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Abstract— We investigate the network coding problem in a
certain class ofminimal multicast networks. In a multicast coding
network, a sourceS needs to deliverh symbols, or packets, to a
set of destinationsT over an underlying communication network
modeled by a graphG. A coding network is said to beh-minimal
if it can deliver h symbols from S to the destination nodes, while
any proper subnetwork of G can deliver at mosth− 1 symbols
to the set of destination nodes. This problem is motivated by
the requirement to minimize the amount of network resources
allocated for a multicast connections.

We show that, surprisingly, minimal multicast networks have
unique properties that distinguish them from the general case of
multicast networks. In particular, we show that it is possible to
determine whether a 2-minimal network has a routing solution
(i.e., a solution without encoding nodes) in polynomial time, while
this problem is NP-hard in general. In addition, we show that
if a 2-minimal network is planar, then the minimum size of the
required field for linear network codes is at most 3. Also, we
investigate several structural properties of 2-minimal networks
and generalize our results forh > 2.

I. I NTRODUCTION

A fundamental problem in the design of communication
networks is to deliver information between the source and the
destination nodes. Recently, it was shown that the information
delivery can be facilitated by employing the novel technique
of network coding [5]. The main idea of network coding
is to allow intermediate nodes in the network to generate
new packets by mixing the information received over their
incoming links.

Multicast communication belongs to an important class of
network communication problems. The goal of a multicast
connection is to deliverh symbols from a sourceS to a set
of t terminal nodesT = {T1, . . . , Tt}.

This problem attracted a significant attention from re-
searchers in the research community. In their seminal paper
[5], Ahlswede et al. showed that network coding allows
the network to achieve capacity in the case of a multicast
communication. Li et al. showed [6] that the capacity can
be achieved by using linear network codes, i.e., codes in
which new messages outgoing from a node, are obtained by
computing linear combinations, over a certain field, of the
incoming symbols at the same node. Koetter and Médard [8]
developed an algebraic framework for network coding. Ho et
al. [7] showed that linear network codes can be efficiently
constructed by employing a randomized algorithm. Jaggi et al.
[11] proposed a deterministic polynomial-time algorithm for
finding a feasible network code for a given multicast network.
Rasala et al. proved [10] that the problem of finding the

minimal size of a finite field over which a linear network code
exists for a certain multicast problem is NP-hard.

In this work, we focus on the network coding problem
for minimal multicast networks. A coding network(G,S, T )
is said to beh-minimal if it can deliver h packets from
S to T , while any proper subnetwork ofG can deliver
at most h − 1 packets. The problem is motivated by the
need of network service providers to minimize the amount
of network resources allocated for individual multicast
connections. Indeed, minimal multicast networks include
only links that are essential for delivery ofh packets to
all T terminals, which minimizes the cost of establishing a
multicast connection.

Contributions: The contribution of our paper can be sum-
marized as follows. First, we analyze the complexity of
deciding whether a given multicast problem admits a pure
routing solution (i.e., a solution that does not require network
coding). We show that this problem can be solved in linear
time for 2-minimal coding networks. For the general case of
non-minimal coding networks, this problem was shown to be
NP-hard [12]. We present here another proof of this result
based on a reduction from the problem of vertex coloring of
multigraphs.

We also show that all network coding problems in 2-
minimal networks have a similar structure. Specifically, any
such problem can be reduced to the problem of finding a
network code for a two-layer network, with a single coding
node located at the source. Moreover, we describe a family of
2-minimal networks that admit a polynomial time algorithms
for finding the minimal field size over which a linear network
code exists. Next, we consider planar networks, which are
often encountered in many practical settings. We show that
network codes for 2-minimal planar networks can be found
over any field of size 3. Finally, we consider the case of
h-minimal networks forh > 2 and present a certificate that
allows to verify, in an efficient way, that a given network
does not admit a pure routing solution, in the special case
when the network does not contain nodes of in-degree 2.

The rest of the paper is organized as follows. In Section
II, we formally define our model. In Section III, we ana-
lyze the structure of2-minimal coding networks. In Section
IV, we present a family of2-minimal coding networks in
which the minimum size of the field can be computed by
a polynomial time algorithm, and discuss some properties of
planar networks. In Section V, we present the algorithm that
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determines whether a 2-minimal coding network has a pure
routing solution and show that this problem is NP-hard in
general. In addition, we analyze the properties ofh-minimal
coding networks forh > 2. Finally, we summarize our work
and draw some conclusions in Section VI.

