
Securing Dynamic Distributed Storage Systems
from Malicious Nodes

Sameer Pawar, Salim El Rouayheb, Kannan Ramchandran
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley
{spawar, salim, kannanr}@eecs.berkeley.edu

Abstract—We address the problem of securing distributed
storage systems against adversarial node attacks. An important
aspect of these systems is node failures over time, necessitating,
thus, a repair mechanism in order to maintain a desired high
system reliability. In such dynamic settings, an important security
problem is to safeguard the system from a malicious adversary
who may come at different time instances during the lifetime of
the storage system to corrupt the data stored on some nodes. We
provide upper bounds on the maximum amount of information
that can be stored safely on the system in the presence of the
adversary. For an important operating regime, which we call the
bandwidth-limited regime, we show that our upper bounds are
tight and provide explicit linear code constructions. Moreover,
we provide a way to shortlist the malicious nodes and expurgate
the system.

I. INTRODUCTION

Distributed storage systems (DSS) consist of a collection
of n data storage nodes, typically individually unreliable, that
are collectively used to reliably store data over long periods
of time. Applications of such systems are innumerable and
include large data centers and peer-to-peer file storage systems
such as OceanStore [1] that use a large number of nodes spread
widely across the Internet. To satisfy important requirements
such as data reliability and load balancing, it is desirable for
the system to be designed to enable a user, also referred to
as a data collector, to download a file stored on the DSS
by connecting to a smaller number k, k < n, of nodes.
An important design problem for such systems arises from
the individual unreliability of the constituent nodes due to
many reasons, such as disk failures (often due to the use
of inexpensive “commodity” hardware) or peer “churning”
in peer-to-peer storage systems. In order to maintain a high
system reliability, the data is stored redundantly across the
storage nodes. Moreover, the system is repaired every time a
node fails by replacing it with a new node that connects to d
other nodes and downloads data to replace the lost one.

When a distributed data storage system is formed using
nodes widely spread across the Internet, e.g., peer-to-peer
systems, individual nodes may not be secure and may become
victim of a malicious adversary that can corrupt their data,
e.g., viruses, botnet, etc. In this work, we address the issue
of securing dynamic distributed storage systems, with nodes
continually leaving and joining the system, against malicious

This research was funded by an NSF grant (CCF-0964018), a DTRA grant
(HDTRA1-09-1-0032), and in part by an AFOSR grant (FA9550-09-1-0120).

v1

v2

v3

v4

failure

user

v5

new node

α

β
β

∞

∞

malicious
node β

Fig. 1. A distributed storage system (DSS) with (n, k, d) = (4, 2, 3).
The DSS has n = 4 nodes, v1, . . . , v4, each can store α units of
information. A user should be able to recover his file by contacting
any k = 2 nodes. The figure depicts the instance where node v1

fails and the system is repaired by replacing it with the new node v5.
Node v5 contacts d = 3 surviving nodes and downloads β units of
data from each. Suppose there is a malicious adversary that controls
node v2. Then, the adversary, in addition to his ability to corrupt the
data stored on v2, can inject erroneous data into the system when
contacted for repair, for instance, by node v5.

attacks. The dynamic behavior of the system can jeopardize
the data by making the intruder more powerful. For instance,
consider the DSS of Fig. 1. Here, an adversary that can control
one node (say node v2 as depicted in Fig. 1) not only corrupts
the data stored on that node, but also sends erroneous data
when contacted by a new node joining the system. Thus, due to
the dynamics of nodes leaving (failure) and new nodes joining
(repair) the system, a malicious adversary controlling a single
node may be able to “poison” the whole system.

