What Hockey Teams and Foraging Animals Can Teach Us About Feedback Communication Part I: A Tutorial on Feedback

Aaron Wagner Cornell University

The "Coat of Arms"

[source: Key Papers in the Development of Information Theory]

Communication Without Feedback is the Exception

Communication Without Feedback is the Exception

Communication Without Feedback is the Exception

A Doctored Coat of Arms

[source: Key Papers in the Development of Information Theory]

A Doctored Coat of Arms

[source: Key Papers in the Development of Information Theory]

[We only consider ideal feedback in this talk]

How can one use feedback to improve block coding performance in point-to-point channels?

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.
 - [Other contexts: networks, control over noisy channels, streaming codes, complexity-constrained coding....]

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.
 - [Other contexts: networks, control over noisy channels, streaming codes, complexity-constrained coding....]

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

- input alphabet: \mathcal{X} (finite)
- output alphabet: \mathcal{Y} (finite)
- channel matrix: W(y|x) (indep. over time)

► Number of bits sent: *k*

- ► Number of bits sent: *k*
- ► Transmission time: *n*

- Number of bits sent: k
- ► Transmission time: *n*
- Rate R = k/n

- Number of bits sent: k
- ► Transmission time: *n*
- Rate R = k/n
- ► Error probability: $P_e = P(U^k \neq \hat{U}^k)$

Capacity

- Capacity
- Error exponents

- Capacity
- Error exponents
- Second-order coding rate (normal approximation)

- Capacity
- Error exponents
- Second-order coding rate (normal approximation)
- Moderate deviations performance

Let $\{X_i\}$ be an i.i.d. sequence with zero mean, unit variance

- Let $\{X_i\}$ be an i.i.d. sequence with zero mean, unit variance
- (Weak) Law of large numbers:

$$\lim_{n \to \infty} \Pr\left(\sum_{i=1}^{n} X_i > \epsilon n\right) = 0 \qquad \epsilon > 0$$

- Let $\{X_i\}$ be an i.i.d. sequence with zero mean, unit variance
- (Weak) Law of large numbers:

$$\lim_{n \to \infty} \Pr\left(\sum_{i=1}^{n} X_i > \epsilon n\right) = 0 \qquad \epsilon > 0$$

Large deviations*:

$$\lim_{n\to\infty} -\frac{1}{n} \log \Pr\left(\sum_{i=1}^n X_i > \epsilon n\right) = \Lambda^*(\epsilon) > 0 \qquad \epsilon > 0$$

- Let $\{X_i\}$ be an i.i.d. sequence with zero mean, unit variance
- (Weak) Law of large numbers:

$$\lim_{n \to \infty} \Pr\left(\sum_{i=1}^{n} X_i > \epsilon n\right) = 0 \qquad \epsilon > 0$$

Large deviations*:

$$\lim_{n\to\infty} -\frac{1}{n} \log \Pr\left(\sum_{i=1}^n X_i > \epsilon n\right) = \Lambda^*(\epsilon) > 0 \qquad \epsilon > 0$$

Central Limit Theorem (CLT):

$$\lim_{n\to\infty} \Pr\left(\sum_{i=1}^n X_i > \epsilon \sqrt{n}\right) = Q(\epsilon)$$

• Moderate deviations*: if β is in (1/2, 1):

$$\lim_{n\to\infty} -\frac{1}{n^{2\beta-1}} \log \Pr\left(\sum_{i=1}^n X_i > \epsilon n^{\beta}\right) = \Lambda_{\mathcal{N}}^*(\epsilon) \quad \epsilon > 0$$

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

"information density"

For the information density,

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

- For the information density,
 - Law of large numbers → capacity

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

- For the information density,
 - Law of large numbers → capacity
 - Large deviations → error exponents

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

- For the information density,
 - Law of large numbers → capacity
 - Large deviations → error exponents
 - Central limit theorem → second-order coding rate

Lemma (Shannon '57); For a DMC without feedback, for any input dist. P and any $\theta > 0$, there exists a code with rate R, block length n, and error prob.

$$P_e \le \Pr\left(\sum_{i=1}^n \log \frac{W(Y_i|X_i)}{PW(Y_i)} \le nR + n\theta\right) + 2^{-n\theta}$$

- For the information density,
 - Law of large numbers → capacity
 - Large deviations → error exponents
 - Central limit theorem → second-order coding rate
 - Moderate deviations → moderate deviations