II. M ODEL

The underlying communication network is represented by
an acyclic directed graphG = (V,E) whereV is the set of
nodes andE the set of links. We assume that each linke ∈ E
can transmit one symbol per time unit. In order to model links
whose capacity is higher than one unit,G may include multiple
parallel links. A coding network problemN(G,S, T ) is a 3-
tuple that includes the graphG, a source nodeS ∈ V , a set of
terminals or sinksT . We assume that each packet is a symbol
of some alphabetΣ.

The capacity of a multicast coding network is defined to be
the maximum number of packets that can be delivered from
S to T , and is determined by the minimum value of a cut that
separates the sourceS and any terminalTi ∈ T [6]. A network
code forN is said to befeasibleif it allows communication at
rate h betweenS and each terminalTi ∈ T , whereh is the
capacity of the network. The existence of a feasible network
code was shown in [6].

We proceed by introducing the notion of minimal commu-
nication networks [12], [10], [9].

Definition 1 (Minimal Coding Network):A coding
network N(G,S, T ) is said to beh-minimal if its capacity
is h, and if the capacity of any network̂N(Ĝ, S, T ) formed
from G by deleting a linke from G is at mosth− 1.

We first observe that in anh-minimal network, the degree
of any node in the network is at mosth. We refer to all nodes
of in-degree 1 asSteiner nodes, and all other nodes in the
network, except the source, asnon-Steinernodes. We assume,
without loss of generality, that inh-minimal networks there
are no adjacent Steiner nodes. Indeed, any two such nodes can
be combined together, by contracting the edge that connects
them, resulting in an equivalent network.

III. STRUCTURE OF2-MINIMAL NETWORKS

In this section we show that all network coding problems in
2-minimal networks have a similar structure. To that end, we
show a reduction from a problem of finding a feasible network
code for a 2-minimal network to the problem of finding a
feasible network code for a network that belongs to the family
of Ms,t networks, defined below.

An Ms,t network is a two-layer bipartite network that in-
cludess nodesS1, S2, . . . , Ss that belong to the first layer and
t sink nodesT1, T2, . . . , Tt that belong to the second layer. The
network also includes a special source nodeS that is connected
to each intermediate nodeS1, S2, . . . , Ss. In addition, each
sink node is connected to two different intermediate nodesSi

andSj . Figure 1 demonstrates an example of anMs,t network.
The following theorem shows a correspondence between2-

minimal coding networks andMs,t networks.
Theorem 2:Let N(G,S, T ) be a 2-minimal coding net-

work. Then, there exists anMs,t networkN′(G′, S′, T ′) that
has the following properties:
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Fig. 1. The graphG′ corresponding to theMs,t family of multicasting
problems.

1) N′(G′, S′, T ′) is a 2-minimal network;
2) The parameters is equal to the number of Steiner nodes

of G, while t is less or equal to the number of non-
Steiner nodes ofG.

3) For any feasible linear network codeC ′ for N′, there
exists a feasible linear network codeC for N(G,S, T ),
over the same field, that can be found in polynomial
time; andvice versa.

Proof: GivenN(G,S, T ), we constructN′(G′, S′, T ′) as
follows. First we index all nodes ofG in topological order,
i.e., for every link (v, u) the label ofv is smaller than that
of u. Such an ordering is possible due to the fact that the
networkG is acyclic. Next, we process each nodev of G in
topological order. If nodev is a Steiner nodeSi, we remove
the link betweenv and its predecessor and connect it directly
to the sourceS. If v is a non-Steiner node such that at least
one of its predecessors is also a non-Steiner node, then we
removev and all links incident to it from the network. For all
other nodes, no changes are made. Finally, we defineS′ = S
and T ′ to be the set of all non-Steiner nodes inG′. C ′ can
be obtained in the following manner: each Steiner node inG′

requests from the source the same message that flows through
its corresponding Steiner node inG when the network code
C is applied.

Next, we show that for any feasible network codeC ′ for
N′, we can construct efficiently a feasible network codeC
for N(G,S, T ). Let C ′ be a feasible code ofN′ and letm1

andm2 be the two symbols to be conveyed to the sinks. We
show, by induction on the topological order of the vertices
of G, that any symbol received by a nodev′ ∈ G′ can be
received by the corresponding nodev ∈ G, and that all the
non-Steiner nodes ofG that were deleted when constructingN′
can reconstruct both symbolsm1 andm2. Clearly, this holds
for nodes directly connected to the sourceS. Now assume this
is true for all nodes inG of index less or equal thann−1, and
consider the nodev ∈ G of index n. If v is a Steiner node, it
requests the same message as the one that its corresponding
node inv′ ∈ G′ is getting fromS′. The predecessor ofv can
satisfy his request because it is either the sourceS, or a non-
Steiner node that, by the induction assumption can decode the
two packets and thus form any linear combination of them.