We are interested in determining the fundamental
information-theoretic limits on the amount of information
that can be stored securely on these systems, in addition to
constructing coding schemes that can achieve these limits. We
focus on an omniscient adversary model who has complete
knowledge of the data in the system but can only control a
fraction of the nodes. Recent work in the literature by Kosut et
al. [2] showed that studying networks with malicious nodes is a
hard problem and provided instances where non-linear coding
at intermediate network nodes may be necessary for achieving
security. The contribution of the current paper resides, at a high
level, in showing that the networks representing distributed
storage systems have structural symmetry that makes the
security problem more tractable than in general networks. We
leverage this fact to derive a general upper bound on the
secure capacity of these systems and show its achievability
in an important regime that we call the bandwidth-limited

regime. Moreover, we present linear codes that can achieve
capacity in this regime. These codes are characterized by a
separation property: the file to be stored is first encoded for
security then stored in the system without any modification
to the internal operation of the system nodes. An additional
interesting property of our proposed codes is that they permit
the identification of a small list of suspected nodes guaranteed
to contain the malicious ones, permitting thus the expurgation
of the system.

Related work: Dimakis et al. in [3], [4] demonstrated a
fundamental trade-off between repair bandwidth and storage
capacity in distributed storage systems. They also introduced
“regenerating codes” that have minimum repair bandwidth
overhead. Constructions of exact regenerating codes that allow
the recovery of an exact replica of the lost data were studied in
[5], [6], [7], [8]. Achieving data privacy against eavesdropping
in a DSS was studied in [9]. The security of storage systems
with the help of a trusted verifier was investigated in [10].
Kosut et al. in [2] studied the capacity of general unicast
networks with malicious nodes. A Byzantine adversary that
can maliciously introduce errors on links instead of nodes is a
well studied model in the network coding literature [11], [12].

Organization: The rest of this paper is organized as
follows. In Section II, we discuss distributed storage systems
and the adversary model. We provide a brief summary of
our main results in Section III and explain them through
example in Section IV. In Section V, we provide a capac-
ity achieving construction for an important operating regime
known as bandwidth-limited regime and conclude the paper in
Section VI.

II. MODEL

Distributed Storage Systems: We consider a distributed
storage system (DSS) formed of n storage nodes v1, . . . , vn,
each having a storage capacity of α symbols. The storage
nodes are individually unreliable and may fail over time. To
guarantee a desired level of reliability, the system is repaired
when a failure occurs by replacing the failed node with a new
node of the same storage capacity α. The DSS should allow
any legitimate user or data collector to reconstruct the file by
contacting any k out of the n active storage nodes. We term
this condition as the reconstruction property of distributed
storage systems.

Repair Process: We assume that nodes fail one at a time1

and we denote by vn+i the new replacement node added to the
system to repair the i-th failure. The new replacement node
connects to some d nodes, d ≥ k, chosen, possibly randomly,
out of the remaining active n − 1 nodes and downloads γ
symbols in total from them, which is then possibly compressed
(if α < γ) and stored on the node. Thus, we denote a
DSS by the triplet (n, k, d), e.g., Fig. 1 depicts a DSS with
parameters (n, k, d) = (4, 2, 3). Note that the data stored
on the replacement node can be different than the one that
was stored on the failed node, as long as the reconstruction

1Multiple nodes failing simultaneously is a rare event. When this occurs,
the DSS implements an “emergency” repair process where the replacement
nodes act as data collectors and download data from k active nodes.

property of the DSS is retained. We refer to γ, the total amount
of data (in symbols) downloaded for repair, as the repair

bandwidth of the system. For load balancing requirements,
we assume that the repair process is symmetric where the new
replacement node downloads equal amount of data, β = γ/d
symbols, from each of the contacted nodes.

Adversary Model: We assume the presence of an active
adversary Calvin who can control a certain number of nodes
in the DSS. Calvin is assumed to be omniscient [11], i.e., he
knows the stored file and the data stored on the individual
nodes. Moreover, Calvin can control b nodes in total, where
2b < k, that can include some of the original nodes v1, . . . , vn,
and/or some replacement nodes vn+1, vn+2, . . . 2. Calvin can
maliciously alter the data stored on the nodes under his control.
He can also send erroneous outgoing messages when contacted
for repair or reconstruction.

