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Abstract—We consider scenarios where wireless clients
are missing some packets, but they collectively know every
packet. The clients collaborate to exchange missing packets
over an error-free broadcast channel with capacity of one
packet per channel use. First, we present an algorithm that
allows each client to obtain missing packets, with minimum
number of transmissions. The algorithm employs random
linear coding over a sufficiently large field. Next, we
show that the field size can be reduced while maintaining
the same number of transmissions. Finally, we establish
lower and upper bounds on the minimum number of
transmissions that are easily computable and often tight
as demonstrated by numerical simulations.

I. INTRODUCTION

The ever-growing demand of mobile wireless clients
for large file downloads and video applications is strain-
ing cellular networks in terms of bandwidth and network
cost. Inspired by the Internet paradigm where peer-to-
peer (P2P) content delivery systems are more efficient
than a server-client based model, one solution to address
these issues is to allow the mobile clients to cooperate
and exchange data directly among each other.

In this paper, we consider the problem of information
exchange between a group of wireless clients. Each
client initially holds a subset of packets and needs to ob-
tain all the packets held by other clients. Each client can
broadcast the packets in its possession (or a combination
thereof) via a noiseless broadcast channel of capacity
one packet per channel use. Assuming that clients can
cooperate with each other and know which packets are
available to other nodes, the aim is to minimize the total
number of transmissions needed to satisfy the demands
of all clients.

For example, Fig. 1 shows three wireless clients that
are interested in obtaining three packets of m bits each,
x1, x2 and x3 ∈ GF (2m). The first, second and third
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Fig. 1. Coded data exchange among three clients.

clients have already obtained packets {x2, x3}, {x1, x3}
and {x1, x2}, respectively, i.e., each of these clients
misses one packet. A simple cooperation scheme would
consist of three uncoded transmissions. However, this is
not an optimal solution since the clients can send coded
packets and help multiple clients with a single transmis-
sion. The number of transmissions for this example can
be decreased to two as shown in the figure.

The problem we consider may arise in many practical
settings. For example, consider a wireless network in
which some clients are interested in the same data (such
as a popular video clip or an urgent alert message).
Initially, the entire data is available at a base station and
is broadcast to the interested clients. The communication
link between the base station and the mobile clients can
be, not only expensive and slow, but also unreliable or
sometimes even non-existent, which causes some clients
to receive only a portion of the data. Partial reception can
be caused by channel fading or shadowing, connection
loss, network saturation, or asynchronous client behavior
such as in P2P systems. Despite this, whenever the whole
data is collectively known by the interested clients, they
can help each other to acquire the whole data using short-
range client-to-client communication links or cooperative
relaying which can be more affordable or reliable.

In this paper we investigate theoretical aspects of such
client cooperation and are interested in finding efficient
data exchange strategies which require minimum total
number of transmissions. This problem was introduced
in our preliminary work [1] where lower and upper
bounds on the minimum number of transmissions were
presented, in addition to a data exchange algorithm.
We establish in this work new and improved lower and
upper bounds. Furthermore, we propose an optimal data
exchange algorithm based on random linear coding over



a large field and then show how coding can be performed
over a smaller field, once the number of transmissions
from each client is determined.

A closely-related problem is that of index coding
[2]–[4] in which different clients cannot communicate
with each other, but can receive transmissions from a
server possessing all the data. Gossip algorithms [5] and
physical layer cooperation [6] are also related concepts
which are extensively studied in the literature.

II. SYSTEM MODEL

Consider a set of n packets X = {x1, . . . , xn}
to be delivered to k clients belonging to the set
C = {c1, . . . , ck}. The packets are elements of a finite
alphabet which will be assumed to be a finite field
Fq throughout this paper. At the beginning, each client
knows a subset of packets denoted by Xi ⊆ X , while
the clients collectively know all packets in X , i.e.,
∪ci∈CXi = X . We denote by Xi = X \ Xi the set
of packets required by client ci. We assume that each
client knows the index of the packets that are available
to other clients.

The clients exchange packets over a lossless broadcast
channel with the purpose of making all packets in
X available to all clients. The data is transferred in
communication rounds, such that at round i one of the
clients, say cj , broadcasts a packet pi ∈ Fq to the
rest of the clients in C. Packet pi may be one of the
packets in Xj , or a combination of packets in Xj and
the packets {p1, . . . , pi−1} previously transmitted over
the channel. Our goal is to devise a scheme that enables
each client ci ∈ C to obtain all packets in Xi while
minimizing the total number of transmissions. We focus
on schemes that use linear coding over the field Fq . As
discussed in Section III below the restriction to linear
coding operations does not result in loss of optimality.

