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Abstract—We investigate the network coding problem in a minimal size of a finite field over which a linear network code
certain class ofminimal multicast networks. In a multicast coding  exists for a certain multicast problem is NP-hard.

network, a source S needs to deliverh symbols, or packets, to a In this work, we focus on the network coding problem

set of destinationsT" over an underlying communication network . . .
modeled by a graphG. A coding network is said to beh-minimal ~ fOF Minimal multicast networks. A coding networtG, 5, T')

if it can deliver h symbols from S to the destination nodes, while IS said to beh-minimal if it can deliver h packets from
any proper subnetwork of G can deliver at mosth — 1 symbols S to T, while any proper subnetwork ofs can deliver
to the set of destination nodes. This problem is motivated by at mosth — 1 packets. The problem is motivated by the
the requirement to minimize the amount of network resources need of network service providers to minimize the amount

allocated for a multicast connections. of network resources allocated for individual multicast
We show that, surprisingly, minimal multicast networks have

unique properties that distinguish them from the general case of Connections. Indeed, minimal multicast networks include
multicast networks. In particular, we show that it is possible to only links that are essential for delivery df packets to
determine whether a 2-minimal network has a routing solution all 7' terminals, which minimizes the cost of establishing a
(i-e., a solution without encoding nodes) in polynomial time, while mylticast connection.

this problem is NP-hard in general. In addition, we show that

if a 2-minimal network is planar, then the minimum size of the I I

required field for linear network codes is at most 3. Also, we  Contributions: The contribution of our paper can be sum-

investigate several structural properties of 2-minimal networks marized as follows. First, we analyze the complexity of

and generalize our results forh > 2. deciding whether a given multicast problem admits a pure
routing solution (i.e., a solution that does not require network
. INTRODUCTION coding). We show that this problem can be solved in linear

time for 2-minimal coding networks. For the general case of

A fundamental problem in the design of communicationon-minimal coding networks, this problem was shown to be
networks is to deliver information between the source and thg-hard [12]. We present here another proof of this result
destination nodes. Recently, it was shown that the informatigased on a reduction from the problem of vertex coloring of
delivery can be facilitated by employing the novel techniqugultigraphs.
of network coding [5]. The main idea of network coding We also show that all network coding problems in 2-
is to allow intermediate nodes in the network to generaffinimal networks have a similar structure. Specifically, any
new packets by mixing the information received over theuch problem can be reduced to the problem of finding a
incoming links. network code for a two-layer network, with a single coding

Multicast communication belongs to an important class @fode located at the source. Moreover, we describe a family of
network communication problems. The goal of a multicagtminimal networks that admit a polynomial time algorithms
connection is to deliveh symbols from a sourcé to a set for finding the minimal field size over which a linear network
of ¢ terminal nodes" = {T,...,T;}. code exists. Next, we consider planar networks, which are

This problem attracted a significant attention from resften encountered in many practical settings. We show that
searchers in the research community. In their seminal papetwork codes for 2-minimal planar networks can be found
[5], Ahlswede et al. showed that network coding allowsver any field of size 3. Finally, we consider the case of
the network to achieve capacity in the case of a multicagtminimal networks forh > 2 and present a certificate that
communication. Li et al. showed [6] that the capacity caallows to verify, in an efficient way, that a given network
be achieved by using linear network codes, i.e., codes does not admit a pure routing solution, in the special case
which new messages outgoing from a node, are obtained wlyen the network does not contain nodes of in-degree 2.
computing linear combinations, over a certain field, of the
incoming symbols at the same node. Koetter anetibtd [8] The rest of the paper is organized as follows. In Section
developed an algebraic framework for network coding. Ho dt we formally define our model. In Section Ill, we ana-
al. [7] showed that linear network codes can be efficientlyze the structure oR-minimal coding networks. In Section
constructed by employing a randomized algorithm. Jaggi et &, we present a family of2-minimal coding networks in
[11] proposed a deterministic polynomial-time algorithm fowhich the minimum size of the field can be computed by
finding a feasible network code for a given multicast networla polynomial time algorithm, and discuss some properties of
Rasala et al. proved [10] that the problem of finding thplanar networks. In Section V, we present the algorithm that
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determines whether a 2-minimal coding network has a pure
routing solution and show that this problem is NP-hard in
general. In addition, we analyze the propertieshahinimal
coding networks forh > 2. Finally, we summarize our work
and draw some conclusions in Section VI.

