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Summary. This paper is a tutorial on the application of graph theoretic techniques
in classical coding theory. A fundamental problem in coding theory is to determine
the maximum size of a code satisfying a given minimum Hamming distance. This
problem is thought to be extremely hard and still not completely solved. In addition
to a number of closed form expressions for special cases and some numerical results,
several relevant bounds have been derived over the years.

We show here that many of these bounds can be derived using special properties
of certain graphs. For instance, the well-known Gilbert-Varshamov bound can be
easily proven using a general bound on the chromatic number of graphs. Further-
more, both the Hamming and Singleton bounds can be derived as an application of a
property relating the clique and independence numbers of vertex transitive graphs.

1 Introduction

Let Σq = {0, 1, . . . , q−1} be an alphabet of order q. A q-ary code C of length
n and size |C| is a subset of Σn

q containing |C| elements called codewords.
The Hamming weight wt(c) of a codeword c is the number of its non-zero
entries. A constant-weight code is a code where all the codewords have the
same Hamming weight. The Hamming distance d(c, c′) between two codewords
c and c′ is the number of positions where they have different entries. The
minimum Hamming distance of a code C is the largest integer ∆ such that
∀c, c′ ∈ C, d(c, c′) ≥ ∆.

Let Aq(n, d) be the maximum size of a q-ary code of length n and minimum
Hamming distance d [1, Chapter 17]. A(n, d, w) is defined similarly for binary
codes with constant weight w. Finding the values of Aq(n, d) and A(n, d, w)
is a fundamental problem in “classical” coding theory [1, 2]. This problem is
considered to be very difficult and was in fact described in [3], as “a hopeless
task”. For this reason, much of the research done has focused on bounding
these quantities. Note that the dual problem of finding the maximal order
of a set of codewords satisfying an upper bound on their pairwise Hamming
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distance (anticodes), is well studied in extremal combinatorics. Surprisingly
enough, it has a closed form solution [3, 4, 5].

In this paper, we showcase the basic interplay between graph theory and
coding theory. Many known bounds on Aq(n, d) and A(n, d, w) follow directly
from basic properties of graphs, such as relations among the clique, indepen-
dence and chromatic numbers of graphs. Other can be proven using deeper
algebraic results. For example, using a property of vertex transitive graphs,
an inequality relating the maximal size of codes and that of anticodes can be
found, leading thus to several bounds on Aq(n, d) and A(n, d, w).

This paper is organized as follows. In Section 2 we briefly introduce some
of the needed background in graph theory. In Section 3 we use the tools
introduced in the previous section to derive bounds on the maximum size
of unrestricted codes. In Sections 4, we focus on constant-weight codes and
derive some bounds and inequalities on their maximal size.

2 Graph Theory Background

We start by giving a brief summary of some graph theoretical concepts and re-
sults that will be needed in this paper. For more details, we refer the interested
reader to [6] and [7].

2.1 Basic Notation and Results

A graph is a pair G = (V,E) of sets such that the elements of E are subsets of
order two of V . The elements of V are the vertices of the graph G and those
of E are its edges. For any graph X, we let V (X) denote its vertex set and
E(G) its edge set.

Two vertices u and v of G (u, v ∈ V ) are adjacent if {u, v} is an edge of G
({u, v} ∈ E), and we write u ∼ v. If all the vertices of G are pairwise adjacent,
then G is complete. A complete graph on n vertices is denoted as Kn. Two
vertices that are not adjacent are called independent. The degree d(v) of a
vertex v is the number of vertices adjacent to v. The maximum degree of
the graph G is then defined as ∆(G) := max{d(v); v ∈ V }. The graph G is
called connected if for any disjoint partition V1 and V2 of its vertex set, i.e.
V1 ∪ V2 = V and V1 ∩ V2 = ∅, there exists at least one vertex in V1 that
is adjacent to a vertex in V2. A graph Cn having V (Cn) = {v1, . . . , vn} and
E(Cn) = {{v1, v2}, {v2, v3}, . . . , {vn, v1}} is called an odd cycle if n is odd,
even otherwise

