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[We only consider ideal feedback in this talk]
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» How can one use feedback to improve block coding
performance in point-to-point channels?

» [f the channel has memory, we can predict the future noise
realization.

» |f the channel iIs unknown, we can learn its law.

» |If the decoding time is not fixed, we can decode early or
late opportunistically.

» |f there is an average cost (e.g., power) constraint, we can
use resources opportunistically.

» |f the rate Is low, we can increase the effective minimum
distance of the code.

» [Other contexts: networks, control over noisy channels,
streaming codes, complexity-constrained coding....]
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Figures of Merit

> Encoder l

lllll

< Decoder [¢

» Number of bits sent: k

» Transmission time: n

» Rate R = k/n

» Error probability: P. = P(UX # UK)
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» Let {Xi} be an I.i.d. sequence with zero mean, unit variance

» (Weak) Law of large numbers:

n
AL@OPF(;X[>EH)=O e>0
(=

» Large deviations*:

lim ——Iog Pr (le>en) =N*(e)>0 €e>0

Nn—00 N

» Central Limit Theorem (CLT):

lim Pr (in > e«/ﬁ) = Q(€)
i=1
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l.1.D. Sums

» Moderate deviations*: if Bisin (1/2, 1):

1 n
lim log Pr (;Xi>en5) =AY (e) €>0
(=

Nn— 00 n2,8—1

11



Connection to Channel Coding



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

L W(Y;| X
Po < Pr Zlog (¥l l)snR+n9 + 2-11°
i=1 PW(YI)

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

L W(Y;| X
Po < Pr Zlog (¥l l)snR+n9 + 2-11°
i=1 PW(YI)

!
.i.d. PoW

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

n W (Y| X
Peo < Pr Zlog (i l)SnR+n9 1L e
i=1 PW(YI)
f

“Information density”

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

n W (Y| X
Peo < Pr Zlog (i l)SnR+n9 1L e
i=1 PW(YI)
f

“Information density”

» For the information density,

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

n W (Y| X
Peo < Pr Zlog (i l)SnR+n9 1L e
i=1 PW(YI)
f

“Information density”

» For the information density,

- Law of large numbers — capacity

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

n W (Y| X
Peo < Pr Zlog (i l)SnR+n9 1L e
i=1 PW(YI)
f

“Information density”

» For the information density,
- Law of large numbers —» capacity

- Large deviations — error exponents

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

L W(Y;i| X
Pe < Pr Zlog o l)snR+n9 4+ 2719
i=1 PW(Y)
!

“Information density”

» For the information density,
- Law of large numbers — capacity
- Large deviations — error exponents

- Central limit theorem - second-order coding rate

12



Connection to Channel Coding

» Lemma shannon '57);; For a DMC without feedback, for any input
dist. P and any 6 > 0, there exists a code with rate R, block
length n, and error prob.

n W (Y| X
P < Pr Zlog (¥ l)snR+n9 1L e
i=1 PW(YI)
f

“Information density”

» For the information density,
- Law of large numbers — capacity
- Large deviations — error exponents
- Central limit theorem - second-order coding rate

- Moderate deviations - moderate deviations
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Error Exponents

» Def:
Po(n,R) =min{Pe:3d an (n, k, Pe) code with k/n >R}

4 )
» Def: The reliability function or error exponent at rate R Is

1
E(R) = n“_[Qo ——log Pe(n, R)

- Characterized w/o feedback for a range of rates close to
Capacity and at very low rates (shannon, Gallager, Berlekamp ('67)]1.
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4 I
» Def:
k
R(n, €) = max {— :d an (n, k, Pe) code with Pe < e}

\ & J
[ B(€)
Think: R(n,e)~C+ — +
I (n€) vn
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Second-Order Coding Rate

4 )

» Def:

K
R(n, €) = max {— :d an (n, k, Pe) code with Pe < e}
n

Think: R(n, e)~C+@

vn

4 )

» Def: Second-Order Coding Rate (SOCR):
B(e) = lim (R(n,€)-C)¥/n

- Characterized w/o feedback by Strassen ('62).
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» Theorem (Altug-Wagner '14).
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-~

» Theorem (Altug-Wagner '14).
Consider a DMC without feedback. Let R, = C — €, be s.t.

lim e, =0 lim epvn =00

Nn—00 N1— 00

constant

Then depending on the

channel

lim —
n—00 EI% * I 2Vm|n

15



Moderate Deviations

Pa(n, R)

Normal approximation

S~

Moderate deviations

C y
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» Scheme: repeatedly transmit each bit until it gets through
[1.1.d. Bernoulli(l — p)]
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A Non-Example

k k _ N k
U 6{011} 0 1—0p .0 U'e{0,1}

> Encoder ——> /ve X Decoder
|1 »1 |

: 1_p :
X"e {0,1}" y"e {0,1,e}"
n
e < ZP(Z ) P({ x k sub-matrix of G not full column-rank)
1=0 =
n n
< ZP(Z = ) .max(2*,1) -0
/=0 \i=1

fnk—o0cask=nRwthR<1l-p

Also no improvement in (high rate) error exponents,
SOCR, or moderate deviations.
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» For asymmetric channels,

- The high-rate error exponent is not improved by feedback
[Nakiboglu '19, Augustin ‘78]

- The second-order coding rate can be improved by feedback
[Part Il]

- Moderate deviations?
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Mechanisms

» How can one use feedback to improve block coding
performance in point-to-point channels?

