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Abstract—We consider distributed gradient descent in
the presence of stragglers. Recent work on gradient cod-
ing and approximate gradient coding have shown how
to add redundancy in distributed gradient descent to
guarantee convergence even if some workers are slow
or non-responsive. In this work we propose a new type
of approximate gradient coding which we call Stochastic
Gradient Coding (SGC). The idea of SGC is very simple: we
distribute data points redundantly to workers according to
a good combinatorial design. We prove that the convergence
rate of SGC mirrors that of batched Stochastic Gradient
Descent (SGD) for the `2 loss function, and show how the
convergence rate can improve with the redundancy. We
show empirically that SGC requires a small amount of
redundancy to handle a large number of stragglers and
that it can outperform existing approximate gradient codes
when the number of stragglers is large.

I. INTRODUCTION

This paper studies distributed variant of gradient de-
scent. Let X ∈ Rm×` be a data matrix and let y ∈ Rm

be a vector representing labels for the rows of X . Define
A = [X|y] to be the concatenation of X and y and
let ai denote the i’th row of A. For a loss function
L, the goal is to find a vector β∗ ∈ R` that best
represents the data X as a function of the labels y,
i.e., β∗ = arg minβ L(A,β). The example we will
focus on is linear regression: that is, the loss function
is L([X|y],β) = ‖Xβ − y‖22. In gradient descent,
the optimum β∗ is computed by iteratively performing
updates like:

βt+1 = βt − γt∇L(A,βt). (1)

When the loss function can be written as a sum over
the rows ai of A (that is, L(A,β) =

∑m
i=1 L(ai,β), as

is the case with the `2 loss function), gradient descent is
easily parallelizable. In a distributed setting, the master
partitions the data matrix A into rows ai which are
distributed between the workers. Each worker returns
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some linear combination(s) of the gradients ∇L(ai,βt)
that it can compute, and the master aggregates these
together to compute or approximate the update step (1).

We focus on the setting where some of the workers
may be stragglers, i.e., slow or unresponsive [1]–[9]. A
typical approach is to introduce some redundancy: the
same piece of data ai might be held by several workers.
We focus on the following four desiderata:

(A) Convergence speed. We would like the error ‖βt−
β∗‖2 to shrink as quickly as possible.

(B) Redundancy. We would like to minimize the
amount of storage overhead needed between the
workers.

(C) Communication. We would like to minimize the
amount of communication between the master and
the workers.

(D) Flexibility. In practice, there is a great deal of
variability in the number of stragglers over time. We
would like an algorithm that degrades gracefully if
more stragglers than expected occur.

Much existing work, referred to as gradient coding
has focused on simulating gradient descent exactly, even
in the presence of worst-case stragglers, for example [3],
[4], [10]. The model is that at each round, an arbitrary
set of s workers (for a fixed s) may not respond to the
master. The goal is for the master to obtain the same
update βt at round t that gradient descent would obtain.
However, such schemes require every data vector to be
replicated on s+ 1 different workers.

On the other hand, there has also been work on
approximately simulating gradient descent in order to
reduce the redundancy in the system. In this model the
number of stragglers is assumed to be random, rather
than worst-case. If no redundancy is employed and the
stragglers are independent at each round (similar in
spirit to the method in [2]), then this becomes a close
approximation to Batch SGD, see e.g. [11], [12]. (We
will later refer to this algorithm as “Ignore-Stragglers
SGD.”) However, for convex loss functions it is well
known that while Batch SGD does converge to β∗ the

2019 IEEE Information Theory Workshop (ITW)

978-1-5386-6900-6/19/$31.00 ©2019 IEEE



convergence is not as fast as that of classical gradient
descent [11], [13], [14]. Thus, this approach maintains
the good communication cost (C) and improves on (B)
and (D), but sacrifices (A), the convergence speed.

This basic idea has been exploited in a line of work
known as approximate gradient coding [10], [15]–[19].
This line of work studies the data redundancy d needed
to tolerate s stragglers and allow the master to compute
an approximation of the gradient if more than s work-
ers are stragglers and propose code constructions that
achieve this redundancy level.