II. MODEL

The underlying communication network is represented by
an acyclic directed grapty = (V, E) whereV is the set of _ _ o
nodes andt the set of links. We assume that each link E Fig. 1. The graphG’ corresponding to theé\/s ; family of multicasting
can transmit one symbol per time unit. In order to model Iinlfsmblems'
whose capacity is higher than one ugitmay include multiple
parallel links. A coding network proble®(G, S,T) is a 3-
tuple that includes the grapH, a source nodé € V, asetof 1) N'(G',S’,T") is a 2-minimal network;
terminals or sinkg". We assume that each packet is a symbol 2) The parametes is equal to the number of Steiner nodes
of some alphabek. of G, while t is less or equal to the number of non-

The capacity of a multicast coding network is defined to be  Steiner nodes of:.
the maximum number of packets that can be delivered from3) For any feasible linear network codg’ for N, there
S to T, and is determined by the minimum value of a cut that ~ €Xists a feasible linear network codefor N(G, S, T),
separates the souréeand any terminal; € 7' [6]. A network over the same field, that can be found in polynomial
code forN is said to befeasibleif it allows communication at time; andvice versa
rate h betweenS and each terminal’; € T, whereh is the
capacity of the network. The existence of a feasible network Proof: GivenN(G, S, T), we construclN'(G", S', T") as

code was shown in [6]. follows. First we index all nodes off in topological order,
We proceed by introducing the notion of minimal commuk-€., for every link (v, u) the label ofv is smaller than that

nication networks [12], [10], [9]. of w. Such an ordering is possible due to the fact that the
Definition 1 (Minimal Coding Network)A coding nhetworkG is acyclic. Next, we process each nodef G'in

network N(G, S, T) is said to beh-minimal if its capacity topological order. If nodes is a Steiner node;, we remove

is h, and if the capacity of any networN(G‘,S, T) formed the link betweernv and its predecessor and connect it directly

from G by deleting a linke from G is at mosth — 1. to the sourceS. If v is a non-Steiner node such that at least
We first observe that in ah-minimal network, the degree one of its predecessors is also a non-Steiner node, then we

of any node in the network is at mokst We refer to all nodes removev and all links incident to it from the network. For all

of in-degree 1 asSteinernodes, and all other nodes in thedther nodes, no changes are made. Finally, we define S

network, except the source, asn-Steinemodes. We assume,and 7" to be the set of all non-Steiner nodesGH. C’ can

without loss of generality, that if-minimal networks there be obtained in the following manner: each Steiner nodéin

are no adjacent Steiner nodes. Indeed, any two such nodes'é€gtyests from the source the same message that flows through

be combined together, by contracting the edge that connelégscorresponding Steiner node ¢4 when the network code

them, resulting in an equivalent network. C is applied.
Next, we show that for any feasible network co@é for
Ill. STRUCTURE OF2-MINIMAL NETWORKS N’, we can construct efficiently a feasible network cade

In this section we show that all network coding problems ifor N(G, S, T). Let C’ be a feasible code d¥’ and letm,
2-minimal networks have a similar structure. To that end, wand my be the two symbols to be conveyed to the sinks. We
show a reduction from a problem of finding a feasible networhow, by induction on the topological order of the vertices
code for a 2-minimal network to the problem of finding &f G, that any symbol received by a nodé € G’ can be
feasible network code for a network that belongs to the famitgceived by the corresponding nodes G, and that all the
of M, . networks, defined below. non-Steiner nodes @ that were deleted when constructiNg

An M, . network is a two-layer bipartite network that in-can reconstruct both symbois; andm,. Clearly, this holds
cludess nodesSs, Ss, . . ., S, that belong to the first layer andfor nodes directly connected to the souf:eNow assume this
t sink nodedl, Ts, . . ., T; that belong to the second layer. Thas true for all nodes irG of index less or equal tham—1, and
network also includes a special source nédeat is connected consider the node € G of indexn. If v is a Steiner node, it
to each intermediate nod&,, S, ..., Ss. In addition, each requests the same message as the one that its corresponding
sink node is connected to two different intermediate nagles node inv’ € G’ is getting fromS’. The predecessor af can
andsS;. Figure 1 demonstrates an example ofidp, network. satisfy his request because it is either the soufcer a non-

The following theorem shows a correspondence betvizeenSteiner node that, by the induction assumption can decode the
minimal coding networks and/, ; networks. two packets and thus form any linear combination of them.