III. RESULTS SUMMARY

We define the resiliency capacity Cr of the DSS, as the
maximum amount of data that can be stored on the DSS and
reliably delivered to a legitimate data collector. Our first result
gives a general upper bound on the resiliency capacity.

Theorem 1: [Upper Bound] For an (n, k, d) DSS with an
omniscient adversary controlling b nodes, with 0 < 2b < k,
the resiliency capacity Cr(α, γ) is upper bounded as,

Cr(α, γ) ≤
k�

i=2b+1

min{(d− i + 1)β,α}, (1)

with β = γ/d. For k ≤ 2b, Cr(α, γ) = 0.
The above upper bound can be interpreted as a network

version of the Singleton bound where 2b nodes among the k
nodes observed by the user are rendered obsolete. The value of
the summand in the bound can be less then α due to possible
correlation between the data stored on each node. The detailed
proof of Theorem 1 can be found in [13].

In many scenarios, the repair bandwidth becomes the bot-
tleneck in the system rather than the node storage capacity.
Therefore, we identify an important operational regime for
the DSS which we call the bandwidth-limited regime [9]. In
this regime there is an imposed upper limit Γ on the repair
bandwidth, i.e., γ ≤ Γ, while the storage capacity per node
can be taken to be as large as desired3. The resiliency capacity
in the bandwidth-limited regime is defined as

CBL
r (Γ) := sup

γ ≤ Γ, α ≥ 0
Cr(α, γ).

Note that if the parameter d is a system design choice,
the upper bound of (1) in the bandwidth-limited regime is
maximized for d = n − 1. In the following section, we
exhibit a scheme that achieves this upper bound. This result
is summarized in Theorem 2.

2A new node replacing a failed node that was compromised may or may
not be compromised itself. The only constraint that our model supposes is
that at any given time Calvin can control at most b nodes.

3In the sequel, we show that no gain in the system resiliency capacity can
be achieved by taking the storage capacity per node α to be larger than Γ.

x1 x2 x3

x1 x4 x5

x2 x4 x6

x3 x5 x6

v1

v2

v4

v3

(6,1)
Repetition

m=0 x1=...=x6=0
File

3 bits

x1 x4 x5

x2 x4 x6

user

1 1 1
1 0 0
1 0 0

user observation

v6

! ! !
! 0 0
! 0 0

! 0 0
! ! !
 0 ! 0

0 ! 0
0 ! 0
! ! !

0 0 !
0 0 !
0 0 !

!!"#$%%&'()")**$*

!"#$%$&'()
)*&+,-) v1 v2 v3 v4

v1
v5
v6

v5

(a)
(b)

Fig. 2. Example of a capacity achieving code for a DSS with (n, k, d) = (4, 3, 3) and b = 1 node controlled by the adversary Calvin.
This code is used to reliably store 1 bit of information designated by m. (a) Assume that node v1 is the compromised node and that nodes
v2 and v3 fail and are replaced by nodes v5 and v6, respectively. Consider a user contacting nodes v1, v5, v6. Although Calvin can directly
control 3 bits, he can induce 5 errors in this user observation due to the repair process. Therefore, a simple majority decoding rule will fail
here. (b) The four error patterns that can be introduced by Calvin in the user observation. Each pattern contains 5 possible error locations
and corresponds to a distinct possibility of compromised node. These patterns can be leveraged to decode correctly the message.

Theorem 2: For an (n, k, d) DSS, with d = n−1, operating
in the bandwidth-limited regime with an omniscient adversary
controlling b nodes, 2b < k, the resiliency capacity of the DSS
is given by

CBL
r (Γ) =

k�

i=2b+1

(n− i)β, (2)

where β = Γ
n−1 and can be achieved for a node storage

capacity of α = Γ. For k ≤ 2b, CBL
r (Γ) = 0.

