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Abstract� We consider the problem of �nding a linear network
code that guarantees an instantaneous recovery from edge fail-
ures in communication networks. With instantaneous recovery,
lost data can be recovered at the destination without the need
for path re-routing or packet re-transmission.

We focus on a special class of bidirected networks. In such
networks, for each edge there exists a corresponding edge in
the reverse direction of equal capacity. We assume that at most
one pair of bidirected edges can fail at any time. For unicast
connections, we establish an upper bound of O(22h) on the
minimum required �eld size and present an algorithm that
constructs a linear network code over GF (22h). For multicast
connections, we show that the minimum required �eld size is
bounded by O(t · 22h), where t is the number of terminals. We
also discuss link- and �ow-cyclic bidirected coding networks with
instantaneous recovery.

I. INTRODUCTION

In past years, major effort has been spent on improving the
resilience and survivability of communication networks. The
major challenge is to cope with the failure of network edges.
Such failures are frequent due to the inherent vulnerability
of the underlying communication infrastructure [1]. With the
dramatic increase in the rate of data transmission, even a single
edge failure may result in vast data loss and cause major
service disruptions to many users. Accordingly, many service
providers are interested in providing instantaneous recovery
from edge failures. With instantaneous recovery, the lost data
can be recovered at the destination without the need for path
re-routing or packet re-transmission.

The standard approach for guaranteeing instantaneous re-
covery is to provision two disjoint paths between the source
and the destination nodes and send a copy of each packet over
both paths (see Figure 1(a)). This approach, however, may
result in inef�cient use of network resources. An alternative
approach, referred to as diversity coding [2], is to provision
several disjoint paths, some of them are used for sending the
original packets and others for sending parity check packets
(see Figure 1(b)). This approach, however, is not always
feasible, as it requires a large number of disjoint paths between
the source and the destination nodes.

Recently, it was proposed to use the network coding tech-
nique for instantaneous recovery from edge failures [3], [4].
The network coding technique generalizes the disjoint path and
diversity coding approaches and allows minimize the amount
of network resources that need to be allocated to support
instantaneous recovery. Network coding was introduced in
the seminal paper by Ahlswede et al. [5]. The basic idea

1The authors are with the Department of Electrical and Computer En-
gineering, Texas A&M University, College Station, Texas, USA. Email:
{salim,spalex,georghiades}@ece.tamu.edu

of network coding is to allow intermediate network nodes
to generate new packets by performing algebraic operations
on packets received over their incoming edges (see Figure
1(c)). This is in contrast to the traditional approach in which
the intermediate nodes can only forward and duplicate their
incoming packets.
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Fig. 1. Different methods for achieving instantaneous recovery (all operations
are performed over GF (2)). (a) The disjoint path approach. A copy of each
of each packet is sent over two disjoint paths that connect s and t. (b) The
diversity coding approach with three disjoint paths between s and t. The �rst
two paths are used for sending the original packet, while the third path is used
for sending the parity check packet a+ b. (c) A network coding scheme with
h = 2. (d) A network coding scheme with h = 3. (e) Packets transmitted by
the edges of network (c) upon a failure of edge (s, v5).

We assume that each edge in the network has an integer ca-
pacity; the capacity of an edge speci�es the number of packets
that can be transmitted over this edge in each communication
round. We also assume that packets are not fragmented and
are of �xed length.



A major parameter in the design of the network coding
schemes is the number of packets h sent by the source in each
communication round. This parameter determines the shape of
the routing topology used for data transmission. For example,
for h = 1, the only way to guarantee instantaneous recovery
is to use two disjoint paths, as depicted in Figure 1(a).2 For
h = 2 we can use the same topology as for h = 1, i.e., send
two packets over two disjoint paths. In this case, all edges
that belong to each of the disjoint paths must have capacity
of at least two. We can also use three disjoint paths, two of
which are used for sending original packets, a and b, and the
third is used for transmitting the parity check packet a+ b (all
operations are performed over GF (2)). Alternatively, we can
use the network coding approach, as depicted in Figure 1(c).
This network contains an encoding node, v3 which receives
two packets, a and b, and generates a new packet, a + b. A
more complex network coding topology with h = 3 is depicted
in Figure 1(d). In general, the larger is the value of h, the more
�exibility we have in choosing the routing topology.