Theorem 2:Let N(G, S,T) be a 2-minimal coding net- If v is a non-Steiner node, then we consider three cases. If
work. Then, there exists ai/, ; networkN'(G’, S’,T") that both of v's predecessors are Steiner nodes, then by construc-
has the following properties: tion, it can receive the same messages as the corresponding
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node v in G’. Suppose thawb is connected to two non-
Steiner nodes. By the induction hypothesis, both of these
nodes can reconstruct bothh; and my, and send them to

v. Finally, suppose that one afs predecessors, is a Steiner
node and second is a non-Steiner node. The non-Steiner nog
can reconstruct bottw,; and ms or any linear combination
of them. Thus, this node can generate a message which is
linearly independent of the message sent by the Steiner nod
predecessor of.. We conclude that can reconstruct both
packetsn, andms, which completes the proof of the theorem.

| . "
G G G

IV. FIELD SIZE Fig. 2. Construction of the grapis’ and G’ from the graphG. Sinks are
o ) o ) ) represented by black nodes.
Let ¢,sn be the minimum size of a finite field required by

a feasible network code for a given 2-minimal coding network

N(G, S,T). It was shown by Rasala et al. [10] that computing . )

gmin 1S an NP-hard problem. In this section we present a 3) For each remaining non-Stemer nodecontract an edge

family of 2-minimal coding networks in which the value of that connects) to one of its parents.

gmin Can be computed in polynomial time. We also show that It is clear that if we start from a planar graph, then the

if h =2 andG is planar, thany,,;, is upper bounded by 3. one resulting after the first two steps is planar too. Also,
We begin by defining an auxiliary graghf’. The graphG” contracting edges in a planar graph would result in a planar

is similar to that used by the reduction described in [10], argtaph since planarity is a minor closed property. Therefore,

is constructed as follows. First, for each Steiner node G, the graphG” obtained after the third step is also planar.

we add a corresponding nod€ to G”. Then, for any two  Then, by the famous Four Colors Theorem [1, Theorem

Steiner nodes,u € G that have a common child node in5.5.1], G” can be colored using only four colors. Therefore

G, we connect the two corresponding nodésandu” by an  x(G”) < 4 and gnin = x(G"”) — 1 < 3. [ ]
edge inG”. It was shown in [10] that,,;, = x(G") — 1, Note that if G is not planar but has a planar 2-minimal
where x(G") is the chromatic number a&”. subgraph, then it is also the case that, < 3.

Definition 3: We say that a 2-minimal coding network
N(G, S,T) is transitiveif it satisfies the following condition: V. ROUTING SOLUTIONS

For any three Steiner nodesu andw in N, it holds that if
v and v have a common child and andw have a common
child thenv andw have a common child.

At the end of their seminal paper [5], the authors ask the
following question:

“Also, we can ask under what condition can opti-

Theorem 4:For any transitive networkN(G, S,T), the mality be achieved without network coding.”

value of g, can be computed i®(|E| 4 |V]) time. We say that a coding network has a routing solution if
Proof: We begin by constructing the auxiliary graphts capacity can be achieved without network coding. In

G" corresponding taG, as defined aboves” will have the this section, we address this question by investigating the

following property: for any three nodes’,«”, and w”, if ~conditions under which a routing solution exists for a given

there is an edge betweer{ andv”, and an edge betweencoding network N(G,S,T)). The problem of finding the

«” andw”, then there is an edge betweeh andw”. Hence maximal throughput that can be achieved without network

each cycle of” of length at least four has a chord. Thereforezoding in a general multicast network is equivalent to as the

G" is a triangulated graph [2, Chapter 4]. By Theorem 4.19teiner packing problem, and is known to be an NP-hard

of [2], we know that the chromatic number ¢’ can be problem ([13], [14]).

calculated inO(|V"|+|E"|) time. Thus, sincéE| = O(|E"|)

and|V| = O(|V"|), gmin can be computed i®(|E| + |V]) We denote byd~(v) andd*(v) the in- and out- degrees

time. m of vertexv, respectively. We observe that if there is a routing
) solution forN(G, S, T'), whereN(G, S, T) is h-minimal, then
Theorem 5:If G is planar theng,,in, < 3. d=(v) < d*(v) for all v € G\ T. We also observe that