Error Exponents

Def:

 $P_e(n,R) = \min \{P_e : \exists \text{ an } (n,k,P_e) \text{ code with } k/n \ge R\}$

Error Exponents

Def:

$$P_e(n,R) = \min \{P_e : \exists \text{ an } (n,k,P_e) \text{ code with } k/n \ge R\}$$

▶ **Def**: The *reliability function* or *error exponent* at rate *R* is

$$E(R) = \lim_{n \to \infty} -\frac{1}{n} \log P_e(n, R)$$

Error Exponents

Def:

$$P_e(n,R) = \min \{P_e : \exists \text{ an } (n,k,P_e) \text{ code with } k/n \ge R\}$$

▶ **Def**: The *reliability function* or *error exponent* at rate *R* is

$$E(R) = \lim_{n \to \infty} -\frac{1}{n} \log P_e(n, R)$$

 Characterized w/o feedback for a range of rates close to capacity and at very low rates [Shannon, Gallager, Berlekamp ('67)].

Def:

$$R(n, \epsilon) = \max \left\{ \frac{k}{n} : \exists \text{ an } (n, k, P_e) \text{ code with } P_e \le \epsilon \right\}$$

Def:

$$R(n, \epsilon) = \max \left\{ \frac{k}{n} : \exists \text{ an } (n, k, P_e) \text{ code with } P_e \le \epsilon \right\}$$

Think:
$$R(n, \epsilon) \approx C + \frac{\beta(\epsilon)}{\sqrt{n}} + \cdots$$

Def:

$$R(n, \epsilon) = \max \left\{ \frac{k}{n} : \exists \text{ an } (n, k, P_e) \text{ code with } P_e \le \epsilon \right\}$$

Think:
$$R(n, \epsilon) \approx C + \frac{\beta(\epsilon)}{\sqrt{n}} + \cdots$$

▶ **Def:** Second-Order Coding Rate (SOCR):

$$\beta(\epsilon) = \lim_{n \to \infty} (R(n, \epsilon) - C) \sqrt{n}$$

Def:

$$R(n, \epsilon) = \max \left\{ \frac{k}{n} : \exists \text{ an } (n, k, P_e) \text{ code with } P_e \le \epsilon \right\}$$

Think:
$$R(n, \epsilon) \approx C + \frac{\beta(\epsilon)}{\sqrt{n}} + \cdots$$

▶ **Def:** Second-Order Coding Rate (SOCR):

$$\beta(\epsilon) = \lim_{n \to \infty} (R(n, \epsilon) - C) \sqrt{n}$$

Characterized w/o feedback by Strassen ('62).

Moderate Deviations

► Theorem (Altuğ-Wagner ′14):

Consider a DMC without feedback. Let $R_n = C - \epsilon_n$ be s.t.

$$\lim_{n\to\infty} \epsilon_n = 0 \qquad \qquad \lim_{n\to\infty} \epsilon_n \sqrt{n} = \infty$$

Then

$$\lim_{n\to\infty} -\frac{\log P_e(n,R_n)}{\epsilon_n^2 \cdot n} = \frac{1}{2V_{\min}}$$

Moderate Deviations

► Theorem (Altuğ-Wagner '14):

Consider a DMC without feedback. Let $R_n = C - \epsilon_n$ be s.t.

$$\lim_{n\to\infty} \epsilon_n = 0 \qquad \qquad \lim_{n\to\infty} \epsilon_n \sqrt{n} = \infty$$

Then

$$\lim_{n\to\infty} -\frac{\log P_e(n,R_n)}{\epsilon_n^2 \cdot n} = \frac{1}{2V_{\min}}$$
 depending on the

constant

Moderate Deviations

$$P_{e} = \sum_{\ell=0}^{k-1} P\left(\sum_{i=1}^{n} Z_{i} = \ell\right) \cdot \left(1 - \frac{1}{2^{k-\ell}}\right)$$

$$\leq P\left(\sum_{i=1}^{n} Z_{i} < k\right)$$

[i.i.d. Bernoulli(1-p)]
$$P_{e} = \sum_{\ell=0}^{k-1} P\left(\sum_{i=1}^{n} Z_{i} = \ell\right) \cdot \left(1 - \frac{1}{2^{k-\ell}}\right)$$