Design of reliable unicast connections that provide instanta-
neous recovery from link failures was investigated in [3] and
[4]. It was shown that reliable communication can be achieved
by using linear network codes, in which all operations are
performed over a �nite �eld. Practical implementation of the
network coding schemes is presented in [6]. In our previous
work [7] we considered the problem of establishing reliable
unicast communication for the special case of h = 2. We
showed that in this case the underlying routing topology has
a certain combinatorial structure which enables the design of
ef�cient network codes over a small �eld (GF (2)).

With linear network coding, each packet in the network is a
linear combination of the packets sent by the source node. This
linear combination can be captured by the global encoding
vector. The global encoding vector can be included in the
header of each packet with only a small overhead [6]. We
assume that in the case of a failure of an edge all packets
transmitted over this edge are identically equal to zero, i.e.,
have zero global encoding vectors. Thus, in the case of an
edge failure, only the nodes incident to this edge change their
behavior, while all other nodes perform the same operations as
during the normal operation. For example, Figure 1(e) shows
the packets transmitted by the edges of the network depicted
on Figure 1(c) upon a failure of edge (s, v5).

In this work, we focus on the design of unicast coding
network with h > 2. We consider a special class of bidirected
networks. In such networks, the capacity of each communi-
cation channel is equally split in both directions, i.e., for any
edge in the underlying communication graph there exists an
edge in the reverse direction of equal capacity. We assume
that at most one pair (e1(v, u), e2(u, v)) of bidirected edges
can fail at a time. Indeed, in many practical setting a failure
of a communication channel is frequent enough in order to
warrant consideration. On the other hand, protection from

2We consider only minimal topologies, i.e., topologies that do not contain
redundant edges.

multiple failures incurs excessively high cost in terms of
network utilization, which, typically, is not justi�ed by the
rare occurrence of simultaneous failures.

Our work makes the following contributions. First, we
investigate the instantaneous recovery from edge failures for
unicast connections. We establish an upper bound of O(22h)
on the required �eld size in bidirected networks. Our bound
only depends on the number of packets h sent at each
communication round and does not depend on the size of the
underlying communication network. Next, we present an algo-
rithm that constructs a feasible network code over GF (22h).
Next, we extend our results for multicast connections and show
that the required �eld size is bounded by O(t · 22h), where t
is the number of terminals. Finally, we discuss robust coding
networks with cycles.

II. MODEL AND PRELIMINARIES

A. Communication Network
We model a communication network by a directed graph

G(V, E), where V is the set of nodes and E is the set of edges.
Each edge is associated with a parameter ce that speci�es the
capacity of the edge, i.e., the number of packets that can
be transmitted by the edge per communication round. We
assume that the graph G(V, E) is bidirected, i.e., for each
edge e(v, u) ∈ G there exists an edge e′(u, v) in the opposite
direction such that ce = ce′ .

We assume that each packet in the coding network is an
element of a �nite �eld F. Each node in the coding network
can create new packets by performing algebraic operations on
the incoming packets over F. An instance I(G, c, s, t, h) of a
unicast network coding problem includes a graph G(V, E), the
capacity function c, the source node s, the destination node t
and the number h of packets that need to be transmitted from
s to t per communication round.

For clarity of presentation, we use a notion of a coding
network N(GL, s, t, h) which includes a link graph GL(V, L)
formed from G(V, E) by substituting each edge e ∈ E by
up to ce parallel links, each link can transmit one packet per
communication round. We denote by Le the set of links that
correspond to edge e.

An instance I(G, c, s, T, h) to the multicast network coding
problem and a multicast coding network N(GL, s, T, h) are
de�ned in a similar manner. Here, T denotes the set of terminal
nodes.

B. Network Codes
We denote by Hi = {Hi

1, . . . ,H
i
h} the set of packets sent

by the source node at round i. For each link l ∈ L we denote
by yi

l the packet transmitted on this link at round i.
A network code F(N) for a coding network N(GL, s, t, h)

(N(GL, s, T, h)) is de�ned by a set of local encoding functions
F(N) = {fl | l ∈ L}. If l ∈ L is an outgoing link of the source
node s, then fl is a mapping from Fh to F. Otherwise, fl is
a mapping from Fcin(v) to F, where cin(v) the total number
of the incoming links of the tail node v of l.
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The encoding function fl of a link l(s, v) determines the
packet yi

l sent on link l as a linear combination of packets Hi

sent by the source node s at round i. Similarly, the encoding
function fl of link l(v, u) speci�es the packet yi

l transmitted
on link l as function of packets that arrive at node v at round
i− 1.