In this work, we follow the approximate gradient cod-
ing framework and we focus on the stochastic straggler
model. We assume that each worker is a straggler with
probability p.1 We propose a new construction which we
call Stochastic Gradient Coding (SGC), and we prove
convergence results. The closest code construction to our
work is the Bernoulli Gradient Codes (BGC) proposed in
[15], although that work does not provide a convergence
analysis for the whole algorithm. The work of [16]
analyzes the convergence speed of another approach of
[15] which uses fractional repetition codes. For small
redundancy d, the analysis of [16] gives a result where
the error decays exponentially with T (the number of
iterations) until some noise floor is hit. We describe both
of these algorithms in more detail when we compare
them empirically to SGC in Section V.

Contributions. We introduce an approach that we call
Stochastic Gradient Coding (SGC). The master dis-
tributes data to the workers, with some redundancy that
can vary from data point to data point, so that distribution
pattern is pair-wise balanced in a sense defined below.2

Then the algorithm proceeds similarly to the Ignore–
Stragglers–SGD algorithm described above.

We provide a rigorous convergence analysis of SGC,
which shows that SGC with redundancy d > 1, can
obtain error bounds where ‖β∗ − βt‖2 decreases at
first exponentially in the number of steps t and then
proportionally to 1

td . This mirrors existing results on
SGD (which corresponds to the case d = 1), and
quantifies the trade-off between replication and error.

We provide numerical simulations comparing SGC to
Ignore–Stragglers–SGD (as well as a few other versions

1We note that rather than thinking of workers as being unresponsive
with probability p, we could equivalently think about a setting where
the master waits for the 1 − p fastest fraction of the workers before
proceeding to the next iteration. This setting motivates the case of
interest to us, where p is relatively large.

2We note that a randomized distribution scheme from a suitable
distribution also seems to work, and in fact this is what we study in
our empirical results.

of SGD for comparison) and to other approximate gra-
dient coding methods. Our simulations show that indeed
SGC improves the accuracy of Ignore–Stragglers–SGD,
with far less redundancy than would be required to
implement exact gradient descent using coding. In ad-
dition, we show empirically that SGC outperforms other
approximate gradient coding methods when the straggler
rate is high.

Organization. We give a more precise definition of
our set-up in Section II. We describe the SGC algorithm
in Section III. In Section IV and V, we give a detailed
discussion of both our theoretical and empirical results,
respectively.

II. SETUP

A. Probabilistic model of stragglers

In this paper, we adopt a probabilistic model of strag-
glers. More precisely, we assume that at every iteration
each worker may be a straggler with some probability
p, and this is independent between workers and between
iterations. This is a strong assumption, but it is a natural
starting place.Our probabilistic model is similar to the
model in [10], [15]–[19] and is in contrast to the worst-
case model assumed by much of the literature on coded
computation.

B. Computational model

Our computational model has two stages, a distribu-
tion stage and a computation stage.

In the distribution stage, the master encodes the data
using unequal data repetition code. More precisely, the
master can decide to send each row ai of A to di differ-
ent workers. We refer to the parameter d = 1

m

∑m
i=1 di

as the average redundancy of the scheme.
The computation stage is made up of rounds, each

of which contains two repeating steps. In the first step,
the master does some local computation and then sends
a message to each worker. In the second step, each
worker does some local computation and tries to send a
message back to the master; however, with probability p
the message may not reach the master. Then the round is
over and the master repeats the first step to begin the next
round. We refer to the total amount of communication
per round as the communication of the scheme. We allow
each worker to send only one message to the master to
reduce the communication.

III. STOCHASTIC GRADIENT CODING

In this section, we describe our solution, which we
call Stochastic Gradient Coding (SGC). The idea be-
hind SGC is extremely simple. It is very much like

2
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the Ignore–Stragglers–SGD algorithm described above,
except we introduce a small amount of redundancy. We
describe the distribution stage and the computation stage
of our algorithm below. Our scheme has parameters
d1, . . . , dm, which control the redundancy of each row,
and a parameter γt which controls the step size. We will
see in the theoretical and numerical analyses how to set
these parameters.

Definition 1. Let n be the total number of workers.
We say that a distribution scheme that sends ai to di
different workers is pair-wise balanced if for all i 6= i′,
the number of workers that receives ai and ai′ is didi′

n .

Notice that with a completely random distribution
scheme, the expected number of workers who receive
both ai and ai′ for i 6= i′ is equal to didi′

n . In our
analysis, it is convenient to deal with schemes that are
exactly pair-wise balanced. However, for small di it
is clear that no such schemes exist (indeed, we may
have didi′

n < 1). In our simulations, we choose a
uniformly random scheme which seems to work well
(see Section V). We believe that our analysis should
extend to a random assignment as well, although for
simplicity we focus on pair-wise balanced schemes in
our theoretical results.