If v is a non-Steiner node, then we consider three cases. If
both of v’s predecessors are Steiner nodes, then by construc-
tion, it can receive the same messages as the corresponding
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node v′ in G′. Suppose thatv is connected to two non-
Steiner nodes. By the induction hypothesis, both of these
nodes can reconstruct bothm1 and m2 and send them to
v. Finally, suppose that one ofv’s predecessors, is a Steiner
node and second is a non-Steiner node. The non-Steiner node
can reconstruct bothm1 and m2 or any linear combination
of them. Thus, this node can generate a message which is
linearly independent of the message sent by the Steiner node
predecessor ofv. We conclude thatv can reconstruct both
packetsm1 andm2, which completes the proof of the theorem.

IV. F IELD SIZE

Let qmin be the minimum size of a finite field required by
a feasible network code for a given 2-minimal coding network
N(G,S, T ). It was shown by Rasala et al. [10] that computing
qmin is an NP-hard problem. In this section we present a
family of 2-minimal coding networks in which the value of
qmin can be computed in polynomial time. We also show that
if h = 2 andG is planar, thanqmin is upper bounded by 3.

We begin by defining an auxiliary graphG′′. The graphG′′

is similar to that used by the reduction described in [10], and
is constructed as follows. First, for each Steiner nodev ∈ G,
we add a corresponding nodev′′ to G′′. Then, for any two
Steiner nodesv, u ∈ G that have a common child node in
G, we connect the two corresponding nodesv′′ andu′′ by an
edge inG′′. It was shown in [10] thatqmin = χ(G′′) − 1,
whereχ(G′′) is the chromatic number ofG′′.

Definition 3: We say that a 2-minimal coding network
N(G,S, T ) is transitive if it satisfies the following condition:
For any three Steiner nodesv, u and w in N, it holds that if
v andu have a common child andu andw have a common
child thenv andw have a common child.

Theorem 4:For any transitive networkN(G,S, T ), the
value ofqmin can be computed inO(|E|+ |V |) time.

Proof: We begin by constructing the auxiliary graph
G′′ corresponding toG, as defined above.G′′ will have the
following property: for any three nodesv′′, u′′, and w′′, if
there is an edge betweenv′′ and u′′, and an edge between
u′′ andw′′, then there is an edge betweenv′′ andw′′. Hence
each cycle ofG′′ of length at least four has a chord. Therefore,
G′′ is a triangulated graph [2, Chapter 4]. By Theorem 4.17
of [2], we know that the chromatic number ofG′′ can be
calculated inO(|V ′′|+ |E′′|) time. Thus, since|E| = O(|E′′|)
and |V | = O(|V ′′|), qmin can be computed inO(|E| + |V |)
time.

Theorem 5:If G is planar thenqmin ≤ 3.

Proof: It can be easily seen thatG′′ can be obtained
from G in following three steps:

1) Delete fromG the source node and all sinks that have at
least one non-Steiner node parent and all their adjacent
edges.

2) Delete all edges that connect Steiner nodes to their
parents.

�

�
�

�
�

�
�

���
�

���
�

���
�

�

�
�

�
�

�
�

� �� ���

Fig. 2. Construction of the graphsG′ andG′′ from the graphG. Sinks are
represented by black nodes.

3) For each remaining non-Steiner nodev, contract an edge
that connectsv to one of its parents.

It is clear that if we start from a planar graph, then the
one resulting after the first two steps is planar too. Also,
contracting edges in a planar graph would result in a planar
graph since planarity is a minor closed property. Therefore,
the graphG′′ obtained after the third step is also planar.

Then, by the famous Four Colors Theorem [1, Theorem
5.5.1], G′′ can be colored using only four colors. Therefore
χ(G′′) ≤ 4 andqmin = χ(G′′)− 1 ≤ 3.

Note that if G is not planar but has a planar 2-minimal
subgraph, then it is also the case thatqmin ≤ 3.

V. ROUTING SOLUTIONS

At the end of their seminal paper [5], the authors ask the
following question:

“Also, we can ask under what condition can opti-
mality be achieved without network coding.”

We say that a coding network has a routing solution if
its capacity can be achieved without network coding. In
this section, we address this question by investigating the
conditions under which a routing solution exists for a given
coding network N(G,S, T ). The problem of finding the
maximal throughput that can be achieved without network
coding in a general multicast network is equivalent to as the
Steiner packing problem, and is known to be an NP-hard
problem ([13], [14]).

