
Random Walk Gradient Descent for Decentralized
Learning on Graphs

Ghadir Ayache
ECE Department, Rutgers University

New Brunswick, NJ

ghadir.ayache@rutgers.edu

Salim El Rouayheb
ECE Department, Rutgers University

New Brunswick, NJ

salim.elrouayheb@rutgers.edu

Abstract—We design a new variant of the stochastic gradient
descent algorithm applied for learning a global model based on
the data distributed over the nodes of a network. Motivated
by settings such as in decentralized learning, we suppose that
one special node in the network, which we call node 1, is
interested in learning the global model. We seek a decentralized
and distributed algorithm for many reasons including privacy
and fault-tolerance. A natural candidate here is Gossip-style
SGD. However, it suffers from slow convergence and high
communication cost mainly because at the end all nodes, and
not only the special node, will learn the model.

We propose a distributed SGD algorithm using a weighted
random walk to sample the nodes. The Markov chain is designed
to have stationary probability distribution that is proportional to
the smoothness bound Li of the local loss function at node i.
We study the convergence rate of this algorithm and prove that
it depends on the smoothness average L. This outperforms the
case of uniform sampling algorithm obtained by a Metropolis-
Hasting random walk (MHRW) which depends on the supremum
of all Lis noted supL. We present numerical simulations that
substantiate our theoretical findings and show that our algorithm
outperforms random walk and gossip-style algorithms.

Index Terms—MCMC, SGD, decentralized learning.

I. INTRODUCTION

We consider the setting in which data is distributed among

nodes in a graph. One special node in the graph wants to

learn a model by minimizing an averaged loss function on

all the distributed data using an iterative Gradient Descent-

based algorithm. Our main motivation is applications such as

federated learning [1] where the nodes are users having their

personal data on their phones and a model is to be learned on

their collective data. However, for privacy concerns, we seek

a decentralized solution in which nodes communicate with

their neighbours without involving a centralized server. Our

theoretical results can also be applied to any decentralized

learning problem in networks such as social networks or

Internet-Of-Things (IoT) applications.

Consensus or Gossip-like algorithms allow decentralized

learning problem by making every node learn the model locally

by only exchanging updates with neighbors [2, 3]. However,

in our setting, not all the nodes are interested in learning

the model and thus a gossip algorithm can suffer from slow

convergence rate and incur high communication cost. Instead,

we propose a decentralized algorithm based on a random walk

on the graph. At each iteration, a node in the graph gets a

token holding the last updated model and then updates it based

on its data using the gradient descent update rule. In the next

iteration, one of its neighbouring (adjacent) nodes is sampled

and the token is passed to him. The main question we want

to address is how to sample the graph nodes to ensure fast

convergence of the algorithm.

We assume the local loss function at each node is convex

and gradient Lipschitz continuous. We propose two algorithms

for decentralized gradient descent based on Metropolis Hasting

Random Walk (MHRW). The first based on uniform sampling

and the second on weighted sampling. Our main contribution

is proving refined convergence analysis of the decentralized

algorithms using recent results on the convergence analysis of

SGD [4, 5]. In particular we make the following contributions:

1) We propose a Uniform Random Walk Gradient Descent

(RWGD) algorithm in which the nodes in the graph are

sampled uniformly (as the number of iteration goes to

infinity) based only on the nodes degrees. Our algorithm

is similar to the one proposed in [5]. However, the

novelty here is implementing the assumption above on

the gradient Lipschitz loss function on the theoretical

guarantees.

2) We propose a second algorithm which we call Weighted

RWGD algorithm. The algorithm used MHRW to sample

the nodes based on the distribution in [4] which takes into

account the data at each node (Lipschitz constant). We

also derive a theoretical analysis of the convergence rate

of this algorithm and show that it outperforms uniform

sampling.

3) We present numerical simulations for the Uniform

RWGD, Weighted RWGD and the asynchronous Gossip

GD that has equivalent number of communication rounds.

First, we consider Erdos-Renyi graphs. Our simulations

confirm our theoretical finding in showing that the

Weighted RWGD outperforms the Uniform RWGD. To

understand the effect of the graph structure on the

convergence rate, we also compare our algorithms on two

other types of graphs: Expander and Stochastic Block

Model.