$$\leq P\left(\sum_{i=1}^{n} Z_{i} < k\right)$$

$$P_{e} = \sum_{\ell=0}^{k-1} P\left(\sum_{i=1}^{n} Z_{i} = \ell\right) \cdot \left(1 - \frac{1}{2^{k-\ell}}\right)$$

$$\leq P\left(\sum_{i=1}^{n} Z_{i} < k\right)$$

Scheme: repeatedly transmit each bit until it gets through

$$P_{e} = \sum_{\ell=0}^{k-1} P\left(\sum_{i=1}^{n} Z_{i} = \ell\right) \cdot \left(1 - \frac{1}{2^{k-\ell}}\right)$$

$$\leq P\left(\sum_{i=1}^{n} Z_{i} < k\right) \to 0$$

if $n, k \to \infty$ as k = nR with R < 1 - p

$$\begin{bmatrix}
0 \\
1 \\
1 \\
0 \\
\vdots \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
1 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 1 & \cdots & 1
\end{bmatrix} \cdot \begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

 $\leq \sum_{i=0}^{n} P\left(\sum_{i=1}^{n} Z_i = \ell\right) \cdot \max(2^{k-\ell}, 1) \to 0$

$$P_e \le \sum_{\ell=0}^n P\left(\sum_{i=1}^n Z_i = \ell\right) \cdot P(\ell \times k \text{ sub-matrix of } \underline{G} \text{ not full column-rank})$$

$$\leq \sum_{\ell=0}^{n} P\left(\sum_{i=1}^{n} Z_i = \ell\right) \cdot \max(2^{k-\ell}, 1) \to 0$$

if $n, k \to \infty$ as k = nR with R < 1 - p

$$P_e \le \sum_{\ell=0}^n P\left(\sum_{i=1}^n Z_i = \ell\right) \cdot P(\ell \times k \text{ sub-matrix of } \underline{G} \text{ not full column-rank})$$

$$\leq \sum_{\ell=0}^{n} P\left(\sum_{i=1}^{n} Z_i = \ell\right) \cdot \max(2^{k-\ell}, 1) \to 0$$

if $n, k \to \infty$ as k = nR with R < 1 - p

Also no improvement in (high rate) error exponents, SOCR, or moderate deviations.

▶ **Def**: A channel (stochastic matrix) *W* is *symmetric* if its columns (outputs) can be partitioned so that, within each partition, the columns are permutations of each other, as are the rows.

▶ **Def**: A channel (stochastic matrix) *W* is *symmetric* if its columns (outputs) can be partitioned so that, within each partition, the columns are permutations of each other, as are the rows.

$$\begin{bmatrix} 1-p & 0 & p \\ 0 & 1-p & p \end{bmatrix}$$

Symmetric

▶ **Def**: A channel (stochastic matrix) *W* is *symmetric* if its columns (outputs) can be partitioned so that, within each partition, the columns are permutations of each other, as are the rows.

$$\begin{bmatrix} 1-p & 0 & p \\ 0 & 1-p & p \end{bmatrix}$$

Symmetric

Not symmetric

► For symmetric channels, feedback does not improve:

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]
 - the third-order coding rate [Polyanskiy et al. '11, Altuğ-Wagner '21]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]
 - the third-order coding rate [Polyanskiy et al. '11, Altuğ-Wagner '21]
 - the moderate deviations performance [Altuğ-Poor-Verdú ('15)]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]
 - the third-order coding rate [Polyanskiy et al. '11, Altuğ-Wagner '21]
 - the moderate deviations performance [Altuğ-Poor-Verdú ('15)]
- For asymmetric channels,

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]
 - the third-order coding rate [Polyanskiy et al. '11, Altuğ-Wagner '21]
 - the moderate deviations performance [Altuğ-Poor-Verdú ('15)]
- For asymmetric channels,
 - The high-rate error exponent is not improved by feedback [Nakiboğlu '19, Augustin '78]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]
 - the third-order coding rate [Polyanskiy et al. '11, Altuğ-Wagner '21]
 - the moderate deviations performance [Altuğ-Poor-Verdú ('15)]
- For asymmetric channels,
 - The high-rate error exponent is not improved by feedback [Nakiboğlu '19, Augustin '78]
 - The second-order coding rate can be improved by feedback [Part ||]

- For symmetric channels, feedback does not improve:
 - the error exponent (for large rates) [Haroutunian '77; Dobrushin '62]
 - the order of the polynomial pre-factor in the error exponent (for large rates) [Altuğ-Wagner '21]
 - the second-order coding rate [Polyanskiy et al. '11]
 - the third-order coding rate [Polyanskiy et al. '11, Altuğ-Wagner '21]
 - the moderate deviations performance [Altuğ-Poor-Verdú ('15)]
- For asymmetric channels,
 - The high-rate error exponent is not improved by feedback [Nakiboğlu '19, Augustin '78]
 - The second-order coding rate can be improved by feedback [Part II]
 - Moderate deviations?