>

If the channel has memory, we can predict the future noise
realization.

If the channel Is unknown, we can learn its law.

If the decoding time is not fixed, we can decode early or
late opportunistically.

If there Is an average cost (e.qg., power) constraint, we can
use resources opportunistically.

If the rate is low, we can increase the effective minimum
distance of the code.
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» First attempt at an example: consider the binary symmetric
channel (BSC):

X=Y=A{01}
Y'=X"e®Z"
where {Zn} Is an arbitrary stationary and ergodic process.
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Channels with Memory

» First attempt at an example: consider the binary symmetric
channel (BSC):

X=)Y=1{0,1}
Y'=X"@Z"
where {Zn} Is an arbitrary stationary and ergodic process.
» ThenC =1 - H({Z,})

24
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With feedback: I(UX:Y") = H(Y") = H(Y"|UX)
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With feedback: I(UX:Y") = H(Y") = H(Y"|UX)

n
=H(Y") = > H(Yi|UK, Y= h)
(=1

n
=H(Y") = Y H(X;® Zi|U¥, Y1)
Feedback does i=1
not increase the
capacity of discrete

additive-noise B
channels =H(Y”)—ZH(Zi|Zi‘1)
i=1

n
=H(Y") - > H(Z|U¥, Y=t Zzi-1)
(=1

[Alajaji ('95)]
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» Consider a channel with ternary channel with three “states”
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1/2 1/2
@ >® o @ >®
1/2
1/2
1/2
1/2
/ O 1/2 ® >0
1/2
1/2
1/2 7 1/2
@ > >

The channel starts iIn a random state and then
deterministically cycles1 - 2,2 - 3, 3 - 1.

Each constituent channel has C = 1 bit.

With feedback, encoder can learn the phase: Crg = 1 bit

Without feedback, encoder uses each input equally:
C = H(B(1/3)) < 1 bit
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Channels with Memory

» ... are closely related to unknown channels.

» Why does feedback increase the capacity of Gaussian
additive noise channels but not discrete opr-=

iIndependent

I(UX; Y™) = h(Y™) = h(Y™|UX) of the input
= h(Y") — h(Z")

1 1
<5 log((2me)"|Kyn|) — 5 log((2me)" |Kzn|)

achieved
with Gaussian
Inputs

can be better

whitened with
feedback

» ARMA(k) Gaussian feedback capacity found by Kim ('10)
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Mechanisms

» How can one use feedback to improve block coding
performance in point-to-point channels?

>

If the channel has memory, we can predict the future noise
realization.

If the channel Is unknown, we can learn its law.

If the decoding time is not fixed, we can decode early or
late opportunistically.

If there Is an average cost (e.qg., power) constraint, we can
use resources opportunistically.

If the rate is low, we can increase the effective minimum
distance of the code.
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Opportunistic Use of the Channel

» Up to now, # of channel uses has been fixed.

» For some transmissions, we might wish we had more. For
others, we could do with fewer.

» Suppose the transmission ends at a random (stopping)
time N.

» Define the effective rate k/E[N] .
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» Consider the BEC:

Uk e {0, 1} l 1—p 0" e {0, 1}

A 0 ~ é 0 A
—Y 5| Encoder —> e » Decoder —Y>
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> " | | n
Consider the BEC: . _ .. | — re 01y
A <é .
—Y 5| Encoder —> e » Decoder —Y
A :ﬁ: A
: 1 == 1 :
: p :
v v
X"e {0,1}" y"e {0,1,e}"

» Suppose we transmit each bit until it passes through.
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Opportunistic Use of the Channel

» Consider the BEC:

k k 1—
—Y 5| Encoder —> : e » Decoder —Y>

X"e {0,1}" y"e {0,1,e}"

» Suppose we transmit each bit until it passes through.

