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Abstract—We show that the network coding and index coding
problems are equivalent. This equivalence holds in the general
setting which includes linear and non-linear codes. Specifically,
we present an efficient reduction that maps a network coding
instance to an index coding one while preserving feasibility.
Previous connections were restricted to the linear case.

I. INTRODUCTION

In the network coding paradigm, a set of source nodes trans-
mits information to a set of terminal nodes over a network;
internal nodes of the network may mix received information
before forwarding it. This mixing (or encoding) of information
has been extensively studied over the last decade (see e.g., [1],
[2], [3], [4], [5] and references therein). While network coding
in the multicast setting is well understood, this is far from
being the case for the general multi-source, multi-terminal
setting. In particular, determining the capacity of a general
network coding instance remains an intriguing, central, open
problem, e.g., [6], [7], [8], [9].

A special instance of the network coding problem intro-
duced in [10], which has seen significant interest lately, is the
so-called index coding problem [10], [11], [12], [13], [14],
[15]. Roughly speaking, the index coding problem encapsu-
lates the “broadcast with side information” problem in which
a single server wishes to communicate with several clients,
each requiring potentially different information and having
potentially different side information (see Fig. 1(a) for an
example).

One may consider the index coding problem as a simple
and representative instance of the network coding problem.
The instance is “simple” in the sense that any index coding
instance can be represented as a topologically simple network
coding instance in which only a single internal node has in-
degree greater than one and thus only a single internal node
can perform encoding (see Fig. 1(b) for an example). It is
“representative” in the sense that the index coding paradigm
is broad enough to characterize the network coding problem
under the assumption of linear coding [16]. Specifically, given
any instance of the network coding problem I, one can
efficiently construct an instance of the index coding problem
Î such that: (a) There exists a linear solution to I if and
only if there exists a linear solution to Î, and (b) any linear
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Fig. 1. (a) An instance of the index coding problem. A server has 4 binary
sources X1, . . . , X4 and there are 4 terminals with different “wants” and
“has” sets (corresponding to the communication demand and side information
respectively). The server can trivially transmit all the 4 sources. However,
this is not optimal and it is sufficient to broadcast only 2 bits, namely
X1 + X2 + X3 and X1 + X4 (‘+’ denotes the xor operation). (b) Index
coding is a special case of the network coding problem. All links are of unit
capacity (non-specified) or of capacity c. Links directly connecting between
sources and terminals represent the “has” sets. Any solution to the index
coding problem with c broadcast bits can be efficiently mapped to a solution
to the corresponding network coding instance and visa versa. This implies that
the index coding problem is a special case of the network coding problem.
The focus of this work is on the opposite assertion. Namely, that the network
coding problem is a special case of the index coding problem.

solution to Î can be efficiently turned into a linear solution
to I. All undefined notions above (and those that follow),
such as “solution,” “feasibility,” and “capacity,” are defined in
Section II.

The results of [16] hold for (scalar and vector) linear coding
functions only, and the analysis there breaks down once one
allows general coding (which may be non-linear) at internal
nodes. The study of non-linear coding functions is central to
the study of network coding since it is shown in [17] that
non-linear codes have an advantage over linear solutions (in
the general multi-source, multi-terminal setting). That is, there
exist instances in which linear codes do not suffice to achieve
capacity.

In this work, we extend the equivalence between network
coding and index coding to the setting of general encoding
and decoding functions. Our results effectively imply that
when one wishes to solve a network coding instance I, a
possible route is to turn the network coding instance into an
index coding instance Î (via our reduction), solve the index
coding instance Î, and turn the solution to Î into a solution to
the original network coding instance I. Hence, any efficient
scheme to solve index coding would yield an efficient scheme



to solve network coding. Stated differently, our results imply
that understanding the solvability of index coding instances
would imply an understanding of the solvability of network
coding instances as well.

The remainder of the paper is structured as follows. In
Section II, we present the models of network and index coding.
In Section III, we present an example based on the “butterfly
network” that illustrates our proof techniques. In Section IV,
we present the main technical contribution of this work:
the equivalence between network and index coding. Finally,
in Section V, we conclude with some remarks and open
problems. Several proofs are omitted due to space limitations
and appear in an extended version [18].