The way SGC works is as follows: Distribution
Stage. The master creates di copies of each row ai,
i = 1, . . . ,m, and sends them to di distinct workers
according to a pair-wise balanced scheme.3 We denote
by Sj , j = 1, . . . , n, the set of indices of the data vectors
given to worker Wj , i.e., Sj = {i;ai is given to Wj}.
Computation Stage. At each iteration t, the master
sends βt to all the workers. Each worker Wj computes

fj(βt) , γt
∑
i∈Sj

1

di(1− p)
∇L(ai,βt)

and sends the result to the master. The master aggregates
all the received answers from non straggler workers,
sums them and updates β as follows:

βt+1 = βt − γt
n∑

j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,βt),

where Iji is the indicator function for worker j being
non straggler and having obtained point ai during the

3In our simulations, we assign rows to di workers uniformly at
random, which as discussed above approximates a pair-wise balanced
scheme. Similarly, the BGC construction of [15] approximates a pair-
wise balanced scheme where each row is assigned to d workers
uniformly at random, i.e., di = d for i = 1, . . . ,m.

data distribution. For use below, we define

ĝt ,
n∑

j=1

m∑
i=1

Iji
di(1− p)

∇L(ai,βt). (2)

We call ĝt the estimate of the gradient at iteration t
which estimates the average gradient

gt ,
m∑
i=1

∇L(ai,βt).

IV. THEORETICAL RESULTS

In this section we precisely state our theoretical re-
sults. Inspired by the approach of [20] for SGD, our
approach is to consider a weighted distribution scheme;
that is, we choose di proportionally to ‖xi‖22. While
the statement below is only for the `2 loss function, we
conjecture that it holds for more general loss functions.

Define a parameter

µ =
1
m ‖X‖

2
F

‖XTX‖
.

This parameter measures how incoherent X is. If X is
orthogonal, µ = 1, while if, for example, X is the all-
ones matrix, then µ = 1/m. It is not hard to check that
µ ∈ [0, 1].

Suppose that D is a pair-wise balanced distribution
scheme which sends ai to di different workers, where

di = σ · ‖xi‖22
and where

σ =
md

‖X‖2F
=

d

µ‖XTX‖
and d =

1

m

∑
i∈[m]

di.

The parameter d is the average redundancy of the
scheme that will control σ and the di’s. Notice that,
as stated, it is possible that the di end up being non-
integers; in the following, we will assume for simplicity
below that di ∈ N for all i.

Theorem 1. Consider an SGC algorithm run on a matrix
A , [X|y] of dimension m × (` + 1) distributed to n
workers according to a pair-wise balanced distribution
scheme with di as described above, with loss function

L([X|y],β) = ‖Xβ − y‖22 ,

and assume that the degrees di ≤ n are all integral.
Suppose the stragglers follow the stochastic model

of Section II, and that each worker is a straggler
independently with probability p. Choose ε > 0 and
choose T ≥ 2 log(1/ε2).

3
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Suppose that the number of workers n satisfies n ≥
8
(

p
1−p

)
, and that

8µ

(
p

1− p

)
≤ d.

Choose a step size

γt =
1

‖XTX‖
·min

{
1

2
,

log(1/ε2)

t

}
.

Then, after T iterations of SGC, we have

E
[
‖βT − β∗‖22

]
≤ ε2‖β0 − β∗‖22 +

1

dT
ψ,

where

ψ ,

(
log2(1/ε2)

(
p

1− p

)
‖r̃‖2µ

)
,

the expectation is over the stragglers in each of the T
iterations of SGC, µ is as defined above, and

r̃ =
‖Xβ∗ − y‖22
‖XTX‖2

.

Proof. The proof can be found in [21].

Corollary 2. Suppose that Xβ∗ = y (that is, we are
solving an overdetermined system for which there is a
solution) and that n ≥ 8p/(1 − p). Then the algorithm
described in Theorem 1 converges with

E
[
‖βT − β∗‖22

]
≤ ε2‖β0 − β∗‖2

provided that T ≥ 2 log(1/ε2) and d ≥ 8µp/(1− p).

In particular, since µ ≤ 1, this says that we need
to take d & p/(1 − p) and the algorithm converges
extremely quickly.