The complement of a graph G is the graph Ḡ defined over the same vertex
set but where two vertices are adjacent in Ḡ iff they are not in G. We denote
by ω(G) the clique number of a graph G, defined as the largest number of
vertices of G that are pairwise adjacent. In contrast α(G), the independence
number of G, is the largest number of pairwise independent vertices in G. It
can be easily seen that α(G) = ω(Ḡ).
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A coloring of the graph G is an assignment of colors to its vertices such
that adjacent vertices are never given the same color. Formally, a graph G has
a k-coloring if there exists a map c : V → {1, . . . , k} such that c(u) 6= c(v)
whenever the two vertices u and v are adjacent. The smallest integer k such
that G has a k-coloring is called the chromatic number of G and denoted by
χ(G). It is easy to show that the chromatic number of G is upper bounded
by ∆(G) + 1. This bound can be slightly improved in many cases:

Theorem 1 (Brooks, 1941). If G is a connected graph but neither complete
nor an odd cycle then

χ(G) ≤ ∆(G).

Given a coloring of the graph G, vertices assigned the same color are
pairwise independent and their average number is |V (G)|

χ(G) . Therefore, using
Brooks Theorem, we obtain the following bound on the independence number
of a graph G.

Lemma 1. If G is a connected graph but neither complete nor an odd cycle
then

α(G) ≥ |V (G)|
∆(G)

.

The next result, known as Turán Theorem [8, Thm. 4.1], is a famous
result in extremal graph theory and relates the clique number of a graph to
the number of its edges. Define

M(n, p) :=
p− 2

2(p− 1)
n2 − r(p− 1− r)

2(p− 1)
,

where r is the remainder of the division of n by p− 1.

Theorem 2 (Turán, 1941). A graph G on n vertices having more than
M(n, p) edges satisfies ω(G) ≥ p.

2.2 Algebraic Graph Theory

We define here the notions of graph automorphism and homomorphism and
describe the class of vertex transitive graphs and state some of their useful
properties. For the proofs of the theorems presented here and further related
details reference [7] can be consulted.

Definition 1 (Graph Automorphism). Let G(V,E) be a graph and φ a
bijection from V to itself. φ is called an automorphism of G iff

∀u, v ∈ V, u ∼ v ⇔ φ(u) ∼ φ(v).
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The set of all automorphisms of G is a group under composition; it is called
the automorphism group of G and it is denoted Aut(G). For example, the
complete graph on n vertices Kn has Sn, the symmetric group of order n,
as its automorphism group. A graph is vertex transitive if the action of its
automorphism group on its vertex set is transitive:

Definition 2 (Vertex Transitive Graph ). A graph G(V,E) is vertex tran-
sitive iff ∀u, v ∈ V,∃φ ∈ Aut(G) s.t. φ(u) = v.

The following theorem [7, Lemma 7.2.2] gives a very important property
of vertex transitive graphs which will be instrumental in deriving the results
in the coming sections.

Theorem 3. Let G(V,E) be a vertex transitive graph, then

α(G)ω(G) ≤ |V (G)|.

Let X and Y be two graphs.

Definition 3 (Graph Homomorphism). A mapping f : V (X)→ V (Y ) is
a homomorphism from G to G′ if ∀x, y ∈ V x ∼ y ⇒ f(x) ∼ f(y).

Theorem 4. If Y is vertex transitive and there is a homomorphism from X
to Y , then

α(X)
|V (X)|

≥ α(Y )
|V (Y )|

Proof. An application of Lemma 7.14.2 in [7].

3 Bounds on Unrestricted Codes

In this section, we start applying some of the previously discussed graph
theoretical results to obtain some bounds on the maximal size of codes. First
we define a family of graphs called Hamming graphs that will be instrumental
in establishing the link between codes and graphs.

Definition 4 (Hamming Graph [2]). Given the positive integers n, q and d
such that q > 1 and 2 ≤ d ≤ n, the Hamming graph Hq(n, d), has as vertices
all the q-ary sequences of length n, and two vertices are adjacent iff their
Hamming distance is larger or equal to d. That is, V (Hq(n, d)) = Σn

q , where
Σq = {0, 1, . . . , q − 1}, and u ∼ v iff d(u, v) ≥ d.

