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Locality of a Code

» Consider an (n, k, d) code C over I
» Locality r: any codeword symbol can be recovered from some other
T symbols of ©
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Local codes have minimum Hamming distance of 2
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Local codes have minimum Hamming distance of 3
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Gopalan et al. '12, Papailiopoulos-Dimakis '14, Prakash et al. '14,
Tamo-Barg '14, Huang et al. '16, Gopalan et al. '17, ..., ..., ...
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Choosing a Metric

Conventional Codes Rank-metric Codes Subspace Codes
Codewords: vectors Codewords: matrices Codewords: subspaces
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Choosing a Metric

Conventional Codes Rank-metric Codes Subspace Codes
Codewords: vectors Codewords: matrices Codewords: subspaces
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Choosing a Metric

Conventional Codes Rank-metric Codes Subspace Codes

Codewords: vectors Codewords: matrices Codewords: subspaces
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We focus on locality in rank and subspace metrics
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Why to Consider Locality in Rank and Subspace Metrics?

» Mixed and correlated failures

> Mixed failures: entire drive (node) plus a few blocks fail

» Correlated failures: a bunch of nodes fail simultaneously

SSD2 SSD3 SsD4

SSD Array Rack 1
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Rack2 Rack3 Rack 4

Example: Mixed failure in a solid state drive (SSD) array, and a correlated

Data center

failure in a data center

» Distributed storage over a network introducing errors and erasures

> Repairing a failed node from a subset of nodes

» Downloading partial data by connecting to only a small subset of

nodes

4/22



Our Contributions

1. Notions of rank-locality and subspace-locality

2. A Singleton-like upper bound on the minimum rank-distance for

codes with rank-locality

3. Construct a class of distance-optimal codes with rank-locality

building up on Tamo-Barg construction

4. Obtain a class of codes with subspace-locality by lifting rank metric
codes
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Rank-Metric Codes

» A rank-metric code € is a non-empty subset of Fqm of size g™k
endowed with rank-distance metric
dg (A, B) =rank (A — B) [Delsarte '78, Gabidulin '85, Roth '91]

C = XX

a C Cymi

» Maximum rank-distance (MRD) codes are analogues of the
maximum distance separable (MDS) codes in the Hamming metric

» MRD codes achieve the Singleton bound for the rank-metric codes

‘el < qmax{n,m}(min{n,vn}fd#»l)
N
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Gabidulin Codes

Rank-metric analogues of Reed-Solomon codes

> Let P ={p1,---,pn} be a set of n elements in Fym that are linearly
independent over Iy (m > n)

> Let Giu(x) € Fgm[x] denote the linearized polynomial of g-degree at
most k — 1 with coefficients m as follows.

P1 P2 Pn
o L P
Gux)=Y mx®,  G=|Pl Ps - pa
j=0 : : : :
k—1 k—1 k—1
I i

» Gabidulin code is obtained by the following evaluation map

Enc:Fin — Fim
m — {Gm(Pi).Pi S P}
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(1, 8) Rank-Locality

» An (m x n, k) rank-metric code C is said to have (1, §) rank-locality
if for each column 1 € [n] of the codeword matrix, there exists a set
of columns I (1) C [n] such that

1. ieTl (i),
2. TA)|<r+6—1, and
3. dr (Clr)) =8,
where C |14y is the restriction of C on the columns indexed by I' (i)

» The code C |1(y) is said to be the local code associated with the i-th

column

Cy Cy C3
Rank-metric code with (4, 3) rank-locality: local codes C;, C,, and C3 are

rank-metric codes with rank-distance at least 3
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Rank-Locality: Minimum Distance Bound

Theorem: For a rank-metric code € C Fg**™ of cardinality qmk
with (7, 8) rank-locality, it holds that

dr (@) <n—k+1—([¥]-1)(6—1).

9/22



Rank-Locality: Minimum Distance Bound

Theorem: For a rank-metric code € C Fg**™ of cardinality qmk
with (7, 8) rank-locality, it holds that

dr (@) <n—k+1—([¥]-1)(6—1).