) ) the converse is not always true. For example, consider the
Proof: It can be easily seen th&t” can be obtained problem corresponding to graph’, in Figure 2, whose all
from G in following three steps: nodes, except the sinks, have in-degrees less then out-degrees,
1) Delete fromG the source node and all sinks that have daut it does not have any routing solution.
least one non-Steiner node parent and all their adjacent

edges. Lemma 6:Let N(G, S, T) be a2-minimal coding network
2) Delete all edges that connect Steiner nodes to theindN’ be the corresponding/, ; network, as defined in the
parents. proof of Theorem 2. ThelN has a routing solution if and
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only if one exists forlN'. Let H(V,E) be a hypergraph (edges here are subsets of
V [3]). We can assume, without loss of generality, tfiat

Proof: Follows immediately from our construction of acontains no loops (edges of cardinality one), since they do
code forN given one forN’, and vice versa, in the proof of not play any role in coloring problems. We mép into the

Theorem 2. m network problenN(G, S, T') of multicasting two symbols over
Thus, we can assume here thé&ta, S, T') € M, , without a graphG(V, E). GraphG consists of a source nodg and
any loss of generality. an intermediate nodé&; for each vertexV; € V. For each

different edgeF; € E we add toG a sink T, connected
Theorem 7:Let N(G,S,T) be a 2-minimal coding by incoming edges to all noddg < E;. Figure 3 depicts a
network. Then, there exists a routing solution G, S,T) hypergraphH and the corresponding gragh resulting from
if and only if G” is a bipartite graph. this reduction. Note tha® is not necessarily minimal sindé
might contain hyperedges connecting more that two vertices.
Proof: Assume that we have a routing solution for We show thai is 2-colorable if and only iN(G, S,T') has
N(G,S,T) € M. Then the message that flows through tha routing solution. First, we color the verticesléfusing only
intermediate nodes of: is one of the two symbols to be2 colors. We map each of the two colarsbijectively to one
transmitted, eitherm,; or m,. We associate with each symbolof the two symbolsm;. A routing solution ofN(G, S,T') is
m, a different colore;. And we colorG” in the following way. then obtained by letting the intermediate nosiesend to all
For each intermediate nodg (i = 1,2, ..., s),if symbolm; its children the symbolsn;, wherec; is the color ofV; € H.
(j = 1,2) flows through it, we color the corresponding noddhis way, all sinks receive both symbols, since there is no
S/ in G” with the colorc;. Two adjacent nodes 6" are not monochromatic edge if.
colored by the same color, otherwise this would imply that Conversely, suppose th&t(G, S, T') has a routing solution.
a sink in G is receiving the same symbol on both incomingVe map each of the symbols; bijectively to two different
edges. Thus, this coloring @& is indeed a proper coloring. colors ¢;. then, we color eacl; € V by ¢; if the message
SinceG” is two colorable, than it is bipartite. that is flowing throughS; is m;. Then, for all vertices irH
The converse can be similarly proven by associating withat are left uncolored, we color them arbitrarily. Since each
each one of the two colors @i a different symbol. Then sink will be receiving two different packets, then we have no
a routing solution ofN(G, S, T) is constructed by letting the monochromatic edges iH.
symbol that flows through an intermediate nodedrbe the  The problem of deciding whether a hypergraph is 2-
one associated with the color of the corresponding node dolorable is called the HYPERGRAPH 2-COLORABILITY
G". B problem, and is known to be NP-hard [3]. Therefore, as a
result of the above reduction, deciding whetf{G, S, T')

Corollary 8: Deciding whetherN(G, S, T) has a routing rt]was a routing solution is also NP-hard =

solution, and if so finding this solution, can be done i
O(|E| + |V|) time.

a)

Proof: By Theorem 7, we can check whethé(G, S, T')
has a routing solution by checking @ is bipartite. Since,
bipartite graphs are characterized by the property that they do
not have any odd cycle [1, Proposition 1.6.1], then one can use
a slightly modified version of the BFS (Breadth-First-Search)
algorithm [4, Section 22.2] to decide wheth@f’ is bipartite
and if so obtain a partition o into two independentets
[15]. The result directly follows from the fact th&&” can Fig. 3. a) A hypergrapti. b) The corresponding 2-multicasting network
be constructed fronG in O(|E| + |V|), and that the BFS resulting from the reduction of Theorem 9.
algorithm runs inO(|E| + |V]) time. [