Our proposed capacity achieving codes are linear and char-
acterized by a desired separation property: the file to be stored
is first encoded for security then stored in the system without
any modification to the internal operation of the system.
Moreover, these codes permit the identification of a small
“suspect” list guaranteed to contain the malicious nodes which
can be then discarded from the system.

In the next section, we explain the above results using a
simple example and prove Theorem 2.

IV. EXAMPLE

Consider the example of a DSS with (n, k, d) = (4, 3, 3)
and α = γ = 3 bits. Assume that there is an omniscient active
adversary Calvin that can control one storage node, i.e., b = 1,
and can modify its stored data and/or its messages outgoing
to data collectors and repair nodes. Note that, although Calvin
controls a single node here, he can corrupt the data on other
nodes in the system by sending corrupted data to the new
nodes joining the system during the repair process.

By Theorem 1, we know that the resiliency capacity of this
system is upper bounded by 1 bit. We now provide a code that
can reliably store 1 bit of information on the DSS, thereby
showing that Cr = 1. This code, depicted in Fig 2(a), consists
of the concatenation of an outer (6, 1) repetition code followed
by a special repetition code that was introduced in [5] by
Rashmi et al. and which we refer to as the RSKR-repetition
code (see Fig. 3). To repair the system, the replacement node
recovers the lost bits by downloading from the remaining three
active nodes the bits with same indices.

Any data collector contacting three nodes will observe 9
bits. In the static case, when no failure or repair occur, only 3
bits (the ones stored on the compromised node) among the 9
bits observed by the data collector may be erroneous. In that
case, the data collector DC can perform a majority decoding to
recover the information bit. However, in the dynamic model,
the DC can receive up to 5 erroneous bits. To show how this
may occur, assume that the DSS is storing the all-zero code-
word, i.e., xi = 0 for i = 1, . . . , 6, in Fig 2(a), corresponding
to the message m = 0. Suppose node v1 is compromised
and is controlled by the adversary Calvin. Assume that Calvin
changes all the 3 stored bits (x1, x2, x3) on node v1, from
(0, 0, 0) to (1, 1, 1), and also sends the erroneous bit “1”
whenever v1 is contacted for repair. Now suppose that node v2

fails and is replaced by node v5 which, based on the RSKR-
repetition structure, downloads bits x1 = 1, x4 = 0 and x5 = 0
from nodes v1, v3 and v4 respectively. Suppose also that, after
some period of time, node v3 fails and is replaced by node
v6 which downloads bits x2 = 1, x4 = 0 and x6 = 0 from
nodes v1, v4 and v5 respectively. As a result a data collector
that contacts nodes v1, v5 and v6 observes the data as shown
in the table in Fig 2(a) which includes 5 errors. An important
point to note here is that the repair scheme is based on the
RSKR-repetition code and is fixed irrespective of the possible
errors in the bits downloaded during repair.

In a worst case scenario, Calvin will be able to corrupt all
the bits in the DSS having the same indices as the bits stored
on the nodes it controls (here the bits with labels x1, x2 and
x3). Therefore, Calvin can introduce at most 5 erroneous bits
on a collection of k = 3 nodes which may be observed by a
data collector. In this case, a majority decoder, or equivalently
a minimum Hamming distance decoder, will not be able to
decode to the correct message.

To overcome this problem, we exploit the fact that Calvin
controls only one node, so he can introduce errors only in
one of the four patterns depicted in Fig. 2(b). To decode, the
user will go over each of the possible patterns and use it as
a “mask” to puncture its data, i.e., it will delete the bits in
the ‘star’ positions. If all the bits with distinct indices in the

Node v1

Node v2

Node v3

Node vn

x1 x2 x3 . . . xd

x1

x2

xd+1 xd+2 . . . x2d−1

xd+1 x2d . . . x3d−3

xd x2d−1 x3d−3 . . . xθ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 3. The structure of the RSKR-repetition code of Rashmi et al
[5] for n storage nodes, α = d = n−1, β = 1 and θ = n(n−1)

2 . The
RSKR-repetition code stores 2 copies of each coded symbol, i.e., the
total number of stored symbols is nd = 2θ.

remaining bits agree, the decoder will output a result. Note
that there is always a pattern where all he unpunctured bits
will agree.

