
Apply McNamara’s characterization of bang-bang controller
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Proof of Theorem 1

Key lemma:

| L W(YilX)
n||_) |nf (f o W) (Z ( 0g (fW)(Yl-lY"—l) — C) < a«/ﬁ) <€

(=1

Choose f(xk,yk) to be capacity-achieving for each (xk, yk):
- Increment is zero mean

Select bang-bang f:

kK vky—= . Timid/Bold Codin M > av/n)
J(xX®, y") = <\ i gm<w_)

Show convergence to cont.-time controlled diffusion
- Not Lipschitz ...
Apply McNamara’s characterization of bang-bang controller

31



A Compound Dispersion Example

p 0.5(1—p) 0.5(1—p)
0.5(1—p) p 0.5(1—p)
0.5(1— 0.5(1 —
W(y|x) = (q p) 1(_q/o) g
0 q 1—q
1—q 0 q
if p=20.8

and qg=x0.337
Vmax — 692
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Numerical Example

3.0

- == Without feedback
2 5 4+ —— With feedback

2.0 -

1.5

1.0 A

0.5 -

O
o

Second order coding rate

—0.5 A

_1.5 1 1 1 1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Error probability (&)
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When Does Feedback Help?

Feedback Improves|Feedback Does Not
SOCR Improve SOCR

&» €




When Does Feedback Help?

Feedback Does Not
Improve SOCR

G

4 I
» Theorem 2 (Wagner-Shende-Altug). Feedback improves the

second-order coding rate iff the channel is compound
dispersion.
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Proof of Theorem 2

» By the key lemma, suffices to show that

i, inf cfoW)(Z(l e —C)sr(e,\hvmm,\/—vmax)-«/ﬁ)>e

0g —
n—oo ' f o\ U (Fw) (Y YD)
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i, inf (o W) (Z(I el c)sr(e,\ﬁvmin,\ﬁvmw)-m)>e

0g — —
e ' f S U ewriyEh)

» Can reduce to controller such that X7 is empirically capacity
aChieVing Whp [Fong-Tan '17]
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0g — —
e ' f S U ewriyEh)

» Can reduce to controller such that X7 is empirically capacity
aChieVing Whp [Fong-Tan '17]

- Simple dispersion = sum of conditional variances of the
terms in the sum given the past is fixed.
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Proof of Theorem 2

» By the key lemma, suffices to show that

i, inf (o W) (Z(I el C)sr(e,\hvmm,\/—vmax)-ﬁ)>e

0g — —
e ' f S U ewriyEh)

» Can reduce to controller such that X7 is empirically capacity
aChieVing Whp [Fong-Tan '17]

- Simple dispersion = sum of conditional variances of the
terms in the sum given the past is fixed.

» Apply martingale CLT (Boithausen "82]
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By How Much Does Feedback Help?

» Theorem 1 (wagnershende-aitug 20): For any DMC with feedback,

IB(fb)(E) > Ub) (6, V Vmin, \/Vmax)
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By How Much Does Feedback Help?

» Theorem 1 (wagnershende-aitug 20): For any DMC with feedback,

ﬁ(fb)(e) > Ub) (6, V Vmin, \/Vmax)

» Theorem 3 (wagnershende-aitug 20 For any DMC with feedback,

ﬁ(fb)(e) < rub) (G, v/ YVmin, \/Vmax)
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Proof of Theorem 3

» By the key lemma, suffices to show that for any controller:

|
n

. . L W(YilXi) B (fb) .
=% o) (Z (Iog FW)(YiIY=T) C) = e vmin \/VmGX)ﬁ) o

(=1
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Proof of Theorem 3

» By the key lemma, suffices to show that for any controller:

. . L W(YilXi) B (fb) .
i W) (; (Iog FW)(Y Y1) C) <P, vvimin \/VmGX)ﬁ) "€

» Weaken by replacing fW with Q™:

r!l—>nc}o (f o W) (Z (|O WLYilXa) — C) < r-(fb)(e’ v/ Vmin, \/ Vmax)ﬁ) => €

9%
= Q* (Y1)
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Proof of Theorem 3

» By the key lemma, suffices to show that for any controller:

|
n

. . L W(YilXi) B (fb) .
=% o) (Z (Iog FW)(YiIY=T) C) = e vmin \/VmGX)ﬁ) o

(=1

» Weaken by replacing fW with Q™:

”go (f o W) (Z (|O WLYilXa) — C) < r-(fb)(e’ v/ Vmin, \/ Vmax)ﬁ) => €

i 9—
= = Q* (Y1)