Notice that a q-ary code of length n and minimum Hamming distance
d corresponds to a clique in the graph Hq(n, d). Furthermore, Aq(n, d), the
maximum size of such code is the clique number of the corresponding Ham-
ming graph. This is concisely stated in the following easy observation which
has interesting consequences.
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Observation 1 Aq(n, d) = ω(Hq(n, d)).

We now give the first application by showing how Lemma 1 immedi-
ately implies the Gilbert-Varshamov Bound. Taking the graph G to be the
complement of the Hamming graph Hq(n, d), we have, by Observation 1,
Aq(n, d) = α(G). Furthermore, ∆(G) = ∆(H̄q(n, d)) =

∑d−1
i=0

(
n
i

)
(q − 1)i.

Thus, by Lemma 1 we get:

Lemma 2 (Gilbert-Varshamov Bound).

Aq(n, d) ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

.

For specific numerical values, this bound can be slightly improved by using
Turán’s Theorem as noted in [13]. Next, we will show that the Hamming
graphs are vertex transitive. This property will then be used to derive the
well-known Singleton and Hamming bounds.

Lemma 3. The Hamming graph Hq(n, d) is vertex transitive.

Proof. Take Σq = Zq, the integers modulo q. For all u, v, x ∈ Σn
q , define the

function φu,v(x) = x+ v−u. φu,v(x) is an automorphism of Hq(n, d). In fact,
d(φu,v(x), φu,v(y)) = d(x+ v − u, y + v − u) = wt(x+ v − u− (y + v − u)) =
wt(x− y) = d(x, y). Also, φu,v(x) takes u to v.

Thus, we deduce from Theorem 3 and Observation 1 the following inequal-
ity [14]:

Corollary 1. Aq(n, d)α(Hq(n, d)) ≤ qn

The independence number α(Hq(n, d)) of the Hamming graph Hq(n, d) is
actually the maximum number of sequences of length n such that the Ham-
ming distance between any two of them is at most d − 1. A set of sequences
satisfying this property is called an anticode with maximum distance d − 1.
Define Nq(n, s) to be the maximum number of q-ary sequences of length n
that intersect pairwise, i.e., have the same entries, in at least s positions [4].
It follows that

α(Hq(n, d)) = Nq(n, t); with t = n− d+ 1. (1)

By bounding from below the value of Nq(n, t) in two different ways, we
get the Singleton and the Hamming Bounds [11].

Lemma 4 (Singleton Bound). Aq(n, d) ≤ qn−d+1

Proof. Consider the set T (n, t) of all q-ary sequences of length n having the
same value 0 in the first t = n − d + 1 entries. Therefore, by definition,
Nq(n, t) ≥ |T (n, t)| = qn−t. Then, by Eq. (1) and Corollary 1, Aq(n, d) ≤
qn

qn−t = qn−d+1.
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Lemma 5 (Hamming Bound).

Aq(n, d) ≤ qn∑b d−1
2 c

i=0

(
n
i

)
(q − 1)i

.

Proof. Let r = bd−1
2 c and consider the ball B(n, r) = {x ∈ Σn

q ; wt(x) ≤ r}.
By the triangle inequality, ∀x, y ∈ B(n, r), d(x, y) ≤ 2r ≤ d − 1. Therefore
Nq(n, t) ≥ |B(n, r|. But |B(n, r)| =

∑r
i=0

(
n
i

)
(q − 1)i. The result then follows

directly from Eq. (1).

The number Nq(n, t) is well studied in extremal combinatorics [4] [5], and
a closed form for it is known. Thus, exact expressions of Nq(n, t) can be
used to derive better upper bounds on Aq(n, d) [9]. For instance, if n − t

is even, N2(n, t) =
∑n−t

2
i=0

(
n
i

)
. Thus, in this case, B(n, bd−1

2 c) is a maximal
anticode and no improvement can be made in this case on the Hamming
bound. However, when n − t is odd, N2(n, t) = 2

∑n−t−1
2

i=0

(
n−1
i

)
[4, Thm. Kl]

and [10]. Therefore, we obtain the following improvement on the Hamming
bound for even values of d [11, 12].

Lemma 6.