To prove that this decoder will never make an error, we
have to show that whenever the unpunctured bits agree, they
must agree on the correct value. In fact, for any possible
choice of the compromised node, one of the following four sets
T1 = {x4, x5, x6}, T2 = {x2, x3, x6}, T3 = {x1, x3, x5} and
T4 = {x1, x2, x4} is a trusted set that only contains symbols
that were not altered by Calvin. For example, when Calvin
controls v1, the trusted set is T1. The proposed code operates
in the following way. First, it finds a set T ∗ ∈ {T1, . . . , T4}
whose all elements agree to either 0 or 1. Then, it declares
that message m = 0 or m = 1 was stored accordingly. This
decoder will always decode to the correct message since each
set Ti intersects with every other set Tj , j �= i, in exactly one
symbol and one of them is a trusted set. Therefore each set
Ti contains at least one symbol which is unaltered by Calvin.
Thus, if all the symbols in Ti agree, they will agree to the
correct message. Hence with the proposed code and “masking”
decoder, we can store 1 bit of data securely. In the next section,
we generalize this construction to obtain capacity achieving
codes for the bandwidth-limited regime.

V. CAPACITY-ACHIEVING CODES

We now give the proof of Theorem 2 by explicitly con-
structing codes that can achieve the resiliency capacity in the
bandwidth-limited regime for systems with d = n − 1. It
suffices to show the achievability for the normalized case of
β = 1, i.e., Γ = n − 1. In this case, our capacity achieving
code uses a node storage capacity α = n− 1 symbols.

The code is a generalization of the code used in the
previous example. The (6, 1) repetition code in the example is
replaced by a (θ, R) MDS code where R := CBL

r (n − 1) =�k
i=2b+1(n − i) and θ = n(n−1)

2 . In the second layer, the
output of the MDS code is stored on the DSS using the
general RSKR-repetition code depicted in Fig 3. Note that
node failures are repaired using the RSKR-repetition code
irrespective of the possible errors introduced by Calvin.

A data collector accessing any k nodes will observe a total
of αk = (n− 1)k symbols, out of which M =

�k
i=1(n− i)

symbols have distinct indices, and k(k−1)
2 symbols are re-

peated twice due to the structure of the RSKR-repetition

code. The adversary can corrupt both copies of the repeated
symbols stored on the b compromised nodes. Therefore, the
data collector focuses on M symbols with distinct indices
out of the (n − 1)k total observed symbols and uses them
for decoding. These M symbols with distinct indices form a
codeword of an (M, R) MDS code, say X , which are possibly
corrupted with the errors introduced by the adversary. The
minimum distance of the MDS code X is,

dmin(X) = M −R + 1 =
2b�

i=1

(n− i) + 1. (3)

The adversary that controls b nodes can introduce up to t =�b
i=1(n − i) errors in the set of M symbols with distinct

indices. A simple manipulation shows that t > �dmin(X)−1
2 �.

Therefore a classical minimum distance decoder for X will
not be able to recover the original file.

Next, we present a novel decoder that can correct errors
beyond the classical upper bound of �dmin(X)−1

2 � in the DSS.
The main idea is to take advantage of the special structure of
the error patterns that can be introduced by the adversary.

First, we introduce two definitions that will be useful in
describing the decoding algorithm and that will serve as a
generalization of the concept of trusted set in the previous
example.