With linear coding, any transmitted packet pi is a
linear combination of the original packets in X , i.e.,

pi =
�

xj∈X

γ
j

i
xj ,

where γ
j

i
∈ Fq are the encoding coefficients of pi.

We refer to the vector γi = [γ1
i
, γ2

i
, . . . , γn

i
] as the

encoding vector of pi. The i-th unit encoding vector
that corresponds to the original packet xi is denoted by
ui = [u1

i
, u2

i
, . . . , un

i
], where ui

i
= 1 and u

j

i
= 0 for

i �= j. We also denote by Ui the set of unit vectors that
corresponds to the packets in Xi.

Let ni = |Xi| be the number of packets initially
known to client ci. The number of unknown packets to
client ci is therefore, n̄i = |Xi| = n−ni. We denote by
nmin = min1≤i≤k ni, the minimum number of packets
known to a client. The corresponding client or clients
form a subset Cmin of C.

A client ci is said to have a unique packet xj if
xj ∈ Xi and xj /∈ X� for all � �= i. A unique packet
can be broadcast by the client holding it in an uncoded
fashion at any stage without any penalty in terms of
optimality. Without loss of generality, we can assume
that there are no unique packets in the system.

We note that the results of this paper can be applied,
with minor modifications, to settings where the initial
data available to clients include linear combinations of
the packets in X . However, these settings are beyond the
scope of this paper.

III. A RANDOMIZED ALGORITHM

In this section, we present a randomized algorithm for
the data exchange problem. The algorithm operates over
a finite field Fq of size q > k · n and identifies an optimal
solution with probability at least 1− nk

q
. The probability

of success can be amplified by repeated application of
the algorithm. We also show how to reduce the field size
to O(k) using bounds from the network coding literature.

A. Algorithm description and analysis

For clarity, we describe and analyze the algorithm in
terms of encoding vectors, rather than original pack-
ets. That is, instead of saying that a packet pi =�

xj∈X
γ
j

i
xj has been transmitted, we say that we

transmit the corresponding encoding vector γi =
[γ1

i
, γ2

i
, . . . , γn

i
].

The algorithm operates in rounds. Assume that in
round i, the encoding vector γi is transmitted by client
cti , ti ∈ {1, . . . , k}. Then, the transmitted vector γi

is a random linear combination of the unit vectors
in Uti , i.e., γ

j

i
= 0 for xj /∈ Xti ; other elements

of γi are selected at random from the field Fq . The
set Γi−1 = {γ1, . . . , γi−1} contains the packets that
have been transmitted during rounds 1, . . . , i− 1 of the
algorithm. In general, the transmitted vector γi can be a
linear function of the initial side information of cti and
the transmitted vectors in Γi−1. But since the vectors
in Γi−1 were received simultaneously by all the clients,
there is no loss of generality in taking γi ∈ span(Uti).
The proofs of the correctness and the optimality of our
algorithm, presented below, imply that this is optimal.

The formal description of the algorithm, referred to as
Random Data Exchange (RDE), appears on Fig. 2. The
steps performed by the algorithm can be summarized as
follows: At each iteration i, we select a client cti with
the highest rank of initial plus received encoding vectors
up to the beginning of round i. That is,

ti = argmax
cj∈C

{rank(Uj ∪ Γi−1)}; (1)

The chosen client cti will then select a random
linear combination of the packets in its has set which
is then broadcast to all other clients. The process is



Algorithm RDE (C, {Uj , cj ∈ C}, Fq):

input:
C - set of clients
Uj - set of encoding coefficients available to client

cj , j = 1, . . . , k
Fq - the finite field

1 i ← 1
2 Γ0 ← ∅
3 while there exists a client cj ∈ C for which it holds

that rank(Uj ∪ Γi−1) < n do
4 Select a client cti for which the set Uti ∪Γi−1 is

of maximum rank, i.e.,
ti = arg max

cj∈C
{rank(Uj ∪ Γi−1)};

5 Create a new encoding vector γi, such that γj
i = 0

for xj /∈ Xti , otherwise γj
i is a random element

of field Fq .
6 Γi ← Γi−1 ∪ {γi}
7 i ← i+ 1

endwhile
8 return ct1 , . . . , cti−1 and γ1, . . . , γi−1

Fig. 2. Algorithm RDE
repeated until all clients possess n linearly independent
combination of packets and hence, are able to obtain all
the original packets in X .

We analyze the correctness and optimality of the algo-
rithm. For each round i, we denote by OPTi the minimal
number of packets that still need to be transmitted after
round i, i.e., in addition to the first i transmissions, in
order to satisfy the demands of all the clients.