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

First attempt at an example: consider the binary symmetric channel (BSC):

$$\mathcal{X} = \mathcal{Y} = \{0, 1\}$$
$$Y^n = X^n \oplus Z^n$$

where $\{Z_n\}$ is an arbitrary stationary and ergodic process.

First attempt at an example: consider the binary symmetric channel (BSC):

$$\mathcal{X} = \mathcal{Y} = \{0, 1\}$$
$$Y^n = X^n \oplus Z^n$$

where $\{Z_n\}$ is an arbitrary stationary and ergodic process.

► Then $C = 1 - H(\{Z_n\})$

With feedback:
$$I(U^k; Y^n) = H(Y^n) - H(Y^n|U^k)$$

$$= H(Y^n) - \sum_{i=1}^n H(Y_i|U^k, Y^{i-1})$$

$$= H(Y^n) - \sum_{i=1}^n H(X_i \oplus Z_i|U^k, Y^{i-1})$$

$$= H(Y^n) - \sum_{i=1}^n H(Z_i|U^k, Y^{i-1}, Z^{i-1})$$

$$= H(Y^n) - \sum_{i=1}^n H(Z_i|Z^{i-1})$$

$$= H(Y^n) - H(Z^n)$$

$$\leq n - H(Z^n)$$

With feedback:
$$I(U^k; Y^n) = H(Y^n) - H(Y^n|U^k)$$

$$= H(Y^n) - \sum_{i=1}^n H(Y_i|U^k, Y^{i-1})$$

$$= H(Y^n) - \sum_{i=1}^n H(X_i \oplus Z_i|U^k, Y^{i-1})$$

$$= H(Y^n) - \sum_{i=1}^n H(Z_i|U^k, Y^{i-1}, Z^{i-1})$$

$$= H(Y^n) - \sum_{i=1}^n H(Z_i|Z^{i-1})$$

$$= H(Y^n) - H(Z^n)$$

$$\leq n - H(Z^n)$$

$$C_{FB} = 1 - H(\{Z_n\})$$

With feedback:
$$I(U^k; Y^n) = H(Y^n) - H(Y^n|U^k)$$

Feedback does
not increase the
capacity of discrete
additive-noise
channels
[Alajaji ('95)]

$$Y^{n}) = H(Y^{n}) - H(Y^{n}|U^{k})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Y_{i}|U^{k}, Y^{i-1})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(X_{i} \oplus Z_{i}|U^{k}, Y^{i-1})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Z_{i}|U^{k}, Y^{i-1}, Z^{i-1})$$

$$= H(Y^{n}) - \sum_{i=1}^{n} H(Z_{i}|Z^{i-1})$$

$$= H(Y^{n}) - H(Z^{n})$$

$$\leq n - H(Z^{n})$$

$$C_{FB} = 1 - H(\{Z_{n}\})$$

Consider a channel with ternary channel with three "states"

The channel starts in a random state and then deterministically cycles 1 → 2, 2 → 3, 3 → 1.

- The channel starts in a random state and then deterministically cycles 1 → 2, 2 → 3, 3 → 1.
- ▶ Each constituent channel has C = 1 bit.

- ► The channel starts in a random state and then deterministically cycles $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 1$.
- Each constituent channel has C = 1 bit.
- With feedback, encoder can learn the phase: $C_{FB} = 1$ bit

- ► The channel starts in a random state and then deterministically cycles $1 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 1$.
- Each constituent channel has C = 1 bit.
- ▶ With feedback, encoder can learn the phase: $C_{FB} = 1$ bit
- Without feedback, encoder uses each input equally:

$$C = H(B(1/3)) < 1$$
 bit

... are closely related to unknown channels.

- ... are closely related to unknown channels.
- Why does feedback increase the capacity of Gaussian additive noise channels but not discrete ones?