926

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

978-1-5386-5555-9/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPSW.2019.00157

II. MODEL

A. Network model and problem formulation

We consider a network of N interacting nodes represented

by an undirected connected graph G (V, E). V = {1, 2 .., N}
is the set of all nodes and E ⊆ V × V is the set of undirected

edges. We say that two nodes are adjacent or neighbors if they

are connected by an edge. Let N (i) be the set of nodes that

are neighbors to node i. We suppose that each node can only

exchange information with its neighbors.

Each node i holds local private data represented by (xi, yi),
where xi ∈ R

d represents a d-dimensional data point. yi ∈ R

is the label assigned to that data point. We collect the data

at all the nodes in one matrix X ∈ R
N×d, where xi is the

ith row of X . Similarly y ∈ R
N is the label vector and has

yi as its ith coordinate. We suppose that one special node of

the network, called node 1, is interested in learning a global

model w∗ ∈ W ⊂ R
d that minimizes an average loss function

f (w) =
1

N

N∑
i=1

fi (w) , (1)

subject to

w ∈ W, (2)

where fi (.) is the local loss function at node i and W is a

convex compact set. So the goal is to find w∗ ∈ W satisfying

w∗ = argmin
w∈W

1

N

N∑
i=1

fi (w) . (3)

B. Existing algorithms

The literature focuses mostly on two approaches to solve

this problem: centralized and Gossip-like algorithms.

Centralized SGD: In the centralized approach, at each iter-

ation, we sample a subset of nodes, then the learning goal

could be achieved in two ways: either the sampled node sends

its data to node 1 to perform the stochastic gradient descent

update, or, in two rounds of communication, node 1 sends the

global model to the sampled node, the last does the update

on its local data and sends back the new global model to the

special node [1, 6].

Gossip SGD: Another approach suggests to decentralize the

work by running a Gossip-like algorithm where every node

holds a local model and participate in the learning. In an

asynchronous version of that algorithm, two adjacent nodes of

the network wake up at a given iteration, update their local

model based on their local training data, exchange their updates

and do the averaging [2, 3, 7, 8].

Drawbacks of these approaches: The centralized approach

seems to require a high number of communication rounds. For

the case where we choose to send the data, the data needs to go

through a direct path leading to node 1 at each iteration. Adding

that node 1 needs to have enough computational power to take

care of all the iterated updates. The route will be repeated

twice in case where the updates are going to be performed

locally to exchange the global model forth and back. Then,

the communication cost is going to explode remarkably with

the network size. Adding issues on privacy, where any node in

the network is obliged to share its data or its gradient among

other nodes that are not neighbors.

Gossip approach lets all nodes learn the global model including

node 1 regardless they are interested in the type of application

that they are learning for or not. Then, the gossip algorithm is

shown to be slow because each of the local model is improved

only when the holder gets the chance to wake up. While on

the centralized version, the updates are made on a version of

the model that was improved all over the time since starting

iterating.

III. ALGORITHM

We propose to run a random walk over the users when at

each round the token holding the last update of the model

jumps to one of the neighbors and gets updated according to

a gradient descent on this new node training data.

In the end of iterations, at time T , the averaged model w̄T or

the last model wT will be transmitted to node 1 through a direct

path. The MHRW algorithm guarantees a desired stationary

distribution while running a Simple Random Walk (SRW) will

end up with a stationary distribution proportional to the nodes

degrees [9].

For the undirected graph G, the MHRW proposes jumps

between nodes based on a SRW first, so the proposal probability

for moving from a node v to a node u in V is

Q (v, u) =
1

deg (v)
,

where deg(v) is the degree of node v. To drive the non-uniform

stationary of a SRW to a desired stationary distribution π,

a proposed jump from node v to node u can be accepted

according to the acceptance probability

a (v, u) = min

(
1,

π (u)

π (v)

Q (u, v)

Q (v, u)

)
,

or rejected with the probability 1− a (v, u). Here, we end up

with a transition matrix P of a time reversible Markov chain

for the desired stationary distribution π, with

P (v, u) = Q (v, u) a (v, u)

= min

{
Q (v, u) , Q (u, v)

π (u)

π (v)

}
.