V. SIMULATION RESULTS

A. Simulation setup

We simulate the performance of SGC on synthetic
data X of dimension 1000× 100. The data is generated
as follows, each row vector xi is generated using a
Gaussian distribution N (0, 1). We pick a random vector
β̄ with components being integers between 1 and 10 and
generate yi ∼ N (

〈
xi, β̄

〉
, 1). We run linear regression

using the `2 loss function, i.e.,

L(ai,βt) =
1

2
(〈xi,βt〉 − yi)2 .

We show simulations for n = 100 workers. For each
simulation we vary the probability of a worker being a
straggler from p = 0 to p = 0.9 with a step of 0.1. We
run the algorithm for 5000 iterations with a variable step

TABLE I: Summary of the algorithms we compare to SGC.

Algorithm Brief description
Bernoulli Gradient Code

(BGC) [15]
Similar to SGC but all data vectors are replicated

d times, i.e., di = 2 for all i ∈ [m].

ERASUREHEAD [15],
[16]

Partitions the data set equally and sends each
partition to d workers. Workers send the sum of
the partial gradients to the master who computes

the gradient estimate as the sum of distinct
received partial gradients divided by total

number of data vectors.

Ignore–Stragglers–SGD
[2]

Partitions the data among the workers with no
redundancy. Workers send the sum of the partial

gradients to the master who computes the
gradient estimate as the sum of distinct partial

gradients divided by the average number of data
vectors received per iteration.

SGC–Send–All

Same as SGC with one difference: at each
iteration the workers send all the partial

gradients to the master. The master computes the
gradient estimate as the sum of distinct partial

gradients divided by the average number of data
vectors received per iteration.

size given by γt = 7
ln(10100)

t0.7
. For all simulations we

run each experiment 10 different times and average the
results. We fix the average redundancy to be d = 2 for
all algorithms. For SGC, the di’s are computed as stated
in Section IV.

We compare SGC to four stochastic gradient descent
types of algorithms summarized in Table I. We omit the
constructions presented in [10] and [18] because they
do not match our setting; the former requires a high
redundancy factor d and the latter requires the master
to run a decoding algorithm at each iteration.

0 1000 2000 3000 4000 5000

10−3

10−1

101

Number of iterations, t

‖β
t
−
β
∗ ‖

n = 100 workers, p = 0.7

ERASUREHEAD

Ignore–Stragglers–SGD
BGC
SGC
SGC–Send–All

Fig. 1: Evaluation of the considered algorithms as func-
tion of the number of iterations when the probability of
a worker being straggler is p = 0.7.

B. Empirical results

From Figure 1 and similar plots for different values
of p, we notice that for all p the convergence rate of
SGC exhibits two phases: an exponential decay followed
by an error floor. To see the benefit of replication, we
compare SGC to Ignore–Stragglers–SGD. Both have the
same performance in the exponential phase, but SGC has

4
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a lower error floor due to redundancy. A lower bound on
the performance of SGC is SGC–Send–All which has a
lower error floor because it computes a better estimate of
the gradient at the expense of a higher communication
cost. However, as p increases the gap between the two
error floors of SGC and SGC–Send–All decreases. In our
simulations, we notice the error floor of both algorithms
almost match for p ≥ 0.6 as can be seen in Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Probability of straggling p

‖β
T
−
β
∗ ‖

n = 100 workers

Ignore–Stragglers–SGD
BGC
SGC
ERASUREHEAD

SGC–Send–All

Fig. 2: Final convergence result achieved after running
5000 iterations as function of p the probability of a
worker being a straggler.

The interesting phenomena here is that ERASURE-
HEAD has the best convergence rate for small probability
of straggling workers, i.e., the setting it was designed
for. However, the convergence rate of ERASUREHEAD
deteriorates with the increase of p. In other words, when
using SGC the master can decide to wait for the fastest
few workers and move to the next iteration which may
not be possible for ERASUREHEAD.

VI. CONCLUSION

We present a new code construction that we call
Stochastic Gradient Coding (SGC). SGC is an ap-
proximate gradient code that allows a master to run
a distributed gradient descent–based machine learning
algorithm distributively on n workers while tolerating
stragglers. With small data redundancy, SGC allows the
master to wait for the few fastest workers to finish their
assigned computations and move to the next iteration.
We provide theoretical guarantees on the convergence
of SGC for the case of the `2 loss function and show
that SGC has an exponential convergence rate which mir-
rors the behavior of the well-known stochastic gradient
descent. In the extended version, we provide theoretical
guarantees for SGC for all strongly convex loss functions
and show that SGC has a convergence rate inversely
proportional to the number of iterations.
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