As mentioned in the Introduction, our goal is to de-
sign network codes that provide an instantaneous recovery
upon a failure of a pair of bidirected edges. When a pair
(e1(v, u), e2(u, v)), e1, e2 ∈ E of bidirected edges fails, all
links l ∈ Le1 ∪ Le1 cannot transmit packets. Accordingly,
we assume that the local encoding functions fl of links in
Le1 ∪ Le1 are identically equal to zero.

Let N(GL, s, t, h) be a unicast coding network and let F(N)
be a network code for N. We say that F(N) is robust if
the destination node t can decode the packets sent by the
source node s after a �xed number of rounds even if any two
bidirected edges (e1(v, u), e2(u, v)) in E fail. A code F(N)
for a multicast network N(GL, s, T, h) is said to be robust if
the above requirement holds for each terminal t ∈ T .

C. Cuts and Flows
We de�ne a cut C(V1, V \ V1) is a partition of V into two

subsets, V1 and V \ V1. We say that an edge e(v, u) ∈ E (a
link l(v, u) ∈ L) is a forward edge (link) of C in G (GL)
if v ∈ V1 and u ∈ V \ V1. A edge e(u, v) ∈ E (a link
l(v, u) ∈ L) is referred to as a backward edge (link) of C if
u ∈ V1 and v ∈ V \V1. Note that the same cut C(V1, V \V1)
in two different graphs G(V, E′) and G(V, E′′) may include
different sets of forward and backward edges.

The previous works on robust network codes [3], [9] es-
tablished a condition on the underlying network topology GL

necessary for establishing robust network codes.
Theorem 1: ([3], [9]) Let I(G, c, s, t, h) be an instance of

the unicast network coding problem and let N(GL, s, t, h) be
a corresponding unicast coding network. Then, there exists a
feasible network code F(N) for N if and only if for each cut
C(V1, V \V1) that separates s and t and for each forward edge
e of C in G it holds that the total number of forward links of
C in GL is at least h + ce.

We refer to the coding networks N(GL, s, t, h) that satisfy
the condition of Theorem 1 conditions as feasible networks.
A similar condition holds for the multicast coding networks.

In some parts of our paper we use a notion of network �ows
[8].

De�nition 2 (Flow): An integral (s, t)-�ow θ is a function
θ : L 7→ R that satis�es the following two properties:

1) For each link l(u, v) ∈ L, it holds that θ(l) ∈ {0, 1}
2) For each internal node v ∈ V , v 6= s, v /∈ t it holds that∑

w:(w,v)∈L θ((w, v)) =
∑

w:(v,w)∈L θ((v, w)).
The value |θ| of a �ow θ is de�ned as

|θ| = ∑
v:(s,v)∈L

θ((s, v)). The cost ω(θ) of a �ow θ is

de�ned as ω(θ) =
∑
l∈L

θ(l).
A minimum cost (s, t)-�ow θ can be decomposed into a set

of |θ| link-disjoint paths between s and t in GL(V, L) [8].

D. Main Result
In this section, we prove the main result of our paper.
Theorem 3: Let G(V, E) be a bidirected graph, GL(V, L)

be the corresponding link graph, and let N(GL, s, t, h) be a
feasible unicast network over GL(V, L). Then, there exists a
robust network code F(N) for N over GF (22h). Moreover,
such a network code can be constructed in polynomial time
in |V | and |E|.

This theorem establishes an upper bound on the minimum
required �eld size of a robust network code. The theorem
implies that the minimum required �eld size does not depend
on the size of the network. We also prove the existence of a
network code that can be implemented with packets of length
at most 2h bits.

Our proof is constructive and employs the techniques and
tools of the theory of network �ows [8].