- ... are closely related to unknown channels.
- Why does feedback increase the capacity of Gaussian additive noise channels but not discrete ones?

$$I(U^{k}; Y^{n}) = h(Y^{n}) - h(Y^{n}|U^{k})$$

$$= h(Y^{n}) - h(Z^{n})$$

$$\leq \frac{1}{2} \log((2\pi e)^{n}|K_{Y^{n}}|) - \frac{1}{2} \log((2\pi e)^{n}|K_{Z^{n}}|)$$

- ... are closely related to unknown channels.
- Why does feedback increase the capacity of Gaussian additive noise channels but not discrete ones?

$$I(U^{k}; Y^{n}) = h(Y^{n}) - h(Y^{n}|U^{k})$$

$$= h(Y^{n}) - h(Z^{n})$$

$$\leq \frac{1}{2} \log((2\pi e)^{n}|K_{Y^{n}}|) - \frac{1}{2} \log((2\pi e)^{n}|K_{Z^{n}}|)$$

achieved with Gaussian inputs

- ... are closely related to unknown channels.
- Why does feedback increase the capacity of Gaussian additive noise channels but not discrete opeca.

$$I(U^{k}; Y^{n}) = h(Y^{n}) - h(Y^{n}|U^{k})$$

$$= h(Y^{n}) - h(Z^{n})$$

$$\leq \frac{1}{2} \log((2\pi e)^{n}|K_{Y^{n}}|) - \frac{1}{2} \log((2\pi e)^{n}|K_{Z^{n}}|)$$

achieved with Gaussian inputs

- ... are closely related to unknown channels.
- Why does feedback increase the capacity of Gaussian additive noise channels but not discrete opec?

$$I(U^{k}; Y^{n}) = h(Y^{n}) - h(Y^{n}|U^{k})$$

$$= h(Y^{n}) - h(Z^{n})$$

$$\leq \frac{1}{2} \log((2\pi e)^{n}|K_{Y^{n}}|) - \frac{1}{2} \log((2\pi e)^{n}|K_{Z^{n}}|)$$

achieved with Gaussian inputs

can be better whitened with feedback

- ... are closely related to unknown channels.
- Why does feedback increase the capacity of Gaussian additive noise channels but not discrete opeca.

$$I(U^k; Y^n) = h(Y^n) - h(Y^n|U^k)$$
 independent of the input
$$= h(Y^n) - h(Z^n)$$

$$\leq \frac{1}{2} \log((2\pi e)^n |K_{Y^n}|) - \frac{1}{2} \log((2\pi e)^n |K_{Z^n}|)$$
 achieved with Gaussian inputs can be better whitened with feedback

ARMA(k) Gaussian feedback capacity found by Kim ('10)

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Up to now, # of channel uses has been fixed.

- Up to now, # of channel uses has been fixed.
- ► For some transmissions, we might wish we had more. For others, we could do with fewer.

- Up to now, # of channel uses has been fixed.
- For some transmissions, we might wish we had more. For others, we could do with fewer.
- Suppose the transmission ends at a random (stopping) time N.

- Up to now, # of channel uses has been fixed.
- For some transmissions, we might wish we had more. For others, we could do with fewer.
- Suppose the transmission ends at a random (stopping) time N.
- ▶ Define the effective rate k/E[N].

Consider the BEC:

Consider the BEC:

Suppose we transmit each bit until it passes through.

Consider the BEC:

- Suppose we transmit each bit until it passes through.
- Let N be the # channel uses required for all bits to pass through. Then E[N] = k/(1-p). So

$$\frac{k}{E[N]} = 1 - p = C = C_{\text{FB}}$$

Consider the BEC:

- Suppose we transmit each bit until it passes through.
- Let N be the # channel uses required for all bits to pass through. Then E[N] = k/(1-p). So

$$\frac{k}{E[N]} = 1 - p = C = C_{FB}$$

$$P_e = 0$$

Consider the BEC:

- Suppose we transmit each bit until it passes through.
- Let N be the # channel uses required for all bits to pass through. Then E[N] = k/(1-p). So

$$\frac{k}{E[N]} = 1 - p = C = C_{FB}$$

$$P_e = 0$$

A little opportunism goes a long way:

 $\lim_{n\to\infty}\Pr(N\geq (1+\epsilon)E[N])=0 \text{ for any }\epsilon>0.$

Following Burnashev ('76), reflecting later refinements:

Error exponent determined by Burnashev ('76)

- Error exponent determined by Burnashev ('76)
 - Typically beats non-feedback error exponent at all rates

- Error exponent determined by Burnashev ('76)
 - Typically beats non-feedback error exponent at all rates
- Feedback provides an order improvement in

- Error exponent determined by Burnashev ('76)
 - Typically beats non-feedback error exponent at all rates
- Feedback provides an order improvement in
 - the moderate deviations regime [Truong and Tan ('19)]

- Error exponent determined by Burnashev ('76)
 - Typically beats non-feedback error exponent at all rates
- Feedback provides an order improvement in
 - the moderate deviations regime [Truong and Tan ('19)]
 - the second-order coding rate regime [Polyanskiy et al. ('11)]

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Opportunistic Use of Power

Consider the AWGN

$$Y^n = X^n + Z^n \qquad Z^n \text{ i.i.d. } \mathcal{N}(0, 1)$$

Power constraint:

$$E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}(u^{k},Y^{i-1})\right] \leq P \quad \text{for all messages } u^{k}$$

▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k
- Encoding:

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k
- Encoding:
 - Time 1: $\theta(U^k)$

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k
- Encoding:
 - Time 1: $\theta(U^k)$
 - Time j: Send $\gamma_j \left(\theta(U^k) E[\theta(U^k)|Y^{j-1}] \right)$, where γ_j is chosen so that

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k
- Encoding:
 - Time 1: $\theta(U^k)$
 - Time j: Send $\gamma_j \left(\theta(U^k) E[\theta(U^k)|Y^{j-1}] \right)$, where γ_j is chosen so that

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

▶ Decoding: output string whose interval contains $E[\theta(U^k)|Y^n]$.

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k
- Encoding:
 - Time 1: $\theta(U^k)$
 - Time j: Send $\gamma_j \left(\theta(U^k) E[\theta(U^k)|Y^{j-1}] \right)$, where γ_j is chosen so that

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

- ▶ Decoding: output string whose interval contains $E[\theta(U^k)|Y^n]$.
- Performance: $P_{e} \leq \sqrt{\frac{2}{\pi}} e^{-\frac{2^{2n(C-R)}\sqrt{P}}{2}}$

- ▶ Partition $\left[-\sqrt{P}, \sqrt{P}\right]$ into 2^k equal-sized intervals.
- Assign each message string to one of the intervals
- Let $\theta(u^k)$ be the midpoint of the interval for string u^k
- Encoding:
 - Time 1: $\theta(U^k)$
 - Time j: Send $\gamma_j \left(\theta(U^k) E[\theta(U^k)|Y^{j-1}] \right)$, where γ_j is chosen so that

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

- ▶ Decoding: output string whose interval contains $E[\theta(U^k)|Y^n]$.
- Performance:

$$P_e \le \sqrt{\frac{2}{\pi}} e^{-\frac{2^{2n(C-R)\sqrt{p}}}{2}}$$
 [!!]

The Schalkwijk-Kailath scheme uses (a lot) more power when decoding errors are imminent:

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

The Schalkwijk-Kailath scheme uses (a lot) more power when decoding errors are imminent:

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

Performance is much degraded if the power constraint is imposed a.s. [Pinkser ('68), Shepp et al. ('69), Altuğ-Poor-Verdú ('15)]

The Schalkwijk-Kailath scheme uses (a lot) more power when decoding errors are imminent:

$$E\left[\gamma_j^2\left(\theta(U^k) - E[\theta(U^k)|Y^{j-1}]\right)^2 \middle| U^k\right] \le P$$
 a.s.

- Performance is much degraded if the power constraint is imposed a.s. [Pinkser ('68), Shepp et al. ('69), Altuğ-Poor-Verdú ('15)]
- Error exponent of fixed-length coding for DMCs with a cost constraint?

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Mechanisms

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

Consider the binary symmetric channel, w/o feedback,

$$Y^n = X^n \oplus Z^n$$
 i.i.d. $B(p)$

and at low rate, $k = \epsilon n, \epsilon \approx 0$. Then P_e is exp. small.

Consider the binary symmetric channel, w/o feedback,

$$Y^n = X^n \oplus Z^n$$
 i.i.d. $B(p)$

and at low rate, $k = \epsilon n, \epsilon \approx 0$. Then P_e is exp. small.