In the remainder of this section, we investigate whether theNow, we keep the minimality constraint on the gragh
above results still hold for more general cases. In particuland we consider the case of multicastilag- 2 symbols.
the following theorem shows that even if we restrict ourselves
to problemsN(G, S,T) of multicasting two symbols over a Lemma 10:Let N(G,S,T) be anh-minimal coding net-
network GG, but do not require the&Z to be minimal, then work. If N(G, S,T) has a routing solution then the grapt{
deciding if N(G, S,T') has a routing solution is an NP-hards h-colorable.
problem. Proof: Note thatG” is constructed here directly frod
imilarly to the case ofi = 2 (see Section V). The proof is

Theorem 9:it IS NP-hard to de_mde whether a 9ENCT%hen similar to the first part of the proof of Theorem 7.m
two symbol multicast network coding problem has a routing

solution. Lemma 10 leads to an algorithm for checkingN{G, S, T')
Proof: We use a reduction from vertex coloring ofdoes not have a routing solution. Such an algorithm would
hypergraphs. test if G” is h-colorable. If it is not, it returns that there is
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no routing solution, otherwise it returns no answer. Since the
problem of deciding if a graph ig-colorable is NP-hard in
general, such an algorithm would not be efficient. However, the
following theorem describes a family afminimalN(G, S, T")
networks where this algorithm runs in linear time.

Theorem 11:Consider the problem of multicastirigsym-
bols over anh-minimal network N(G, S, T), where every
vertex of G of in-degree> 1 has at least 3 Steiner node
parents. Then, there exists an algorithm that checks the non-
existence of a routing solution &f(G, S, T) in O(|V|+ |E|).

Proof: Consider a vertex in G of d—(v) > 1 and

having at least > 3 Steiner node parents. The vertices in
G" corresponding to his parent nodes are pairwise connected.
Thusw result in akK* (complete graph of vertices) subgraph
of G”. Thus, by Proposition 5.5.1 of [1], we deduce tla&t

Fig. 5. Aninstance oN(G, S, T') where a necessary and sufficient condition
for the existence of a routing solution is th@t’ should be 3-colorable.

VI. CONCLUSION

is triangulated. By Lemma 10, an algorithm that would check In this paper, we have considered the network coding

the non-existence of a routing solution can be implement@goblem for a practically important class of multicast coding
in the following manner. First, it constructs” from G (can Nnetworks. We showed that minimal multicast networks have

be done inO(|E| + |V]) time). Then, it checks i7" is h-

unique properties that distinguish them from the general case

colorable which can be done i@(|V”| + |E”|) time, since ©Of multicast networks. Specifically, we proved that in such
G” is triangulated. The total running time of the algorithm i§€tworks, when two symbols are to be communicated to

O(E| + V). u

the sinks p = 2), the question whether the capacity can

Note that the converse of Lemma 10 is not always trub€ achieved without network coding can be answered in
A counter example is provided in Figure 4 which shows Bolynomial time, while in general this problem is NP-hard. We.
problem of multicasting 3 symbols. This problem does n@iso showed that when the network possesses some planarity

have a routing solution in spite @’ being 3-colorable.

property, a field of size 3 is sufficient for finding a feasible

linear network code. In addition, we analyzed several structural

Source

properties of 2-minimal networks and generalized our results

for h > 2.

A

G <3

(1]
(2]

(3]
(4]

(5]
However, there are some instances of problems where ttﬂﬁ
converse holds, as described by Theorem 12.

Fig. 4. A counter example to the converse of Lemma 10.

(7]
Theorem 12:If N(G, S,T) is defined over minimal graph
G of vertices, except the source, of in-degree either h,or [g)
then it has a routing solution if and only if the gragh’ is
r-colorable. 9]
[10]

Proof: (sketch)

(=) same as Lemma 10.
(«) Define theM;ﬁt family of coding networks of capacity,
similarly to M;; but connecting each sink tb intermediate
nodes instead of just 2. By following the same steps of the
proof of Theorem 2, it can be shown th&(G,S,T) is [12]
equivalent to som&'(G’, 5", T") € M!,. Then, as previously
done in proving the converse of Theorem 7, by establishinga;
bijection between thé symbols andh colors, the coloring of
G" can be used to obtain a routing solutiomtfand therefore [14]
N. [ ]

Figure 5 depicts a 3-minimal coding network that satisfig$s]
the condition of Theorem 12.

(11]
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