III. NETWORK CODING ALGORITHM

The main idea of our algorithm is to identify a set Θ of
(s, t)-�ows in GL(V,L) such that for each pair of bidirected
edges (e1(v, u), e2(u, v)), e1, e2 ∈ E there exists a �ow in
θ ∈ Θ that does not use neither e1 nor e2, i.e., θ(l) = 0
for each l ∈ {Le1 ∪ Le2}. We say that such a �ow θ protects
(e1, e2). Given a set Θ that protects every bidirected edge pair
in the network, we can use a modi�cation of the algorithm
presented in [9] in order to �nd a feasible coding network
N(GL, s, T, h) and a feasible network code F(N) for N.

Theorem 4: Let N(GL, s, T, h) be a bidirected unicast
network and Θ be a set of (s, t)-�ows in N, each �ow
of value h such that for any pair of bidirected edges
(e1(v, u), e2(u, v)), e1, e2 ∈ E, there exist a �ow θ ∈ Θ that
protects it. Then, there exists a robust network code F(N)
for N over a �eld of size |Θ|. Moreover, such code can be
found in polynomial time in |V | and |Θ| through a randomized
algorithm.

Proof: The proof follows the same lines as in [9,
Theorem 2].

In what follows, we present an algorithm that �nds, for any
feasible unicast network N(GL, s, t, h), a set Θ of (s, t)-�ows
that protect each edge in N, such that |Θ| ≤ 22h.

The algorithm includes the following steps:
1) Find a minimum cost integral (s, t)-�ow θr of value h

in GL(V, L).
2) Θ ← {θr}.
3) Decompose θr into h link-disjoint (s, t)-paths R =

{P r
1 , P r

2 , . . . , P r
h}. These paths are referred to as red

paths.
4) For each subset S of R (except empty set) do:

a) Denote by WS the subset of edges in E, each edge
e ∈ WS satis�es the following conditions: (a) Each
red path that belongs to S includes a link in Le;
(b) Each red path that does not belong to S does
not include a link in Le.

b) Denote by L(WS) the set of links that correspond
to edges in WS, i.e., L(WS) = ∪e∈WSLe. Note that
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since the original graph is bidirected, for any link in
L(WS) there exists a link in the reverse direction.

c) Construct an auxiliary graph Ĝ(S) which is ob-
tained from GL(V, L) by removing all links in
L(WS).

d) Find h link-disjoint paths between s and t. We
denote these paths by B = {P b

1 , P b
2 , . . . , P b

h} and
refer to them as blue paths.

e) Denote by B1, . . . ,B2h the set of all subsets of B.
f) Divide the edges in WS into 2h subsets

W 1
S , . . . , W 2h

S , that correspond to all subsets of
B. Speci�cally, given a subset Bi of B, the set
W i
S includes all edges e in WS that satisfy the

following conditions: (a) Each path that belongs to
Bi includes a link in Le′ (b) Each path that belongs
to B \ {Bi} does not include a link in Le′ . Here,
e′ is a reverse edge of e.

g) For each subset W i
S do

i) Construct an auxiliary graph Ĝ(S, i) formed
from by GL(V, L) by removing all links in
∪

e∈W i
S
Le and in ∪

e∈W i
S
Le′ , where e′ denotes the

reverse edge of e.
ii) Find a �ow θ(S, i) in Ĝ(S, i) and add it to Θ.

Example 1: Consider the network N(GL, s, t, 3) depicted
in Figure 2(a). Figure 2(b) shows a �ow θr that includes
three red paths {P r

1 , P r
2 , P r

3 }. Figures 2(c) and (d) demonstrate
the iteration of Step 4 that corresponds to S = {P r

2 , P r
3 }.

In this case, the set WS includes edges (v2, v3), (v3, v5),
(v5, v6), (v6, v8), (v8, v9), and (v9, v10). The auxiliary graph
Ĝ(S) constructed in Step 4c appears in Figure 2(c). The set
B = {P b

1 , P b
2 , P b

3} of blue paths identi�ed in Step 4d is shown
in Figure 2(d). The auxiliary network Ĝ(S, i) that corresponds
to the subset Bi = {P b

3} constructed in Step 4(g)i is shown in
Figure 2(e). The �gure also shows �ow θ(S, i) that protects
edges (v5, v6), (v6, v5), (v8, v9), and (v9, v8).

Our algorithm presented can be extended for the case
of multicast. This can be achieved by invoking the unicast
algorithm for each of the terminals. The total number of
�ows is bounded by O(22h · t), where t is the number of
the terminals.