II. MODEL

In what follows, we define the model for the network
coding and index coding problems. Throughout this paper,
“hatted” variables (e.g., x̂) correspond to the variables of index
coding instances, while “unhatted” variables correspond to the
network coding instance. For any k > 0, we use [k] to denote
the set {1, . . . , bkc}.

A. Network coding

An instance I = (G,S, T,B) of the network coding
problem includes a directed acyclic network G = (V,E), a
set of sources nodes S ⊂ V , a set of terminal nodes T ⊂ V ,
and an |S| × |T | requirement matrix B. We assume, without
loss of generality, that each source s ∈ S has no incoming
edges and that each terminal t ∈ T has no outgoing edges.
Let ce denote the capacity of each edge e ∈ E, namely for
any block length n, each edge e can carry one of the 2cen

messages in [2cen]. In our setting, each source s ∈ S holds a
rate Rs random variable Xs uniformly distributed over [2Rsn].
The variables describing different messages are independent.

A network code, (F ,G) = ({fe}, {gt}), is an assignment of
an encoding function fe to each edge e ∈ E and a decoding
function gt to each terminal t ∈ T . For e = (u, v), fe is
a function taking as input the random variables associated
with incoming edges to node u; and the random variable
corresponding to e, Xe ∈ [2cen], is the random variable equal
to the evaluation of fe on its inputs. If e is an edge leaving
a source node s ∈ S, then Xs is the input to fe. The input
to the decoding function gt consists of the random variables
associated with incoming edges to terminal t. The output of gt
is a vector of reproductions of all sources required by t. The
sources required by t are specified by the requirement matrix
B, defined below.

Given the acyclic structure of G, edge messages {Xe} can
be defined by induction on the topological order of G. Namely,
given the functions {fe}, one can define a function family
{f̄e}1 such that each f̄e takes as its input the information
sources {Xs} and transmits as its output the random variable
Xe. More precisely, for e = (u, v) in which u is a source
node, define f̄e ≡ fe. For e = (u, v) in which u is an
internal node with incoming edges In(e) = {e′1, . . . , e′`},

1In the network coding literature, {fe} and {f̄e} are sometimes referred
to as the local and global encoding functions, respectively.

define f̄e ≡ fe(f̄e′1 , . . . , f̄e′`). Namely, the evaluation of f̄e
on source information {Xs} equals the evaluation of fe given
the values of f̄e′ for e′ ∈ In(e). We use both {fe} and {f̄e}
in our analysis below.

The |S| × |T | requirement matrix B = [bs,t] has entries in
the set {0, 1}, with bs,t = 1 if and only if terminal t requires
information from source s.

A network code (F ,G) is said to satisfy terminal node t
under transmission (xs : s ∈ S) if the output of decoding
function gt equals (xs : b(s, t) = 1) when (Xs : s ∈ S) =
(xs : s ∈ S). The network code (F ,G) is said to satisfy
the instance I with error probability ε ≥ 0 if the probability
that all t ∈ T are simultaneously satisfied is at least 1 − ε.
The probability is taken over the joint distribution on random
variables (Xs : s ∈ S).

For a rate vector R = (R1, . . . , R|S|), an instance I to
the network coding problem is said to be (ε,R, n)-feasible if
there exists a network code (F ,G) with block length n that
satisfies I with error probability at most ε when applied to
source information (X1, . . . , X|S|) uniformly distributed over
Πn
s=1[2Rsn]. An instance I to the network coding problem is

said to be R-feasible if for any ε > 0 and any δ > 0 there
exists a block length n such that I is (ε,R(1−δ), n)-feasible.
Here, R(1− δ) = (R1(1− δ), . . . , R|S|(1− δ)). The capacity
region of an instance I refers to all rate vectors R for which
I is R-feasible.

B. Index coding

An instance Î = (Ŝ, T̂ , {Ŵt̂}, {Ĥt̂}) of the index coding
problem includes a set of sources Ŝ = {ŝ1, ŝ2, . . . , ŝ|Ŝ|}
all available at a single server, and a set of terminals T̂ =
{t̂1, . . . , t̂|T̂ |}. Given a block length n, each source ŝ ∈ Ŝ

holds a rate R̂ŝ random variable X̂ŝ uniformly distributed over
[2R̂ŝn] (and independent from other sources). Each terminal
requires information from a certain subset of sources in Ŝ. In
addition, information from some sources in Ŝ are available
a priori as side information to each terminal. Specifically,
terminal t̂ ∈ T̂ is associated with sets:
• Ŵt̂ which is the set of sources required by t̂, and
• Ĥt̂ which is the set of sources available at t̂.