Definition 3: Puncturing a vector: Consider a vector �v ∈
FN for some field F. Let I ⊂ {1, 2, . . . , N}, |I| = p, be a
given set. Then puncturing vector �v with pattern I corresponds
to deleting the entries in �v indexed by the elements in I to
obtain a vector �vI ∈ FN−p.

Definition 4: Puncturing a Code: Consider a code C in
FN . Let I ⊂ {1, 2, . . . , N}, |I| = p, be a given set. The
punctured code CI is obtained by puncturing all the codewords
of C with pattern I , i.e., CI := {�xI |�x ∈ C}.

Decoding Algorithm: Let B, |B| ≤ b, denote the set of
storage nodes controlled by the adversary. Because of the exact
repair property of the RSKR-repetition codes, it is sufficient
to focus on the case when B ⊂ {v1, . . . , vn} with |B| = b.
For each such set B, we define IB ⊂ {1, 2, . . . , θ} to be the
set of the indices of the symbols stored on the nodes in B.
For instance, in Example IV, B = {v1}, IB = {1, 2, 3}.

The decoding algorithm proceeds in the following way:
Step 1: The data collector connecting to k nodes observes

a total of (n − 1)k symbols. It then selects any M symbols
with distinct indices Y ∈ FM

q , and uses it for decoding. In
Fig 2(a), the DC connecting to nodes v1, v5, v6 observes vector
(y1, y2, y3, y1, y4, y5, y2, y4, y6). After removing the repeated
symbols, we get Y = (y1, y2, y3, y4, y5, y6). Note for a fixed
DC, Y is a corrupted codeword of an (M,R) MDS code
which we call X . Y includes possible errors introduced by
the adversary. The code X itself is a punctured code of the
outer (θ, R) MDS code.

Step 2: For each B ⊂ {v1, . . . , vn}, |B| = b, find IB .
Step 3: Puncture Y and the code X with pattern IB to

obtain the observed word YIB and punctured code XIB . Note
that due to the RSKR-repetition structure, the size of such
puncturing pattern is |IB | =

�b
i=1(n− i), which is less than

the minimum distance of the MDS code X (see (3)). Hence,
XIB is an MDS code.

Step 4: Let HXIB
be the parity check matrix of the

punctured code XIB . Compute the syndrome of the observed
word YIB as �σIB = HXIB

Y T
IB

.
Step 5: If �σIB = 0, then YIB is a codeword of XIB . Assume

it to be a trusted codeword and decode to message using a
decoder for the code XIB .

Proof of Correctness: Notice that the syndrome �σIB will
always be equal to zero whenever B = B∗, the actual set of
nodes controlled by the adversary (not known to the user).
Therefore, the above decoding algorithm will always give an
output. Next, we show that this output always corresponds to
the correct message stored on the DSS. Denote by X the true
codeword in X , that would have been observed by the DC in
the absence of Calvin. Let B∗ be the set of the b malicious
nodes. Then, the proposed decoding algorithm fails iff there
exists some other set B �= B∗, and some other codeword X � ∈
X , s.t. X � �= X , for which YIB = X �

IB
∈ XIB . This implies

that XIB∗∪IB = X �
IB∪IB∗ . But, from the RSKR-repetition

code structure we know that |IB∗ ∪ IB | ≤
�2b

i=1(n − i).
This implies that dmin(X) ≤

�2b
i=1(n − i) which contradicts

equation (3).
Remark 5 (Decoder complexity): The complexity of the

proposed decoder is exponential in the number b of malicious
nodes. Therefore, it may not be practical for protecting systems
against powerful adversaries, i.e., with large values of b.
However, this decoder can be regarded as a proof technique for
the achievability of the resiliency capacity CBL

r of Theorem 2.
Remark 6 (Expurgation of malicious nodes): As shown

above, the proposed decoder always decodes to the correct
message, and thus, can identify the indices of the erroneous
symbols. The data collector can then report this set of indices
to a central authority (tracker) in the system. This authority
can further combine such information from multiple data
collectors, and knowing the RSKR-repetition structure (see
Fig. 3), it forms a list of suspected nodes that will surely
include the malicious nodes. Since there are at most b
malicious nodes and each symbol xi is stored on exactly two
nodes, the size of the list will be at most 2b. The system is
then purged by discarding the nodes in this list.