IV. CORRECTNESS PROOF

We need to prove that �ow set Θ protects all pairs of
bidirected edges of G. First, note that the �ow θr protects all
sets of bidirected edges (e1(v, u), e2(u, v)), e1 ∈ E, e2 ∈ E
for which it holds that θr(l) = 0 for each l ∈ {Le1 ∪ Le2}.
It is easy to see that for any other pair of bidirected edges
(e1, e2) it holds that either e1 or e2 belongs to WS for some
subset S of R. Indeed, for each bidirected pair (e1, e2) there
exists at least one link in {Le1 ∪ Le2} that belongs to a red
path. Next, note that each edge e ∈ WS belongs to one of the
subsets W 1

S , . . . ,W 2h

S de�ned in Step 4f. Finally, �ow θ(S, i),
added to Θ at Step 4(g)ii of the algorithm, protects all edges of
WS and all edges whose corresponding reverse edges belong
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Fig. 2. (a) An example of a coding network N(GL, s, t, 3) and the auxiliary
graph Ĝ(S). Bidirected links are shown without line ends. (b) A �ow θr =
{P r

1 , P r
2 , P r

3 } (marked by dashed lines). (c) The auxiliary graph Ĝ(S) for
S = {P r

2 , P r
3 }. (d) The set of blue paths {P b

1 , P b
2 , P b

3 }. (e) The auxiliary
network Ĝ(S, i) that corresponds to the subset Bi = {P b

3 } and a �ow θ(S, i)
that protects edges (v5, v6), (v6, v5), (v8, v9), and (v9, v8).

to WS. It is easy to verify that the total number of �ows in Θ
is bounded by 22h.

We proceed to show that the algorithm never fails. The fol-
lowing lemma proves that Ĝ(S) contains h link-disjoint paths
between s and t. Since Ĝ(S) is a subgraph of GL(L(E), V ),
the lemma implies that the blue paths are feasible paths in
GL(L(E), V ).

Lemma 5: Graph Ĝ(S) contains h link-disjoint paths be-
tween s and t.

Proof: We prove the lemma by showing that each cut
C(V1, V \V1) that separates s and t contains at least h forward
links Ĝ(S). This implies, by the Max-Flow Min-Cut theorem
[8], that there exist h disjoint paths between s and t in Ĝ(S).

First, we note that if C includes at most one forward edge
that belongs to WS, then, by Theorem 1, this cut contains at
least h forward links in Ĝ(S).

Next, we denote by g the number of edges of WS which
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are forward edges of C. Note that each red path in S crosses
C in the forward direction at least g times. This implies that
each red path in S crosses C in the backward direction at
least g − 1 > 1 times. Since for each link that belongs to a
red path there exists a link in Ĝ(S) in the reverse direction,
the red paths in S correspond to at least |S| forward links of
C in Ĝ(S). In addition, the red paths that do not belong to S
include at least h− |S| forward links of C in Ĝ(S). Thus, the
total number of forward links in any (s, t)-cut C of Ĝ(S) is
at least h. This implies, by the Max-Flow Min-Cut theorem,
that there are h link-disjoint paths in Ĝ(S).

The next lemma proves that Ĝ(S, i) contains h link-disjoint
graph between s and t.

Lemma 6: Let W i
S be a subset of WS, as de�ned in Step

4f of the algorithm. Let Ĝ(S, i) be a subgraph of Ĝ(S)
constructed in Step 4(g)i by deleting all links that correspond
to edges in W i

S (in both forward and reverse directions). Then,
Ĝ(S, i) contains h link-disjoint graph between s and t.

Proof: We prove the lemma by showing that each cut
C(V1, V \ V1) that separates s and t in Ĝ(S, i) contains at
least h links in the forward direction. By Max-Flow Min-
Cut theorem [8], this implies that there exist h disjoint paths
between s and t in Ĝ(S, i).

Let gf be the number of edges in W i
S that are forward edges

of C in Ĝ(S, i) and by gb the number of edges in W i
S that are

backward edges of C.
We consider the two following cases:
1) Case 1: gf ≥ gb. Let P b

i be a blue path that belongs
to Bi. Note that P b

i crosses C at least gf times in
the backward direction (because for each e ∈ W i

S path
P b

i contains a link in the reverse direction). Hence, P b
i

crosses C at least gf +1 times in the forward direction.
Note when P b

i crosses C in the forward directions, it
may use edges that whose corresponding reverse edges
belong to W i

S , but the number of such edges is bounded
by gb. This, each path in Bi includes at least one forward
link of C in Ĝ(S, i). Next, we note that all links of each
path in B \ Bi exist in Ĝ(S, i), hence each such path
includes at least one forward link of C in Ĝ(S, i). We
conclude C contains at least h forward links.