Proof Sketch:

» Proof follows from the Singleton-like bound for the Hamming metric
by [Prakash et al. '13, Rawat et al. '14]
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Rank-Locality: Code Construction
We build upon the construction of [Tamo-Barg '14]

» Intuition: What if we can interpolate low degree polynomials to

recover an erased symbol?

» For the rank-locality, we need to use linearized polynomials

10/22



Rank-Locality: Code Construction

Assume: 7|k, (r+0—1)[n,n|m, p:=n/(r+6—1), q =2
» Encoding Linearized Polynomial:
> Given k information symbols m;;, i=0,..., r—1,5=0,..., <1,

define the encoding polynomial as

T1|

q(r+b —1)j+i
E My X .
j=0

i=0
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Rank-Locality: Code Construction

Assume: 7|k, (r+06—1)[n,n|m, p:=n/(r+6—-1),q=>2

» Encoding Linearized Polynomial:

> Given k information symbols m;, 1 =0, ..., r—1;5=0,..., k1,
define the encoding polynomial as
r—1 %*1
(r+8—1)j+i
Gu(x) = my;x9
i=0 j=0
» Evaluation Points:

> {ou, ..., 0 y5-1): basis of Fyr s 1 as a vector space over [y
> {B1,..., Bu}: basis of Fyn as a vector space over Fris-1
» Evaluation points are Py, Py, .-+, Py, where

Pj:{oqﬁj,léigr—i-é—l}
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Rank-Locality: Code Construction

Assume: 7|k, (r+6—1)In,n|m, p:=n/(r+0—-1), q=>2

» Encoding Linearized Polynomial:

> Given k information symbols m;;, i=0,...,7—1;5=0,..., ‘f —1,
define the encoding polynomial as
T—1 % 1 o
q(r+5 1)]+\.
i=0 j=0
» Evaluation Points:
> {otg, ..., %51} basis of Fqrrs 1 as a vector space over [
> {B1,..., By} basis of Fyn as a vector space over Fyris
> Evaluation points P and their partition (Py, Py, -+, P,) is given as

Pj :{Oclf)),1<1<T+6—1}
» Codeword is the evaluations of Gy (x) on points in P, i.e.,
¢=(Gm(y), Yy €P)
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Proposed Construction: Example

n=9k=41r=20=2 Setq=2and m=n
w: primitive element of Fy

» Define the encoding polynomial as
0 3 1 4
Gm(x) = moox® + mo1x® + myex® + myx*.
» Obtain the evaluation points as
» {1, w™, w®}: a basis of Fys over I,
> {1, w3 w7} a basis of Fye over Fys

P= {{L (.U73, (U146}, {w309’ (1)382, w455},{w107, (1)180, (,0253}}.

» Cloc = {(Gm(y),y €P)|m e Fi}, and the local codes are
¢ = {(Gu(y),y€P)) ImeFy} for 1 <j<3
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Rank-Distance Optimality of the Proposed Construction

Theorem: The proposed construction is Singleton-optimal, i.e.,

dr (Croc) =n—k+1—([¥]—1)(6—1).

Proof Idea:
The proposed code Cp o is a subcode of an (n, k+ (¥ —1) (5 —1))
Gabidulin code
» Example:
» Recall our example, n =9,k =4,1r=2,6 =2
> Gu(x) = mox® +muix® + max® + mgx?
» This is a subcode of a (9,5) Gabidulin code, dg (Croc) =5
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Rank-Locality of the Proposed Construction

Theorem: The proposed construction has (v, §) rank-locality.

Proof Sketch:
» We write the encoding polynomial G, (x) in terms of a good
. r+57171
polynomial H(x) := x4 as

Gm(x) = Zir;é Gi(x)x9", where
k_ J—L q(r+8—1)1+i
Gi(x) =mio + X7y my[H(x)IZi-ea ™

> Define the repair polynomial for a y € P; as

> We show that H(x) is constant on Pj, and thus, the evaluations of
the encoding polynomial G,,(x) and the repair polynomial Rj(x) on
points in P; are identical
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Proposed Construction: Example

n=9k=4r=20=2 Setgq=2and m=n
w: primitive element of Fy
» Encoding polynomial:

0 3 1 4
Gum(x) = m00X2 + m01x2 + m10x2 + m11x2

» Evaluation points:

P= {Pl — {1, w73' w146}, P, = {(U309, (,U382, LU455}, P; = {w107’ (U180, w253}}

» Repair polynomials:
Ri(x) = (Moo + mor)x® + (Mo + may X2,

1
m11)>¢2 '

21

Ra(x) = (Moo + w¥mgy)x? + (myg + w?®
R3(x) = (Moo + w?*mey)x? + (myo + w*0my )x

Cj can be obtained by evaluating the repair polynomials R;(x) on P;
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Subspace Codes [Koetter-Kschischang '08]

P4 (M): set of all subspaces of F})!