Suppose the codewords are

$$x_1^n, x_2^n, \ldots, x_{2^k}^n$$

Consider the binary symmetric channel, w/o feedback,

$$Y^n = X^n \oplus Z^n$$
 i.i.d. $B(p)$

and at low rate, $k = \epsilon n, \epsilon \approx 0$. Then P_e is exp. small.

Suppose the codewords are

$$x_1^n, x_2^n, \ldots, x_{2^k}^n$$

ML decoding rule

$$\operatorname{argmin}_{i} d_{H}(x_{i}^{n}, Y^{n})$$

Consider the binary symmetric channel, w/o feedback,

$$Y^n = X^n \oplus Z^n$$
 i.i.d. $B(p)$

and at low rate, $k = \epsilon n, \epsilon \approx 0$. Then P_e is exp. small.

Suppose the codewords are

$$x_1^n, x_2^n, \ldots, x_{2^k}^n$$

ML decoding rule

$$P_e = 2^{-k} \sum_{m=1}^{2^k} \Pr\left(\text{error} \middle| x_m^n\right)$$

. .

$$P_{e} = 2^{-k} \sum_{m=1}^{2^{k}} \Pr\left(\operatorname{error} \middle| x_{m}^{n}\right)$$

$$\leq 2^{-k} \sum_{m=1}^{2^{k}} \sum_{\ell=1, \ell \neq m}^{2^{k}} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$P_{e} = 2^{-k} \sum_{m=1}^{2^{k}} \Pr\left(\operatorname{error} \middle| x_{m}^{n}\right)$$

$$\leq 2^{-k} \sum_{m=1}^{2^{k}} \sum_{\ell=1, \ell \neq m}^{2^{k}} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$\leq 2^{k} \cdot \max_{\ell \neq m} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$P_{e} = 2^{-k} \sum_{m=1}^{2^{k}} \Pr\left(\operatorname{error} \middle| x_{m}^{n}\right)$$

$$\leq 2^{-k} \sum_{m=1}^{2^{k}} \sum_{\ell=1, \ell \neq m}^{2^{k}} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$\leq 2^{k} \cdot \max_{\ell \neq m} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$P_e \ge 2^{-k} \cdot \max_{\ell \ne m} \Pr\left(d_H(x_\ell^n, Y^n) \le d_H(x_m^n, Y^n) \middle| x_m^n\right)$$

$$\begin{aligned} P_{e} &= 2^{-k} \sum_{m=1}^{2^{k}} \Pr\left(\text{error} \middle| x_{m}^{n}\right) \\ &\leq 2^{-k} \sum_{m=1}^{2^{k}} \sum_{\ell=1, \ell \neq m}^{2^{k}} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right) \\ &\leq 2^{k} \cdot \max_{\ell \neq m} \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right) \end{aligned}$$

$$P_e \ge 2^{-k} \cdot \max_{\ell \ne m} \Pr\left(d_H(x_\ell^n, Y^n) \le d_H(x_m^n, Y^n) \middle| x_m^n\right)$$

$$\frac{1}{n}\log P_{e} \approx \max_{\ell \neq m} \frac{1}{n}\log \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$\frac{1}{n}\log P_e \approx \max_{\ell \neq m} \frac{1}{n}\log \Pr\left(d_H(x_\ell^n,Y^n) \leq d_H(x_m^n,Y^n) \middle| x_m^n\right)$$

$$\frac{1}{n}\log P_{e} \approx \max_{\ell \neq m} \frac{1}{n}\log \Pr\left(d_{H}(x_{\ell}^{n}, Y^{n}) \leq d_{H}(x_{m}^{n}, Y^{n}) \middle| x_{m}^{n}\right)$$

$$\approx \exp\left(-d_H(x_\ell^n, x_m^n) \cdot D\left(\frac{1}{2}||p\right)\right)$$

$$\frac{1}{n}\log P_e \approx \max_{\ell \neq m} \frac{1}{n}\log \Pr\left(d_H(x_\ell^n, Y^n) \leq d_H(x_m^n, Y^n) \middle| x_m^n\right)$$

$$\approx \exp\left(-d_H(x_\ell^n, x_m^n) \cdot D\left(\frac{1}{2} || p\right)\right)$$