Consider iteration i of the algorithm. Let Qi−1 be an
optimal set of encoding vectors required to complete the
delivery of the packets to all clients after round i − 1
has being completed. That is, Qi−1 includes OPTi−1

encoding vectors such that:
1) For each γ ∈ Qi−1 it holds that γ ∈ span(Uj) for

some cj ∈ C;
2) For each client cj ∈ C it holds that the set Γi−1 ∪

Qi−1 ∪ Uj is of rank n.
Lemma 1: Let cti be the client selected at Step 4 of

the algorithm. Then, there exists at least one encoding
vector, v, that can be removed from Qi−1 such that
Γi−1 ∪ (Qi−1 \ {v}) ∪ Uti remains of rank n.

Proof: Let µ = rank(Uti ∪Γi−1) be the rank of the
set of encoding vectors available to client cti . Note that at
the beginning of iteration i the rank of set (Uti ∪ Γi−1)
is at least as large as the rank of (Uj ∪ Γi−1) of any
other client cj ∈ C. This implies that OPTi−1 is at
least n − µ + 1. Indeed, if there exists a client with
strictly lower rank than µ, then this client would require
at least n−(µ−1) transmissions. Otherwise, if all clients
have the same rank µ < n, then the required number of
transmissions is also at least n− µ+1 (Note that client
cti does not benefit from its own transmission at round i

and hence, OPTi−1 ≥ 1 + (n− µ). A similar argument

is used in Lemma 8 in Section IV). Thus, there exists at
least one encoding vector, v, that can be removed from
Qi−1 such that Γi−1 ∪ (Qi−1 \ {v}) ∪ Uti remains of
rank n.
Let v be a vector, whose existence is guaranteed by
Lemma 1 at the end of round i − 1. We denote by
Q̃i−1 = Qi−1 \ {v}.

Note that for each client cj ∈ C \ {cti} it holds that
the rank of vector set Sj = Γi−1 ∪ Q̃i−1 ∪ Uj is at least
n − 1. Let C � be as subset of C \ {cti} such that for
each cj ∈ C � it holds that rank(Sj) = n − 1. Our goal
is to show that vector γi, chosen randomly from the
span(Uti), increases the rank of each client cj ∈ C �

with probability at least 1− k

q
.

Let cj be a client in C � and let ζj be the normal
vector to the span of Sj , which is non-zero according to
the definition of C �. Note that ζj can be written as

ζj =
�

ug∈Uti

βgug +
�

ug∈Uti

βgug,

where U ti is the set of unit encoding vectors that
correspond to Xti = X \Xti .

Lemma 2: There exists ug ∈ Uti such that βg �= 0.
Proof: Suppose that it is not the case. Then, ζj

can be expressed as ζj =
�

ug∈Uti

βgug . Then, ζj is a
normal to span(Uti). Since ζj is a normal to span(Sj)
it is also normal to span(Γi−1 ∪ Q̃i−1). Thus, ζj is a
normal to span(Γi−1 ∪ Q̃i−1 ∪ Uti) which contradicts
the fact that rank{Γi−1 ∪ Q̃i−1 ∪ Uti} = n.

Let ζ �
j

be a projection of ζj to span(Uti), i.e., ζ �
j
=�

ug∈Uti

βgug . Lemma 2 implies that ζ �
j

is not zero.
Lemma 3: If for each client cj ∈ C � it holds that

�ζ �
j
, γi� �= 0, then OPTi = OPTi−1 − 1.

Proof: If the condition of the lemma is sat-
isfied, then it holds that the rank of vector set
Γi−1 ∪ Q̃i−1 ∪ Uj ∪ {γi} is n for all cj ∈ C. This is be-
cause for clients cj /∈ C �, the rank of Γi−1 ∪ Q̃i−1 ∪ Uj

is n by definition, and for cj ∈ C �, �ζ �
j
, γi� �= 0

implies that the rank of both Γi−1 ∪ Q̃i−1 ∪ Uj ∪ {γi}
and Γi−1 ∪ Q̃i−1 ∪ Uj ∪ ζ �

j
is equal to n. Therefore,

after iteration i of the algorithm, the data transfer can
be completed within OPTi−1−1 rounds by transmitting
the vectors in Q̃i−1.