At any moment, the active node needs just to know its

neighbors, choose one of them uniformly and accept the

transition or reject it based on the ratio of its degree to the

degree of the chosen node. [9, 10]. Then the new active node

i applies

wt+1 = ΠW (wt − γt∇fi (wt)) , (4)

where ΠW is the projection operator on W .

The MHRW in graph-based learning problem is discussed

for unbiased gradient estimate where the targeted stationary

distribution over the nodes training data is uniform [5, 11].

That is Algorithm 1.

927

Algorithm 1 Uniform Random Walk GD

Initialization: Initial node v0, Initial model w0

for t = 0 to T do
Choose node u uniformly at random from N (vt) .
Generate p ∼ U (0, 1) where U is the uniform distribu-

tion.

if p ≤ min
{
1, deg(vt)

deg(u)

}
then

vt+1 ← u
else

vt+1 ← vt
end if
wt+1 = ΠW

(
wt − γt∇fvt+1 (wt)

)
end for

Return: wT and w̄T =

T∑

i=1
(γiwi)

T∑

j=1
γj

. {returned to node 1}

Algorithm 2 Weighted Random Walk GD

Initialization: Initial node v0, Initial model w0

for t = 0 to T do
Choose node u uniformly at random from N (vt) .
Generate p ∼ U (0, 1) where U is the uniform distribu-

tion.

if p ≤ min
{
1, Lu

Lvt

deg(v(t))
deg(u)

}
then

vt+1 ← u
else

vt+1 ← vt
end if
wt+1 = ΠW

(
wt − γt∇fvt+1

(wt)
)

end for

Return: wT and w̄T =

T∑

i=1
(γiwi)

T∑

j=1
γj

. {returned to node 1}

We propose to reweight the sampling, and let it be propor-

tional to the gradient Lipschitz constant of the node local loss

function. We take advantage of the Metropolis algorithm, and

redesign the random walk as in Algorithm 2 in order to get

that sampling. We use supL to denote the supremum of all

Lipschitz constants.

Remark 1. We interchangeably index the local function with
he node index or the node name pointing the same local loss
on the local data of the node.

Remark 2. For the convergence analysis, we are able to get
theoretical guarantee on the convergence rate of f (w̄T). For
f (wT), we are able to prove the convergence. Our simulations
show that f (wT) converges to its optimal value f (w∗) at
least as fast as f (w̄T).

IV. CONVERGENCE ANALYSIS

In this section, we present the results on the convergence

of algorithms 1 and 2 in theorems 1 and 2 respectively. For

completeness, we start with theorem 1 that analyses Algorithm

1 based on uniform sampling. Theorem 1 can be seen as

a modified version of the general result of [5] in which we

incorporate the assumption on the Lipschitzness of the local loss

function. Our main contribution is in Theorem 2 that analysis

the convergence of Algorithm 2 based on weighted sampling

that depends on the local Lipschitz constants. Comparing the

convergence rates in theorems 1 and 2 we can see the speed up

in convergence brought up by our proposed weighted sampling.

Assumption 1. The local loss function fi for each node i ∈ V
is a convex function and has a Li-Lipschitz continuous gradient;
that is,

‖∇fi (w1)−∇fi (w2)‖2 ≤ Li ‖w1 − w2‖2 .
Condition 1. We use a diminishing step size that satisfies

∞∑
t=1

γt = +∞,

and ∞∑
t=1

ln t.γ2
t < +∞.

In particular, we can take γt =
1
tq for 0.5 < q < 1 as an

example that satisfies Condition 1.

Assumption 2. The Markov chain defined on V with a
transition matrix P induced by Algorithm 1 is irreducible
and aperiodic and has a stationary distribution π∗.

We denote by λi, for i = 1, 2, ..N , the eigenvalues of the

reversible transition matrix P with λ1 = 1. As we define

λmax = max {|λ2| , |λN |} and λ∗ = λmax+1
2 .

After stating the assumptions on the Markov chain and the

local loss functions, we are at the point to state the following

theorem.