Gq (M, n): set of all n-dimensional subspaces of FqM

> A subspace code C is a non-empty subset of P, (M) endowed with
subspace metric

ds (U, V) = dim (U) + dim (V) — 2dim (UNV)

» The minimum subspace distance of a subspace code O C P, (M) is

defined as

ds (Q) = min dg (V'L,Vj)
Vi, V;eQ, Vi#V;

» Constant-dimension code: A subspace code Q in which each

codeword has the same dimension, say 1, i.e., QO C G4 (M, 1)

» Such a code with minimum subspace distance d is denoted as an
(M, n,logq 1Q], d) code
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(r,0) Subspace-Locality

[U]: a matrix in a reduced column echelon form (RCEF) such that its columns

span subspace U

[U] |: the sub-matrix of [U] formed by columns indexed by S C [n]

U |g: column space of [U] ¢
Qlg={Ulg:UeQ}

> A constant-dimension subspace code Q C G4 (M, n) is said to have
(1,d) subspace-locality if, for each 1 € [n], there exists a set
I'(i) € [n] such that

1.
2.
3.

4.

ier(),
TA)<r+56—1,
dim (Q Mw) — " (i), and

o5 (0) 25

» The code C |1y is said to be the local code associated with the i-th

column
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Lifting Construction [Silva-Koetter-Kschschang '09]

» X: codeword of a rank-metric code — A(X): subspace

where T is 1 x 1 identity matrix, and (.) denotes the column space
of a matrix

» A(C) ={A(X): X € C}: lifting of C

» The subspace code constructed by lifting inherits the distance
properties of its underlying rank-metric code
ds (A(C)) =2dgr (C)
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Lifting Construction [Silva-Koetter-Kschschang '09]

» X: codeword of a rank-metric code — A(X): subspace

where T is 1 x 1 identity matrix, and (.) denotes the column space
of a matrix

> A(C) ={A(X): X € C}: lifting of €

» The subspace code constructed by lifting inherits the distance

properties of its underlying rank-metric code
ds (A(€)) =2dgr (€)

Theorem: Let Cpoc be an (m xn,k, d, r,d) rank-metric code. The
code A(Cp o) obtained by lifting Cr o¢ is an (m+n, n, mk, 2d, 7, 26)
subspace code.
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Erasure Correction Capability

Theorem: A rank-metric code with (r, 8) rank-locality is guaranteed
to locally correct the erasures and errors E(C;) and E’(Cj) in a local
array Cj provided 2 rank (E’(Cj)) + wtc (E(C;)) <6 —1.

» Follows from the rank-distance guarantee of a local code

A
GO G0 G0 G 1GO GO ) O GO G0 ) Gy
OO0 OO 1000 )
OOOWOOOOIoOooW
OOV OOUIECOoOOoW
OOO®WOOOIOOoow

Rack 1 Rack 2 Rack 3

Rank-metric code with (2, 3) rank-locality can locally recover from crisscross

erasures affecting any two rows and/or columns
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Conclusion and Future Directions

» Rank-locality: Local codes possess good rank distance
We computed tight upper bound on the rank-distance of codes with

rank-locality and constructed optimal codes

» Subspace-locality: Local codes possess good subspace distance
We obtained a class of subspace codes by lifting the proposed local

rank-metric codes

» Can we construct rank-metric codes such that every column as well

as row is associated with a local code?

» Can we improve the recovery performance by combining rank-metric

decoding and Hamming-metric decoding for individual node failures?

» Can we investigate the impact of subspace-locality for repair over

erroneous networks?
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