Recall that γi is a random linear combination of
vectors in Uti , i.e., γi =

�
ug∈Uti

γ
g

i
ug where the γ

g

i
’s

are i.i.d. random coefficients chosen from the field Fq .
Lemma 4: For each client cj ∈ C �, the probability

that �ζj , γi� is equal to zero is 1
q

.
Proof: The inner product �ζj , γi� can be written as

�ζj , γi� =
�

ug∈Uti

βgγ
g

i
. (2)

Let Û be a subset of Uti such that for each ug ∈ Û

it holds that βg �= 0. Lemma 2 implies that the set Û
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Fig. 3. Example multicast graph for 4 clients and 5 packets.

is not empty. Thus, �ζj , γi� =
�

ug∈Û
βgγ

g

i
. Since the

coefficients γ
g

i
are i.i.d. uniformly distributed over Fq ,

the probability that �ζj , γi� is equal to zero is 1
q

.
Lemma 5: With probability at least 1− k

q
, it holds that

OPTi = OPTi−1 − 1.
Proof: Lemma 4 implies that for each client cj ∈

C �, the probability that �ζj , γi� is equal to zero is 1
q

. By
using the union bound we can show that the probability
that �ζj , γi� = 0 for some client cj ∈ C is bounded
by k

q
. Thus, with probability at least 1 − k

q
it holds

that Γi−1 ∪ Q̃i−1 ∪ Uj ∪ {γi} is of rank n for for every
client cj ∈ C. By Lemma 3, OPTi = OPTi−1− 1 with
probability at least 1− k

q
.

Theorem 6: The algorithm computes, with probability
at least 1− k·n

q
, an optimal solution for the data exchange

problem, provided that the size q is larger than n.
Proof: Let OPT the be the optimum number of

transmissions required to solve the data exchange prob-
lem. Note that OPT0 = OPT . By Lemma 5, after each
iteration, the number of required transmissions reduces
by one with probability at least (1− k

q
). Thus, the data

transfer will be completed after OPT iterations with
probability at least�

1− k

q

�OPT

≥
�
1− k

q

�n

≥ 1− k · n
q

,

where the last inequality holds for q > n.
By selecting a sufficiently large q (e.g., q ≥ 4k ·n), we

can guarantee a certain probability of success (e.g 3/4),
which can then be amplified to be arbitrary close to 1 by
performing multiple iterations and choosing the iteration
that yields the minimum number of transmissions.

Corollary 7: For any ε > 0 the algorithm can find
an optimal solution to the data exchange problem with
probability at least 1− ε in time polynomial in the size
of the input and log(ε).

Reducing the field size

We can now construct a multicast problem as shown
in Fig. 3 to reduce the required field size to |Fq| ≥ k.
The multicast setting consists of a source node s and
4 layers. The first layer has n nodes corresponding to
n source packets. The source node s is connected by
a link to each node in layer 1. Layer 2 comprises k

nodes corresponding to k clients. An existing edge e�j

between node � in the first layer and node j in the second
layer means that client cj knows packet x�. Client nodes
in layer 2 are connected to a single node, w, in layer
3, where the edge capacity bj represents the number
of transmissions from cj determined by the algorithm
(bj =

�
i
1[cti = cj ], where 1[a] is the indicator function

and becomes 1 only when condition a is true). And
finally, w distributes coded packets to all k destination
client nodes with edge capacities equal to b =

�k

j=1 bj .
Obviously, client cj is interested in all n source packets
but also has side information Xj , which can also be
represented by direct edges from the second to the last
layer with capacities equal to nj . This is a standard
multicast problem of transmitting n packets from the
source node s to k destinations. Using [7], we can find
a network coding solution to the problem with |Fq| ≥ k.

We have thus shown that with linear coding we can
achieve the optimal number of transmissions and achieve
the capacity of the equivalent multicast problem. Hence,
linear coding is sufficient for the data exchange problem.

IV. LOWER AND UPPER BOUNDS

Before running the optimal randomized algorithm, the
actual minimum number of transmissions OPT cannot
be known a priori. It is therefore useful to be able to
compute bounds on OPT . We first review one lower
bound and one upper bound on OPT that were proved
in [1]. We then establish some new bounds and comment
on how they compare with previous bounds.

Lemma 8: [1] The minimum number of transmis-
sions OPT satisfies OPT ≥ n − nmin. Moreover, if
all clients initially have the same number of packets
nmin < n, then OPT ≥ n− nmin + 1.

Lemma 9: [1] For |Fq| ≥ k, the minimum number
of transmissions OPT satisfies

OPT ≤ min
1≤i≤k

{|Xi|+ max
1≤j≤k

|Xj ∩Xi|}. (3)

The upper bound is obtained by making a client a leader

with uncoded transmissions from other clients and then
asking the leader to satisfy the demands of others.