Theorem 1 (Convergence rate of Algorithm 1). Under assump-
tions 1 and 2, running Algorithm 1, with a step size γt =

1
tq

when 0.5 < q < 1, we get

E (f (w̄t)− f (w∗)) ≤ 1

t1−q

(
c+ (supL)

2
c′ +

c′′

ln 1
λ∗

)
,

where, c is a constant the depends on is a constant the
depends on max

i
‖∇fi (w

∗)‖22 noted ε, c′ depends on the radius
R of the bounded set W , and c′′ is a constant that depends
on the transition matrix P.

Now, we consider sampling the data according to a weighted

probability distribution proportional to a weight noted by k.

So

π∗k (i) ∝ k (i)π∗ (i) .

Similarly to the work in [4], we choose

k (i) =
Li

L
,

where L =

N∑

i=1
Li

N .

928

Assumption 3. The Markov chain defined on V with a
transition matrix Pk induced by Algorithm 2 is irreducible
and aperiodic and has a stationary distribution π∗k.

Theorem 2 (Convergence rate of Algorithm 2). Under assump-
tions 1 and 3, running Algorithm 2 with a step size γt =

1
tq

when 0.5 < q < 1, we get

E (f (w̄t)− f (w∗)) ≤ 1

t1−q

(
d+

(
L
)2

d′ +
d′′

ln 1
λ∗
k

)
,

where, d is a constant the depends on L
inf Lε for inf L the

infimum over all Lipschitz constants Li, d′ depends on the
radius R of the bounded set W , and d′′ is a constant that
depends on the transition matrix Pk.

Lemma 3 (Convergence of algorithms 1 and 2). Under
assumptions 1, 2 and 3 and with a step size satisfying Condition
1, both algorithms 1 and 2 give the following convergence result

lim
t→∞

E (f (wt)− f (w∗)) = 0.

A proof for this lemma follows directly from the work [5].

V. TECHNICAL PROOFS

In order to to get to the proof of theorems 1 and 2 , we

need to state some technical lemma that helps for later.

Lemma 4 (Lipschitzness). If fi is a convex function on an
open subset Ω ⊆ R, then for a closed bounded subset W ⊂ Ω,
there exists a constant Di ≥ 0, such that, for any w1, w2 ∈ W ,

|fi (w1)− fi (w2)| ≤ Di ‖w1 − w2‖2 .

We define D = sup
i∈V

Di. Therefore,

|fi (w1)− fi (w2)| ≤ D ‖w1 − w2‖2 .

A proof for Lemma 4 can be found in [12].

Corollary 1. For a D−Lipschitz convex function fi, we get

‖∇fi (x)‖2 ≤ D.

Proof. Given y = x+∇fi (x)

D ‖∇fi (x)‖2 = D ‖x− y‖2
≥ |fi (y)− fi (x)|
≥ |〈∇fi (x) ,∇fi (y)〉|
= ‖∇fi (x)‖22 .

�

Next, we state our proof of Theorem 1 which is adapted

from the proof of [5, Theorem 1] to take into consideration

the gradient Lipschitz constant of the local loss function fi.
The importance of this theorem is that it will allow us later to

compare the speed up in the convergence rate obtained by the

weighted sampling in our main algorithm which is Algorithm

2.

Proof of Theorem 1

‖wt+1 − w∗‖22 = ‖ΠW (wt − γt∇fvt
(wt))−ΠW (w∗)‖22

(a)

≤ ‖wt − γt∇fvt (wt)− w∗‖22
= ‖wt − w∗‖22 − 2γt 〈wt − w∗,∇fvt

(wt)〉
+ γ2

t ‖∇fvt
(wt)‖22

= ‖wt − w∗‖22 − 2γt 〈wt − w∗,∇fvt (wt)〉
+ γ2

t ‖∇fvt
(wt)−∇fvt

(w∗) +∇fvt
(w∗)‖22

(b)

≤ ‖wt − w∗‖22 − 2γt 〈wt − w∗,∇fvt (wt)〉
+ 2γ2

t ‖∇fvt
(wt)−∇fvt

(w∗)‖22
+ 2γ2

t ‖∇fvt
(w∗)‖22 . (5)

(a) follows from W being a convex closed set, so one can

apply nonexpansivity theorem[13], (b) follows from Jensen’s

inequality applied to the squared norm.