We denote byd−(v) and d+(v) the in- and out- degrees
of vertexv, respectively. We observe that if there is a routing
solution forN(G,S, T ), whereN(G, S, T ) is h-minimal, then
d−(v) ≤ d+(v) for all v ∈ G \ T . We also observe that
the converse is not always true. For example, consider the
problem corresponding to graphG′, in Figure 2, whose all
nodes, except the sinks, have in-degrees less then out-degrees,
but it does not have any routing solution.

Lemma 6:Let N(G,S, T ) be a2-minimal coding network
andN′ be the correspondingMs,t network, as defined in the
proof of Theorem 2. ThenN has a routing solution if and
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only if one exists forN′.

Proof: Follows immediately from our construction of a
code forN given one forN′, and vice versa, in the proof of
Theorem 2.

Thus, we can assume here thatN(G,S, T ) ∈ Ms,t without
any loss of generality.

Theorem 7:Let N(G,S, T ) be a 2-minimal coding
network. Then, there exists a routing solution forN(G,S, T )
if and only if G′′ is a bipartite graph.

Proof: Assume that we have a routing solution for
N(G,S, T ) ∈ Ms,t. Then the message that flows through the
intermediate nodes ofG is one of the two symbols to be
transmitted, eitherm1 or m2. We associate with each symbol
mi a different colorci. And we colorG′′ in the following way.
For each intermediate nodeSi (i = 1, 2, . . . , s),if symbol mj

(j = 1, 2) flows through it, we color the corresponding node
S′′i in G′′ with the colorcj . Two adjacent nodes inG′′ are not
colored by the same color, otherwise this would imply that
a sink in G is receiving the same symbol on both incoming
edges. Thus, this coloring ofG′′ is indeed a proper coloring.
SinceG′′ is two colorable, than it is bipartite.

The converse can be similarly proven by associating with
each one of the two colors ofG′′ a different symbol. Then
a routing solution ofN(G,S, T ) is constructed by letting the
symbol that flows through an intermediate node inG be the
one associated with the color of the corresponding node in
G′′.

Corollary 8: Deciding whetherN(G,S, T ) has a routing
solution, and if so finding this solution, can be done in
O(|E|+ |V |) time.

Proof: By Theorem 7, we can check whetherN(G,S, T )
has a routing solution by checking ifG′′ is bipartite. Since,
bipartite graphs are characterized by the property that they do
not have any odd cycle [1, Proposition 1.6.1], then one can use
a slightly modified version of the BFS (Breadth-First-Search)
algorithm [4, Section 22.2] to decide whetherG′′ is bipartite
and if so obtain a partition ofV into two independentsets
[15]. The result directly follows from the fact thatG′′ can
be constructed fromG in O(|E| + |V |), and that the BFS
algorithm runs inO(|E|+ |V |) time.

In the remainder of this section, we investigate whether the
above results still hold for more general cases. In particular,
the following theorem shows that even if we restrict ourselves
to problemsN(G,S, T ) of multicasting two symbols over a
network G, but do not require theG to be minimal, then
deciding if N(G, S, T ) has a routing solution is an NP-hard
problem.

Theorem 9:It is NP-hard to decide whether a general
two symbol multicast network coding problem has a routing
solution.

Proof: We use a reduction from vertex coloring of
hypergraphs.

Let H(V,E) be a hypergraph (edges here are subsets of
V [3]). We can assume, without loss of generality, thatH
contains no loops (edges of cardinality one), since they do
not play any role in coloring problems. We mapH into the
network problemN(G,S, T ) of multicasting two symbols over
a graphG(V,E). GraphG consists of a source nodeS and
an intermediate nodeSi for each vertexVi ∈ V. For each
different edgeEj ∈ E we add toG a sink TEj connected
by incoming edges to all nodesVi ∈ Ej . Figure 3 depicts a
hypergraphH and the corresponding graphG resulting from
this reduction. Note thatG is not necessarily minimal sinceH
might contain hyperedges connecting more that two vertices.

We show thatH is 2-colorable if and only ifN(G,S, T ) has
a routing solution. First, we color the vertices ofH using only
2 colors. We map each of the two colorsci bijectively to one
of the two symbolsmi. A routing solution ofN(G,S, T ) is
then obtained by letting the intermediate nodeSi send to all
its children the symbolsmi, whereci is the color ofVi ∈ H.
This way, all sinks receive both symbols, since there is no
monochromatic edge inE.