A(n, d) ≤ 2n−1∑ d−2
2

i=0

(
n−1
i

) , if d is even. (2)

Using the exact expression of Nq(n, t) given in Thm. 2 in [5] or the Di-
ametric Theorem of [4], we get this improved upper bound on Aq(n, d) for
non-binary alphabets.

Lemma 7. For q ≥ 3, t = n− d+ 1 and r = bmin{n−t2 , t−1
q−2}c,

Aq(n, d) ≤ qt+2r∑r
i=0

(
t+2r
i

)
(q − 1)i

. (3)

Note that for q ≥ t + 1, Nq(n, t) = qn−t [5, Corollary 1], i.e. a maximal
anticode would be the trivial set T (n, t) described in the proof of Lemma 4.
In this case, the bound of (3) boils down to the Singleton bound.

For d even and n not much larger than t, the next lemma provides another
improvement on the Hamming bound for non-binary alphabets.

Lemma 8. For d odd and n ≤ t+ 1 + log t
log(q−1)

Aq(n, d) ≤ qn−1∑ d−2
2

i=0

(
n−1
i

)
(q − 1)i

(4)
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Proof. Under the conditions of this lemma, Nq(n, t) = q
∑ d−2

2
i=0

(
n−1
i

)
(q − 1)i

[4, Eq. 1.7]. The result then follows from Corollary 1.

By constructing homomorphisms between Hamming graphs with different
parameters, we get the following recursive inequalities on Aq(n, d) by Theorem
4:

Lemma 9.

Aq(n, d) ≤ 1
q
Aq(n+ 1, d+ 1) (5)

Aq(n, d) ≤ qAq(n− 1, d) (6)

Aq(n, d) ≤ qn

(q − 1)n
Aq−1(n, d) (7)

Proof. Let φ1 : Σn+1
q → Σn+1

q such that φ1((x1, . . . , xn, xn+1)) = (x1, . . . , xn).
φ1 is a graph homomorphism from H̄q(n + 1, d + 1) to H̄q(n, d). Applying
then Thm. 4, we get Eq. (5). Similarly, taking φ2 : Σn−1

q → Σn
q such that

φ1((x1, . . . , xn−1)) = (x1, . . . , xn, 0), we get Eq. (6). The third inequality is
obtained by taking φ3 : Σn

q−1 ↪→ Σn
q to be the inclusion map.

4 Bounds for Constant-Weight Codes

Let A(n, 2δ, w) be the maximum possible number of codewords in a binary
code of length n, constant weight w and minimum distance 2δ [2, 15].

Let K(n, 2δ, w) be the graph whose vertices are all the binary sequences of
length n and Hamming weight w and where two vertices u, v are adjacent iff
d(u, v) ≥ 2δ. In analogy with Hamming graphs, we observe here the following:

Observation 2 A(n, 2δ, w) = ω(K(n, 2δ, w)).

Let
(
[n]
w

)
denote the set of all subsets of [n] = {1, 2, . . . , n} of order w.

There is a natural bijection ν between V(K(n, 2δ, w)) and
(
[n]
w

)
. Namely, ∀u ∈

V(K(n, 2δ, w)), ν(u) = U = {i;u(i) = 1}.

Lemma 10. ∀p, q ∈ V(K(n, 2δ, w)), p ∼ q iff |P ∩Q| ≤ w− δ where P = ν(q)
and Q = ν(q).

Proof. 2δ ≤ d(p, q) = |(P ∩ Q̄) ∪ (P̄ ∩Q)| = 2w − 2|P ∩Q|.

Lemma 11. K(n, 2δ, w) is vertex transitive.

Proof. For any two vertices p, q of K(n, 2δ, w), any bijection on [n] such
that the image of P = ν(p) is Q = ν(q), takes p to q and belongs to
Aut(K(n, 2δ, w)).
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The first result that follows directly from Lemma 11 is the Bassalygo-Elias
inequality [15] which relates the maximum size of constant-weight codes to
that of unrestricted codes.

Lemma 12 (Bassalygo-Elias inequality).