Now, we define a bound on the residual for any i ∈ V,

‖∇fi (w
∗)‖2 ≤ ε < D.

Using Lemma 4 and the convexity of the functions fi, we

get

‖wt+1 − w∗‖22
(a)

≤ ‖wt − w∗‖22 − 2γt 〈wt − w∗,∇fvt (wt)〉
+ 2γ2

tL
2
vt
‖wt − w∗‖22 + 2γ2

t ε
2

(b)

≤ ‖wt − w∗‖22 − 2γt 〈wt − w∗,∇fvt (wt)〉
+ 2γ2

t (supL)
2 ‖wt − w∗‖22 + 2γ2

t ε
2.

(6)

(a) follows from the Lipschitzness Lemma, (b) follows by

bounding by the supL.

For the next we use the convexity of fi,

‖wt+1 − w∗‖22 ≤ ‖wt − w∗‖22 − 2γt (fvt (wt)− fvt (w
∗))

+ 2γ2
t (supL)

2 ‖wt − w∗‖22 + 2γ2
t ε

2. (7)

By re-arranging (7), we come to

γt (fvt (wt)− fvt (w
∗)) ≤ 1

2

(
‖wt − w∗‖22 − ‖wt+1 − w∗‖22

)
+ γ2

t (supL)
2 ‖wt − w∗‖22 + γ2

t ε
2.

(8)

Now summing (8) over t and using Condition 1 and the

boundness of W ,∑
t

γt (fvt
(wt)− fvt

(w∗))

≤ 1

2
‖w0 − w∗‖22 + (supL)

2
∑
t

γ2
t ‖wt − w∗‖22

+
∑
t

γ2
t ε

2 <∞. (9)

Claim 1. Following the same analysis on [5], and using (9),

for an integer Tt = O

(
ln t

ln(1
λ∗)

)
, we get,

929

∑
t

γtE (f (wt−Tt)− f (w∗)) ≤ C + (supL)
2
C ′ +

C ′′

ln 1
λ∗

,

(10)

and ∑
t

γtE (f (wt)− f (wt−Tt)) ≤ D
′
+

D′′

ln 1
λ∗

. (11)

Combining (10) and (11), and applying Jensen’s inequality

gives the rate of convergence of Algorithm 1.(∑
t

γt

)
E (f (w̄t)− f (w∗)) ≤

∑
t

γtE (f (wt)− f (w∗))

≤ c+ (supL)
2
c′ +

c′′

ln 1
λ∗

.

For γt =
1
tq when 0.5 < q < 1,

E (f (w̄t)− f (w∗)) ≤ 1(
t∑

j=1

γj

) (
c+ (supL)

2
c′ +

c′′

ln 1
λ∗

)

≤ 1

t1−q

(
c+ (supL)

2
c′ +

c′′

ln 1
λ∗

.

)
.

(12)

Proof of Theorem 2
To prove Theorem 2, we scale the sampling by the Lipschitz

constant Li of each local loss function fi. The new local loss

in the case of the weighted loss is re-expressed as fk
i = fi

k(i)

where k (i) is the normalized weight taken as k (i) = Li

L̄
. So

sup
i
Lk
i = sup

i

LiL̄
Li

= L̄. One way to show the outperformance

of the Weighted RW SGD, is to consider the case where ε ≈ 0.

VI. NUMERICAL RESULTS

In this section, we report our numerical results applying both

algorithms 1 and 2 to a decentralized least squares problem

and compare it to the asynchronous Gossip SGD for a same

number of communication rounds.

We have

f (w) =
1

2

N∑
i=1

(
xT
i w − yi

)2
.

So the local loss function for node i is fi =
N
2

(
xT
i w − yi

)
.