DT martingale w.r.t.
o(X=1, yi=hy;

cond. variance in

[ Vmin, Vmax]
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Proof of Theorem 3

» By the key lemma, suffices to show that for any controller:

. . L W(YilXi) B (fb) .
=% o) (; (Iog FW)(YiIY=T) C) = e vmin \/VmGX)ﬁ) o

|
n

» Weaken by replacing fW with Q™:

”go (f o W) (Z (|O WLYilXa) — C) < r-(fb)(e’ v/ Vmin, \/ Vmax)ﬁ) => €

i 9—
= = Q* (Y1)

DT martingale w.r.t.
o(X=1, yi=hy;

cond. variance in

[ Vmin, Vmax]

[to apply McNamara,
need to switch to cont.-time]
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Proof of Theorem 3

» Theorem (strassen '67): If {Sn} IS a square-integrable
martingale with So = 0, then there exists a Brownian
motion B(:) and a sequence of stopping times 0 = To < T1
<... < Th such that

(So,S1,...,5n) 2 (B(To), B(T1), ..., B(Ty))

and

E[Tk — Tk-11S1,---,5k=1,T1,..., Tk-1]
=Var(Sx — Sk-1151, ..., Sk-1)
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» So view f as selecting stopping times:
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» Then view f as speeding up the BM instead of waiting:
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» Then view f as speeding up the BM instead of waiting:




Proof of Theorem 3

» Then view f as speeding up the BM instead of waiting:

» Such fis nearly a feasible scheme in McNamara’s problem
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Proof of Theorem 3

» Then view f as speeding up the BM instead of waiting:

» Such fis nearly a feasible scheme in McNamara’s problem

» Make feasible and apply McNamara’s optimality result
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By How Much Does Feedback Help?

» Theorem 1 (wagnershende-aitug 20): For any DMC with feedback,

ﬁ(fb)(e) > Ub) (6, V Vmin, \/Vmax)

» Theorem 3 (wagnershende-aitug 20 For any DMC with feedback,

ﬁ(fb)(e) < rub) (G, v/ YVmin, \/Vmax)
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A Compound Dispersion Example
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if p=20.8

and qg=x0.337
Vmax — 692
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Vmax = .692
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A Compound Dispersion Example

W(y|x) =

Vmax = Vmax

D 0.5(1—p) 0.5(1—p) "
0.5(1—p) p 0.5(1—p)
0.5(1—p) 0.5(1—p) p

q l1—q 0
0 q 1-q
. 1—q 0 q _
if p=0.8
and qg=x0.337
Vmax=.692
Vmin = Vmin

... SO the upper bound is tight in this case.

42



Numerical Example
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A Compound Dispersion Example

p 0.5(1—p) 0.5(1—p) °
0.5(1—p) p 0.5(1—p)
0.5(1—p) 0.5(1—
W(y|x) = (q p) 1(_q/o) g
0 q 1—q
1—q 0 q :
if p=20.8

and qg=x0.337

then Vyin=.102
Vmax = .692
Vmin = Vmin

Vmax = Vmax
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The AWGN

power constraint: P
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The AWGN

Z" ~ N(O,I-N)

l power constraint: P

If X" is drawn uniformly from the radius-v' nP sphere:

1 W(Y™IX")] P(P+2N)
—Var | log =

n | © Q*Y" | 2(P+N)?

If X" is drawn i.i.d. N (O, P):

1 W(Yn [ xXm") | P
—Var | log

n | C 0*(Y") | P+N
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The AWGN

Z" ~ N(O,I-N)

l power constraint: P

If X" is drawn uniformly from the radius-v' nP sphere:

1V j w(Y"IX")]  P(P+2N)

n YR | T 2P+ ny i
If X" is drawn i.i.d. N (O, P):

1V _| W(YN|Xn)" P

n Y oy | T RN QAN
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The AWGN

Z" ~ N(O,I-N)

l power constraint: P

If X" is drawn uniformly from the radius-v' nP sphere:

1V | W(Y"|IX™)7  P(P+2N)

n o PP Torem | T 2P N2 i
If X" is drawn i.i.d. N (O, P):

1V _| W(Y"|X")" [

n Y oy | T RN QAN

[Similarly for any DMC with an active cost constraint]
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» How does one use feedback to improve block coding
performance in point-to-point channels?
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Conclusion

» How does one use feedback to improve block coding
performance in point-to-point channels?

» EXxploit channel memory to predict the future
» Learn the channel law

» Opportunistically vary the decoding time

» Opportunistically vary the power
» |ncrease the effective minimum distance

» Use timid/bold coding

46