» Let N be the # channel uses required for all bits to pass
through. Then E[N] =k/(1 —p). So

K
—1—-p=C=C
EIN P FB
Pe —_ O

» A little opportunism goes a long way:
r!i”Jo Pr(N>(1+€)E[N]) =0 for any € > 0.
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- the moderate deviations regime (tuong and Tan ('19)]
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A General Scheme

» Following Burnashev ('76), reflecting later refinements:

Send message

Send message Send message

) Send ACK/ . Send ACK/ . Send ACK/
using non-feedback NACK using non-feedback NACK using non-feedback NACK
code code code
|
| —= — — -

0

E[N]

» Error exponent determined by Burnashev ('76)

Typically beats non-feedback error exponent at all rates

» Feedback provides an order improvement in

t
t

ne moderate deviations regime (muong and Tan ('19)]

ne second-order coding rate regime (polyanskiy et al. ('11)]

31



Mechanisms

» How can one use feedback to improve block coding
performance in point-to-point channels?

>

If the channel has memory, we can predict the future noise
realization.

If the channel Is unknown, we can learn its law.

If the decoding time is not fixed, we can decode early or
late opportunistically.

If there Is an average cost (e.qg., power) constraint, we can
use resources opportunistically.

If the rate is low, we can increase the effective minimum
distance of the code.
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Opportunistic Use of Power

» Consider the AWGN
Yn =x"4zZ" Z"i.i.d. N(O, 1)

» Power constraint:

i L .
E EZXIZ(UI(' Y=1)| <P for all messages uX
i=1

33
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The Schalkwik-Kailath scheme uses (a lot) more power
when decoding errors are imminent:

E [v? (6(UX) - ELO(UMIV11)*|U¥] <P ass.

Performance is much degraded if the power constraint is
imposed ad.S. [Pinkser ('68), Shepp et al. ('69), Altug-Poor-Verdu ('15)]

Error exponent of fixed-length coding for DMCs with a
cost constraint?
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Mechanisms

» How can one use feedback to improve block coding
performance in point-to-point channels?
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If the channel has memory, we can predict the future noise
realization.

If the channel Is unknown, we can learn its law.

If the decoding time is not fixed, we can decode early or
late opportunistically.

If there Is an average cost (e.qg., power) constraint, we can
use resources opportunistically.

If the rate is low, we can increase the effective minimum
distance of the code.
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» Consider the binary symmetric channel, w/o feedback,
Y'=X"eZ" Z"i.i.d. B(p)
and at low rate, k = €n, € = 0.Then P is exp. small.

» Suppose the codewords are

» ML decoding rule

argmin; du(x?, Y")

Hamming
distance
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—logPe ~ max—log (dH(x], Y™) < du(x,Y")

Xm)

38



Min. Distance Example

1 1
—log Pe & max —log Pr (dn(x], Y") < du(x7, Y")

n I#m n Xn )

m




Min. Distance Example

1 1
—logPs~ max —logPr(du(x™, Y™ < dy(x",Y"
nge#mng(H(ﬁ )< du(x_,Y")

x" )

1
~ exp (—dH(xg,x”m) -D (5 p))
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Min. Distance Example

1 1

—log Pe = —logPr(d Y <d y”

~logPe & max —log Pr (du(xy, Y") < du(xp, Y™)|x7, )
~ _d ( n n).D E

So

1 dH(x?,x”m) 1
——log Pe & min D[ —=||p
8] L#m

min. distance
of the code

Q: How large can the minimum distance be?
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Min. Distance Example

» How large can the minimum distance be?
- If k=1, min. distance is n.
- 000000000000 vs. 111111111111
- If k/n =€, where € Is small, then min. distance ~ n/2

» Suppose near the end of transmission, a genie ruled out
all but one of the incorrect codewords.

- Remaining transmission can be 0000... vs. 1111.....
- Would yield an effective min. distance increase.
- We can achieve a similar effect with feedback ....
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» Following Zigangirov ('70),

- At time I, compute posterior prob. of messages given Yi-1,

- Greedily partition messages into two groups to minimize
the difference of their sum-probabilities:

message: 1 2 3 4 5 6

send ‘O’ I send ‘1’ I__

- Improves low-rate error exponent over non-feedback case.

41



Min. Distance Example

» Following Zigangirov ('70),

- At time I, compute posterior prob. of messages given Yi-1,

- Greedily partition messages into two groups to minimize
the difference of their sum-probabilities:

message: 1 2 3 4 5 6

send ‘O’ I send ‘1’ I__

-  Symmetric channel: no high-rate error exponent, moderate
deviations, or second-order coding rate improvement.
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Mechanisms

» How can one use feedback to improve block coding
performance in point-to-point channels?

>

If the channel has memory, we can predict the future noise
realization.

If t
If

ne channel iIs unknown, we can learn its law.

ne decoding time Is not fixed, we can decode early or

late opportunistically.

If there Is an average cost (e.qg., power) constraint, we can
use resources opportunistically.

If the rate is low, we can increase the effective minimum
distance of the code.

[See Part Il]
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