Then, for such local loss function the Lipschitz constant is

Li = N ‖xi‖22. We construct a network of N nodes where the

edges are constructed according to 3 different graph structures

ensuring connectivity showing for a network of 20 nodes the

effect of the structure involved through λ∗. In the Erdos-Renyi

graph, the graph is uniform in average, this should help to

emphasize the effect of the weighted sampling over the uniform

sampling regardless the structure. On this graph, we compare

the value of the averaged loss f on different outputs: wt and

w̄t. We find out the f (wt) converges faster to the optimal

value f∗ so we decide to continue the simulations on wt. The

0 200 400 600 8001,0001,2001,4001,6001,8002,0002,2002,4002,6002,8003,000

10−2

10−1

100

101

round t

E
(f

(w
(t
))
)
−

f
∗

Uniform RW for w (t) = w̄t

Weighted RW for w (t) = w̄t

Uniform RW for w (t) = wt

Weighted RW for w (t) = wt

Asynchronous Gossip for w (t) = wt

Asynchronous Gossip for w (t) = w̄t

Fig. 1. Comparison of the Uniform RW SGD, Weighted RW SGD and the
Gossip SGD on a chordal cycle graph of 20 nodes and 60 edges.

Stochastic Block Model graph with 4 communities is a good

example for learning over training data distributed over social

network users with friendship connections.

For the simulations, we choose d = 3 as features dimension.

We sample the entries of the global model w∗ independently

from the Gaussian distribution N (0, 1). For the data, we

sample xi from N (0, I3).Then, the label is yi = xT
i w

∗.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, and B. A.

y Arcas, “Federated learning of deep networks using

model averaging,” CoRR, vol. abs/1602.05629, 2016.

[2] K. Yuan, Q. Ling, and W. Yin, “On the convergence

of decentralized gradient descent,” SIAM Journal on
Optimization, vol. 26, pp. 1835–1854, 2016.

[3] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual av-

eraging for distributed optimization: Convergence analysis

and network scaling,” IEEE Transactions on Automatic
Control, vol. 57, pp. 592–606, 2012.

[4] D. Needell, R. Ward, and N. Srebro, “Stochastic gradient

descent, weighted sampling, and the randomized kaczmarz

algorithm,” in Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, Eds. Curran Associates,

Inc., 2014, pp. 1017–1025.

[5] T. Sun, Y. Sun, and W. Yin, “On Markov Chain Gradient

Descent,” arXiv e-prints, Sep. 2018.

930

0 500 1,000 1,500 2,000 2,500 3,000

10−2

10−1

100

round t

E
(f

(w
t
))
−

f
∗

Uniform RW SGD

Weighted RW SGD

Asynchronous Gossip SGD

Fig. 2. Comparison of the Uniform RW SGD, Weighted RW SGD and the
Gossip SGD on a chordal cycle graph of 20 nodes and 60 edges.

0 500 1,000 1,500 2,000 2,500 3,000

10−2

10−1

100

round t

E
(f

(w
t
))
−

f
∗

Uniform RW SGD

Weighted RW SGD

Asynchronous Gossip SGD

Fig. 3. Comparison of the Uniform RW SGD, Weighted RW SGD and the
Gossip SGD on a stochastic block model graph of 4 clusters with 5 nodes in
each.

[6] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,

V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su,

“Scaling distributed machine learning with the parameter

server,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser.

OSDI’14. Berkeley, CA, USA: USENIX Association,

2014, pp. 583–598.

[7] A. Nedic and A. E. Ozdaglar, “Distributed subgradient

methods for multi-agent optimization,” IEEE Transactions
on Automatic Control, vol. 54, pp. 48–61, 2009.

[8] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang,

and J. Liu, “Can decentralized algorithms outperform

centralized algorithms? a case study for decentralized

parallel stochastic gradient descent,” in NIPS, 2017.

[9] C.-H. Lee, X. Xu, and D. Y. Eun, “Beyond random walk

and metropolis-hastings samplers: why you should not

backtrack for unbiased graph sampling,” in SIGMETRICS,

2012.

[10] D. Levin and Y. Peres, Markov Chains and Mixing Times:
Second Edition, ser. MBK. American Mathematical

Society, 2017.

[11] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Incremental

stochastic subgradient algorithms for convex optimization,”

SIAM Journal on Optimization, vol. 20, pp. 691–717,

2009.

[12] “Every convex function is locally lipschitz,”

The American Mathematical Monthly, vol. 79,

no. 10, pp. 1121–1124, 1972. [Online]. Available:

http://www.jstor.org/stable/2317434

[13] M. Dattorro and J. Dattorro, “Convex optimization eu-

clidean distance geometry,” 2005.

931