We refer to Ŵt̂ and Ĥt̂ as the “wants” and “has” sets of t̂,
respectively. The server uses an error-free broadcast channel
to transmit information to the terminals. The objective is to
design an encoding scheme that satisfies the demands of all
the terminals while minimizing the number of uses of the
broadcast channel. (See Fig. 1.)

An index code (F̂ , Ĝ) = (f̂B , {ĝt̂}t̂∈T̂ ) for Î with broadcast
rate ĉB , includes an encoding function f̂B for the broadcast
channel, and a set of decoding functions Ĝ = {ĝt̂}t̂∈T̂ with one
function for each terminal. The function f̂B is a function that
takes as input the source random variables {X̂ŝ} and returns
a rate ĉB random variable X̂B ∈ [2ĉBn]. The input to the
decoding function ĝt̂ consists of the random variables in Ĥt̂

(the source random variables available to t̂) and the broadcast
message X̂B . The output of ĝt̂ is the reconstruction by terminal
t̂ of all sources required by t̂ (and described by Ŵt̂).
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Fig. 2. (a) The butterfly network with two sources X1 and X2 and two
terminals t1 and t2. (b) The equivalent index coding instance. The server has
9 sources: one for each source, namely {X̂1, X̂2}, and one for each edge in
the network, namely {X̂e1 , . . . , X̂e7}. There are 7 terminals corresponding
to the 7 edges in the network, 2 terminals corresponding to the two terminals
of the butterfly network and one extra terminal t̂all.

An index code (F̂ , Ĝ) of broadcast rate ĉB is said to
satisfy terminal t̂ under transmission (x̂ŝ : ŝ ∈ Ŝ) if the
output of decoding function ĝt̂ equals (x̂ŝ : ŝ ∈ Ŵt̂) when
(X̂ŝ : ŝ ∈ Ŝ) = (x̂ŝ : ŝ ∈ Ŝ). Index code (F̂ , Ĝ) is said
to satisfy instance Î with error probability ε ≥ 0 if the
probability that all t̂ ∈ T̂ are simultaneously satisfied is at
least 1− ε. The probability is taken over the joint distribution
on random variables {X̂ŝ}ŝ∈Ŝ .

For a rate vector R̂ = (R̂1, . . . , R̂|Ŝ|), an instance Î to
the index coding problem is said to be (ε, R̂, ĉB , n)-feasible
if there exists an index code (F̂ , Ĝ) with broadcast rate ĉB
and block length n that satisfies Î with error probability at
most ε when applied to source information (X̂ŝ : ŝ ∈ Ŝ)

uniformly and independently distributed over Πŝ∈Ŝ [2R̂ŝn]. An
instance Î to the network coding problem is said to be (R̂, ĉB)-
feasible if for any ε > 0 and δ > 0 there exists a block
length n such that Î is (ε, R̂(1−δ), ĉB , n)-feasible. As before,
R̂(1− δ) = (R̂1(1− δ), . . . , R̂|Ŝ|(1− δ)). The capacity region
of an instance Î with broadcast rate ĉB refers to all rate vectors
R̂ for which Î is (R̂, ĉB)-feasible.

III. EXAMPLE

Our main result, formally stated as Theorem 1 in Section IV,
states that the network coding and index coding problems are
equivalent. The proof is based on a reduction that constructs,
for any given network coding problem, an equivalent index
coding problem. In this section, we explain the main elements
of our proof by applying it to the butterfly network example
[1] shown in Fig. 2(a). For simplicity, our example does not
consider any error in communication. Our reduction is similar
to the construction in [16]; our analysis differs to capture the
case of non-linear encoding.