So

$$-\frac{1}{n}\log P_{e}\approx\min_{\ell\neq m}\frac{d_{H}(x_{\ell}^{n},x_{m}^{n})}{n}\cdot D\left(\frac{1}{2}\left\|p\right)\right)$$

$$\frac{1}{n}\log P_e \approx \max_{\ell \neq m} \frac{1}{n}\log \Pr\left(d_H(x_\ell^n, Y^n) \leq d_H(x_m^n, Y^n) \middle| x_m^n\right)$$

$$\approx \exp\left(-d_H(x_\ell^n, x_m^n) \cdot D\left(\frac{1}{2} || p\right)\right)$$

So

$$-\frac{1}{n}\log P_{e}\approx\min_{\ell\neq m}\frac{d_{H}(x_{\ell}^{n},x_{m}^{n})}{n}\cdot D\left(\frac{1}{2}\left\|p\right)\right)$$
min. distance of the code

$$\frac{1}{n}\log P_e \approx \max_{\ell \neq m} \frac{1}{n}\log \Pr\left(d_H(x_\ell^n, Y^n) \leq d_H(x_m^n, Y^n) \middle| x_m^n\right)$$

$$\approx \exp\left(-d_H(x_\ell^n, x_m^n) \cdot D\left(\frac{1}{2} || p\right)\right)$$

So

$$-\frac{1}{n}\log P_{e}\approx\min_{\ell\neq m}\frac{d_{H}(x_{\ell}^{n},x_{m}^{n})}{n}\cdot D\left(\frac{1}{2}\left\|p\right)\right)$$
 min. distance of the code

Q: How large can the minimum distance be?

How large can the minimum distance be?

- How large can the minimum distance be?
 - If k = 1, min. distance is n.

- How large can the minimum distance be?
 - If k = 1, min. distance is n.
 - 00000000000 vs. 111111111111

- How large can the minimum distance be?
 - If k = 1, min. distance is n.
 - 00000000000 vs. 111111111111
 - If $k/n = \epsilon$, where ϵ is small, then min. distance $\approx n/2$

- How large can the minimum distance be?
 - If k = 1, min. distance is n.
 - 00000000000 vs. 111111111111
 - If $k/n = \epsilon$, where ϵ is small, then min. distance $\approx n/2$
- Suppose near the end of transmission, a genie ruled out all but one of the incorrect codewords.

- How large can the minimum distance be?
 - If k = 1, min. distance is n.
 - 00000000000 vs. 111111111111
 - If $k/n = \epsilon$, where ϵ is small, then min. distance $\approx n/2$
- Suppose near the end of transmission, a genie ruled out all but one of the incorrect codewords.
 - Remaining transmission can be 0000... vs. 1111.....

- How large can the minimum distance be?
 - If k = 1, min. distance is n.
 - 000000000000 vs. 111111111111
 - If $k/n = \epsilon$, where ϵ is small, then min. distance $\approx n/2$
- Suppose near the end of transmission, a genie ruled out all but one of the incorrect codewords.
 - Remaining transmission can be 0000... vs. 1111.....
 - Would yield an effective min. distance increase.

- How large can the minimum distance be?
 - If k = 1, min. distance is n.
 - 000000000000 vs. 111111111111
 - If $k/n = \epsilon$, where ϵ is small, then min. distance $\approx n/2$
- Suppose near the end of transmission, a genie ruled out all but one of the incorrect codewords.
 - Remaining transmission can be 0000... vs. 1111.....
 - Would yield an effective min. distance increase.
 - We can achieve a similar effect with feedback

► Following Zigangirov ('70),

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

Improves low-rate error exponent over non-feedback case.

- Following Zigangirov ('70),
 - At time i, compute posterior prob. of messages given Y^{i-1} .
 - Greedily partition messages into two groups to minimize the difference of their sum-probabilities:

 Symmetric channel: no high-rate error exponent, moderate deviations, or second-order coding rate improvement.

How can one use feedback to improve block coding performance in point-to-point channels?

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - ▶ If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.

- How can one use feedback to improve block coding performance in point-to-point channels?
 - If the channel has memory, we can predict the future noise realization.
 - If the channel is unknown, we can learn its law.
 - If the decoding time is not fixed, we can decode early or late opportunistically.
 - If there is an average cost (e.g., power) constraint, we can use resources opportunistically.
 - If the rate is low, we can increase the effective minimum distance of the code.
 - [See Part II]