2) Case 2: gb > gf . In this case each red path P r
i in S

crosses C at least gb times in the backward direction,
hence it crosses C at least gb + 1 times in the forward
direction. Note when P r

i crosses C in the forward
directions, it may use edges that belong to W i

S , but the
number of such edges is bounded by gf . Thus, each
red path in S includes at least one forward link of C
in Ĝ(S, i). In addition, all links of the red paths that do
not belong to S exist in Ĝ(S, i), hence each of these
paths includes at least one forward link. We conclude C
contains at least h forward links in Ĝ(S, i).

V. NETWORKS WITH CYCLES

In general, cycles are undesirable in coding networks.
Barbero and Ytrehus [10] classify cyclic networks into two
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Fig. 3. (a) An example of a coding network which is link-cyclic, but not
�ow-cyclic. (b) An example of a �ow-cyclic network.

classes, link-cyclic networks and �ow-cyclic networks. A net-
work N(GL, s, t, 2) is referred to as link-cyclic if the link
graph the link graph GL(V,L) contains at least one cycle.
A network N(GL, s, t, 2) is referred to as �ow-cyclic if for
any set Θ of �ows that protect all edges in the underlying
communication graph G(V, E), there exists a cycle C such
that any two consecutive links of C belong to one �ow. For
example, Figure 3(a) depicts a network which is link-cyclic,
but not �ow-cyclic, while Figure 3(b) depicts a �ow-cyclic
network.

Ahlswede et al. [5] showed that network coding approach
can be applied to networks with cycles. If the coding network
is link-cyclic, but not �ow-cyclic, then a feasible network
code can found by a modi�cation of LIF algorithm [10].
Furthermore, such networks can be implemented as delay-free
networks, i.e., networks with zero-delay links. For �ow-cyclic
networks, a feasible network code can be found by using the
random coding methods proposed in [9], and, in some special
cases, by the LIFE-CYCLE algorithm presented in [10].

In general, robust bidirected networks can be link-cyclic.
To see this, consider the network depicted in Figure 3(a) and
assume that all edges are bidirected and edges (v3, v4) and
(v4, v3) are a pair of bidirected edges. It remains an open
question whether bidirected networks can be �ow-cyclic. In
the following lemma, we prove that for h = 2 any instance
I(G, c, s, t, h) of the network coding problem there exists a
coding network which does not contain cycles. The lemma
applies both for bidirected and directed networks.

Lemma 7: Let I(G, c, s, t, h) be an instance of the network
coding problem for h = 2. Then, there exists a coding network
N(GL, s, t, 2) such that N is not link-cyclic (and not �ow-
cyclic).

Proof: (sketch) In [7] it was shown that I(G, c, s, t, h)
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is feasible if and only if the corresponding �ow network Ĝ
network admits an (s, t)-�ow of value 3, where the �ow net-
work Ĝ is formed from G by reducing each edge of capacity
2 or more by an edge of capacity 1.5. Since a minimum-cost
�ow in Ĝ does not include cycles, the corresponding coding
network N(GL, s, t, 2) is acyclic.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we addressed the problem of �nding robust
network codes for bidirected communication networks. In a
bidirected network, for each edge there exists an edge in the
reverse direction of equal capacity. We assume that at most
one pair of bidirected edges can fail at any time. Extending
the results of our previous work [7], we have considered the
general case of h ≥ 2, where h is the number of packets
sent at each communication round. For unicast connections
we established an upper bound of O(22h) on the minimum
�eld size and presented an algorithm that constructs a feasible
network code over GF (22h). For multicast connections, we
showed that the maximum size of the �nite �eld is bounded
by O(22h · t), where t is the number of terminals. As a
future direction, we would like to address an open question of
whether for each instance I(G, c, s, t, h) of a unicast network
coding problem with bidirected network there exists a coding
network N(GL, s, T, h) which is not �ow-cyclic. In addition,
we would like to extend our bounds for general directed
networks.
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