A(n, d) ≤ 2n(
n
w

)A(n, d, w)

Proof. Consider the two graphs Y = H̄(n, d) and X = K̄(n, d, w). Y is vertex
transitive. Since X is an induced subgraph of Y , the inclusion map is a homo-
morphism that takes X to Y . The result then follows from applying Theorem
4.

By the same token, we can show the following inequalities. The last two
are known as Johnson’s bounds [16].

Lemma 13.

A(n, d, w) ≤ n− w + 1
w

A(n, d+ 2, w − 1) (8)

A(n, d, w) ≤ n+ 1
w + 1

A(n+ 1, d+ 2, w + 1) (9)

A(n, d, w) ≤ n

w
A(n− 1, d, w − 1) (10)

A(n, d, w) ≤ n

n− w
A(n− 1, d, w) (11)

Proof. We start by proving inequality 8. Let φ be a mapping from
(

[n]
w−1

)
to(

[n]
w

)
, such that ∀P ∈

(
[n]
w−1

)
, P ⊂ φ(P ). φ is a homomorphism from K(n, d+

2, w − 1) to K(n, d, w). In fact, ∀P,Q ∈ K(n, d + 2, w − 1) such that P ∼
Q, |φ(P ) ∩ φ(Q)| ≤ |P ∩ Q| + 2 ≤ w − 1 − (d + 2)/2 + 2 = w − d/2 (by
Lemma 10). Therefore, φ(P ) ∼ φ(Q). The inequality then follows by applying
Theorem 4.

To prove inequality 9, take the homomorphism φ from K(n+1, d+2, w+1)
to K(n, d, w) to be φ(X) = X \ {maxx∈X x},∀X ∈

(
[n+1]
w+1

)
.

The rest of the inequalities can be proved similarly by considering the cor-
responding graphs and taking the homomorphism to be the inclusion map.�

Next we use the vertex transitivity property of the graphs K(n, 2δ, w) to
rederive a number of upper bounds on A(n, d, w).

Lemma 14. Let t = w − δ + 1, then

A(n, 2δ, w) ≤
(
n
w

)(
n−t
w−t
) (12)
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Proof. Let G = K(n, d, w). Since G is vertex transitive, we have

A(n, 2δ, w)α(G) ≤ |V (G)| =
(
n

w

)
.

Define M(n,w, s) as in [3] to be the maximum number of subsets of [n] of
order w that intersect pairwise in at least s elements. By Lemma 10, α(G) =
M(n,w, t). But, M(n,w, t) ≥

(
n−t
w−t
)

(for instance, consider the system of all
subsets of [n] of order w that contain the set {1, 2, . . . , t}).

The previous bound is the same as the one in Theorem 12 in [15] which
was given there with a different proof. One can improve on the bound of
Lemma 14 by using the exact value of M(n,w, t) [3]. It is known that for
n ≥ (w − t + 1)(t + 1), the famous Erdős-ko-Rado theorem [18] holds and
M(n,w, t) =

(
n−t
w−t
)

[18, 19]. However, this is not the case for lower values of
n.

Lemma 15. Let t = w − δ + 1 and r = max{0, d δ(w−δ)n−d − 1e}, then

A(n, 2δ, w) ≤
(
n
w

)∑w
i=t+r

(
t+2r
i

)(
n−t−2r
w−i

) ; (13)

with
(
n
k

)
= 0 when k > n.

Proof. (sketch) A(n, d, w) ≤ (n
w)

M(n,w,t) , then use the exact value of M(n,w, t)
given by the main theorem of [3].

5 Conclusion

We illustrated in this paper the use of graph theoretic techniques to answer a
fundamental problem in coding theory, that is determining the maximal size of
codes of a certain length and a given minimum Hamming distance. Inequalities
involving the independence and clique numbers of general and vertex tran-
sitive graphs are shown to lead to many well-known bounds on codes, such
as the Hamming, Singleton, Gilbert-Varshamov and Bassalygo-Elias bounds.
Additional interesting applications were omitted here due to space restriction.
For instance, advanced results in extremal graph theory were used in refer-
ence [20] to get asymptotic improvement on the Gilbert-Varshamov bound.
Furthermore, graph theory has many applications in modern coding theory
such as the design of Low Density Parity Check (LDPC) codes and the design
of their iterative decoders [21].
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