VI. CONCLUSION

We have investigated the fundamental performance limits
of distributed storage systems under repair dynamics in the
presence of malicious nodes. We presented a general upper
bound on the resiliency capacity of the system and constructed
codes that can achieve this bound in the bandwidth-limited
regime. In general, it is known that intermediate nodes in the
network may have to perform non-linear operations to achieve
the secure capacity [2]. In contrast, our capacity-achieving
codes are linear and enjoy a separation-based structure con-
sisting of file precoding without changing the behavior of the
system nodes.

This work is a first step towards understanding the secu-
rity of distributed storage systems and dynamic information
systems in general. Many related questions remain open:

1) The proposed decoder for our capacity-achieving code
has a decoding complexity that grows exponentially in the
number of malicious nodes. Whether there is a exists a
polynomial-time decoder is still an open question. Moreover,
can the decoding complexity be reduced by allowing the re-
placement nodes in the system to perform “smarter” operations
than simply storing their incoming data?

2) Our capacity result and codes for the bandwidth-limited
regime hold for the case of d = n−1, i.e., when all the nodes
in the system have to be contacted for repair, which can be
prohibitive in large-scale systems. Recently, exact regenerating
codes were constructed in [14] for the cases of d < n−1. Can
these codes be used as inner component codes for achieving
security for d < n − 1. Unfortunately, our constructions here
cannot be readily generalized to that case.

3) Our current approach to securing a dynamic system
consists of transforming it into static system using exact codes.
However, this is not always possible [8]. In this case, is
the upper bound of Theorem 1 tight, and what codes would
achieve it?

REFERENCES

[1] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet

Computing, pp. 40–49, 2001.
[2] O. Kosut, L. Tong, and D. Tse, “Nonlinear network coding is necessary

to combat general byzantine attacks,” in Proc. of 47th Annual Allerton

Conference on Communication, Control, and Computing, Oct. 2009.
[3] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, and K. Ramchandran,

“Network coding for distributed storage systems,” IEEE Trans. Inform.

Theory, vol. 56, pp. 4539–4551, Sep. 2010.
[4] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,

“Network coding for distributed storage systems,” in INFOCOM’07,
2007.

[5] K. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Exact
regenerating codes for distributed storage,” in Allerton Conference

on Control, Computing, and Communication, Urbana-Champaign, IL,
2009.

[6] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in IEEE Internat. Symp.

Inform. Th., 2009.
[7] C. Suh and K. Ramchandran, “Exact regeneration codes for distributed

storage repair using interference alignment,” in Proc. IEEE Intl Symp.

on Information Theory (ISIT), 2010.
[8] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit

codes minimizing repair bandwidth for distributed storage,” in ITW,
2010.

[9] S. A. Pawar, S. El Rouayheb, and K. Ramchandran, “On secure
distributed data storage under repair dynamics,” in IEEE Internat. Symp.

Inform. Th. (ISIT’10), 2010.
[10] T. K. Dikaliotis, A. G. Dimakis, and T. Ho, “Security in distributed

storage systems by communicating a logarithmic number of bits,” in
IEEE Internat. Symp. Inform. Th. (ISIT’10), 2010.

[11] Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and
M. Effros, “Resilient network coding in the presence of byzantine
adversaries,” pp. 2596–2603, 2008.

[12] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach
to error control in random network coding,” in IEEE Trans. Inf. Theory,
2008.

[13] S. A. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic
distributed storage systems against eavesdropping and adversarial at-
tacks,” in arXiv:1009.2556v2, 2011.

[14] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the msr and mbr points via a product-
matrix construction,” in arxiv:1005.4178, 2010.