Lemma 10: The minimum number of transmissions
OPT satisfies

OPT ≥
��k

i=1 ni

k − 1

�
=

�
kn−

�k

i=1 ni

k − 1

�
, (4)

where �·� is the integer ceiling function.
Proof: The goal of transmissions is to reduce the

total number of unknown packets from
�k

i=1 ni to zero.
In each transmission round, the transmitting client cannot
benefit from its own transmission. Therefore, at most k−
1 clients will receive innovative information about their
unknown packets. The lower bound follows by noting
that the number of transmissions has to be an integer.

The next lower bound is a generalization of Lemma 8
and states that when there is at least one packet that



is known only to clients with nmin known packets, the
number of transmissions is at least n − nmin + 1. Let
CO = C \ Cmin be the set of clients such as ci with
ni > nmin. If CO is non-empty, let XO denote the set
of common unknown packets for clients in CO.

Lemma 11: Whenever CO = C\Cmin is empty (ni =
nmin < n for all clients), then the minimum number
of transmissions OPT satisfies OPT ≥ n − nmin + 1.
When CO is non-empty, we have OPT ≥ n − nmin +
min(|XO|, 1), where XO = ∩ci∈CO

Xi.
Compared with the Lemma 9 upper bound, here we wish
to make the client ci a leader (such that it acquires
packets in Xi) using coded transmissions from other
clients called helpers.

Let vector hj =
�
hj,1, hj,2, · · · , hj,kj

�
denote the

index of helper clients where kj is the number of helpers
and hj,m for 1 ≤ m ≤ kj is the index of helpers.
The transmission from helpers is done in the order of
elements of hj . The overall index j in hj refers to a
particular choice of helpers. To make ci a leader, we
can at most have (k − 1)! distinct ordered helpers.

Helpers should collectively satisfy the demands of the
leader: Xi ⊆ ∪kj

m=1Xhj,m
. Each helper client chj,m

is
responsible for transmitting Ahj,m

= |Ehj,m
| number of

packets in its known set which are unknown to the leader
and all previous helpers, where Ehj,m

is defined as
Ehj,m

= Xi ∩Xhj,1 ∩Xhj,2 ∩ · · · ∩Xhj,m−1 ∩Xhj,m
.

Let Γj,m = {γm,1, · · · , γm,Ahj,m
} be the set of cod-

ing vectors transmitted by helper chj,m
from its known

set of unit vectors such that rank(Ui∪m
q=1Γj,q) increases

by Ahj,m
compared to rank(Ui ∪m−1

q=1 Γj,q). This is
required to guarantee that ci becomes the leader in the
process and requires an appropriate choice of coding
coefficients corresponding to unit vectors of Ehj,m

for
elements of Γj,m. Coefficients at other positions can be
chosen at random from the chosen field Fq since they
do not affect decoding at the leader.

After the helpers complete their transmissions, a client
such as cp will know Bj,p = rank(Up ∪kj

m=1 Γj,m)
linearly independent equations and hence needs an extra
n−Bj,p transmissions from the leader. Summarizing the
results, we arrive at the following upper bound:

Lemma 12: The minimum number of transmissions
OPT satisfies

OPT ≤ min
1≤i≤k

min
j

{|Xi|+ max
1≤p≤k

{n−Bj,p}}, (5)

where Bj,p = rank(Up ∪kj

m=1 Γj,m), Γj,m =
{γm,1, · · · , γm,Ahj,m

} is the set of coding vectors trans-
mitted by helper chj,m

from its known set of unit vectors
Uhj,m

, and the second minimization is over all or only

a subset of choices of helpers.
Finally, we present some numerical results. The

bottom curve in Fig. 4 shows the maximum of the
Lemma 10 and Lemma 11 lower bounds on OPT for
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Fig. 4. Comparison of the derived lower and upper bounds with the
optimal solution for k = 5 clients versus number of packets.

k = 5 clients versus number of packets. The combined
lower bounds provide very tight closed-form results on
the optimal randomized solution which is also shown in
the figure. The Lemma 12 upper bound is also shown us-
ing randomized coding with only k−1 choices of helpers
for each leader. It significantly improves the Lemma 9
upper bound which used uncoded transmissions.

V. CONCLUSION

We presented a randomized algorithm for finding
an optimal solution for the cooperative data exchange
problem with high probability. While the algorithm gives
a solution over a relatively large field, we showed that the
field size can be reduced, through an efficient procedure,
without any penalty in terms of the total number of
transmissions. We also provided two tight lower bounds
and one upper bound which can be easily computed and
therefore, helpful in evaluating system performance.

In the future, we would like to explore two interrelated
issues of (i) incentives and their overheads to guarantee
continued cooperation from clients and (ii) fairness to
clients (in terms of number of transmissions) during data
exchange.
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