Conversely, suppose thatN(G,S, T ) has a routing solution.
We map each of the symbolsmi bijectively to two different
colors ci. then, we color eachVi ∈ V by ci if the message
that is flowing throughSi is mi. Then, for all vertices inH
that are left uncolored, we color them arbitrarily. Since each
sink will be receiving two different packets, then we have no
monochromatic edges inH.

The problem of deciding whether a hypergraph is 2-
colorable is called the HYPERGRAPH 2-COLORABILITY
problem, and is known to be NP-hard [3]. Therefore, as a
result of the above reduction, deciding whetherN(G,S, T )
has a routing solution is also NP-hard.
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Fig. 3. a) A hypergraphH. b) The corresponding 2-multicasting network
resulting from the reduction of Theorem 9.

Now, we keep the minimality constraint on the graphG
and we consider the case of multicastingh > 2 symbols.

Lemma 10:Let N(G,S, T ) be anh-minimal coding net-
work. If N(G, S, T ) has a routing solution then the graphG′′

is h-colorable.
Proof: Note thatG′′ is constructed here directly fromG

similarly to the case ofh = 2 (see Section IV). The proof is
then similar to the first part of the proof of Theorem 7.

Lemma 10 leads to an algorithm for checking ifN(G,S, T )
does not have a routing solution. Such an algorithm would
test if G′′ is h-colorable. If it is not, it returns that there is
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no routing solution, otherwise it returns no answer. Since the
problem of deciding if a graph ish-colorable is NP-hard in
general, such an algorithm would not be efficient. However, the
following theorem describes a family ofh-minimalN(G,S, T )
networks where this algorithm runs in linear time.

Theorem 11:Consider the problem of multicastingh sym-
bols over anh-minimal network N(G,S, T ), where every
vertex of G of in-degree> 1 has at least 3 Steiner node
parents. Then, there exists an algorithm that checks the non-
existence of a routing solution ofN(G, S, T ) in O(|V |+ |E|).

Proof: Consider a vertexv in G of d−(v) > 1 and
having at least̀ ≥ 3 Steiner node parents. The vertices in
G′′ corresponding to his parent nodes are pairwise connected.
Thusv result in aK` (complete graph of̀ vertices) subgraph
of G′′. Thus, by Proposition 5.5.1 of [1], we deduce thatG′′

is triangulated. By Lemma 10, an algorithm that would check
the non-existence of a routing solution can be implemented
in the following manner. First, it constructsG′′ from G (can
be done inO(|E| + |V |) time). Then, it checks ifG′′ is h-
colorable which can be done inO(|V ′′| + |E′′|) time, since
G′′ is triangulated. The total running time of the algorithm is
O(|E|+ |V |).

Note that the converse of Lemma 10 is not always true.
A counter example is provided in Figure 4 which shows a
problem of multicasting 3 symbols. This problem does not
have a routing solution in spite ofG′′ being 3-colorable.
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Fig. 4. A counter example to the converse of Lemma 10.

However, there are some instances of problems where the
converse holds, as described by Theorem 12.

Theorem 12:If N(G,S, T ) is defined over minimal graph
G of vertices, except the source, of in-degree either 1 orh,
then it has a routing solution if and only if the graphG′′ is
r-colorable.

Proof: (sketch)
(⇒) same as Lemma 10.
(⇐) Define theMh

s,t family of coding networks of capacityh,
similarly to Ms,t but connecting each sink toh intermediate
nodes instead of just 2. By following the same steps of the
proof of Theorem 2, it can be shown thatN(G,S, T ) is
equivalent to someN′(G′, S′, T ′) ∈ Mh

s,t. Then, as previously
done in proving the converse of Theorem 7, by establishing a
bijection between theh symbols andh colors, the coloring of
G′′ can be used to obtain a routing solution ofN′ and therefore
N.

Figure 5 depicts a 3-minimal coding network that satisfies
the condition of Theorem 12.

Fig. 5. An instance ofN(G, S, T ) where a necessary and sufficient condition
for the existence of a routing solution is thatG′′ should be 3-colorable.

VI. CONCLUSION

In this paper, we have considered the network coding
problem for a practically important class of multicast coding
networks. We showed that minimal multicast networks have
unique properties that distinguish them from the general case
of multicast networks. Specifically, we proved that in such
networks, when two symbols are to be communicated to
the sinks (h = 2), the question whether the capacity can
be achieved without network coding can be answered in
polynomial time, while in general this problem is NP-hard. We
also showed that when the network possesses some planarity
property, a field of size 3 is sufficient for finding a feasible
linear network code. In addition, we analyzed several structural
properties of 2-minimal networks and generalized our results
for h > 2.
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