Following the notation in Section II-A, let Xei =
f̄ei(X1, X2) be the one-bit message on edge ei of the but-
terfly network. Then, the following is a network code that
satisfies the demands of the terminals: Xe1 = Xe2 = X1,
Xe3 = Xe4 = X2, Xe5 = Xe6 = Xe7 = X1 + X2, where
‘+’ denotes the xor operation. Terminal t1 can decode X1

by computing X1 = Xe4 + Xe7 , and t2 can decode X2 by
computing X2 = Xe1 + Xe6 . Thus, the butterfly network is
(ε, R, n) = (0, (1, 1), 1)-feasible.

The problem now is to construct an index coding instance
that is “equivalent” to the butterfly network; equivalence here
means that any index code for that instance would imply a
network code for the butterfly network, and vice versa. We
propose the construction, based on that presented in [16], in
which the server has 9 sources split into two sets, and 10
terminals, as described in Fig. 2.

Next, we explain how the solutions are mapped between
these two instances. “Direction 1” strongly follows the analysis
appearing in [16]; our major innovation is in “Direction 2”.
(Both proof directions are presented below for completion.)

Direction 1: Network code to index code. Suppose we
are given a network code with local encoding functions fei
and global encoding functions f̄ei , i = 1, . . . , 7. In our
index coding solution the server broadcasts the 7-bit vector
X̂B = (X̂B(e1), . . . , X̂B(e7)), where

X̂B(ei) = X̂ei + f̄ei(X̂1, X̂2), i = 1, . . . , 7. (1)

One can check that this index code allows each terminal
to recover the sources in its “wants” set using the broadcast
X̂B and the information in its “has” set. For example, for the
network’s index code, terminal t̂e5 computes X̂e5 = X̂B(e5)−
(X̂B(e2) − X̂e2) − (X̂B(e3) − X̂e3). Here, both ‘+’ and ‘-’
denote the xor operation. By a similar process, every terminal
in the index coding instance can decode the sources it wants.

Direction 2: Index code to network code. Let ĉB equal the
total capacity of edges in the butterfly network, i.e., ĉB = 7.
Suppose we are given an index code with broadcast rate ĉB
that allows each terminal to decode the sources it requires
(with no errors). We want to show that any such code can be
mapped to a network code for the butterfly network. Let us
denote by X̂B = (X̂B,1, . . . , X̂B,7) the broadcast information
where X̂B is a (possibly non-linear) function of the 9 sources
available at the server: X̂1, X̂2 and X̂e1 , . . . , X̂e7 .

For every terminal t̂, there exists a decoding function ĝt̂ that
takes as input the broadcast information X̂B and the sources in
its “has” set and returns the sources it requires. For example
ĝt̂e1

(X̂B , X̂1) = X̂e1 . We use these decoding functions to
construct the network code for the butterfly network. Consider
for example edge e5. Its incoming edges are e2 and e3, so we
need to define a local encoding fe5 which is a function of the
information Xe2 and Xe3 they are carrying. In our approach,
we fix a specific value σ for X̂B , and define

fe5(Xe2 , Xe3) = ĝt̂e5
(σ,Xe2 , Xe3).

Similarly, we define the encoding functions for every edge in
the butterfly network, and the decoding functions for the two
terminals t1 and t2 by applying the corresponding decoder to
the received inputs and the fixed value of σ. The crux of our
proof lies in showing that there exists a value of σ for which
the corresponding network code allows correct decoding. In
the example at hand, one may choose σ to be the all zero
vector 0. (In this example, all values of σ are equally good.)



To prove correct decoding, we show that for any fixed values
X̂1 = x̂1 and X̂2 = x̂2, there exists a unique value for the
vector (X̂e1 , . . . , X̂e7) that results in the broadcast transmis-
sion of X̂B = 0. (Recall that X̂B is a function of X̂1, X̂2 and
X̂e1 , . . . , X̂e7 .) Otherwise, since ĉB = 7, t̂all cannot decode
correctly. Roughly speaking, this correspondence allows us to
reduce the analysis of correct decoding in the network code to
correct decoding in the index code. Details on this reduction
and the choice of σ appear in the next section.

IV. MAIN RESULT

Theorem 1: For any instance I of the network coding
problem, one can efficiently construct an instance Î of the
index coding problem and an integer ĉB such that for any
rate vector R, any integer n, and any ε ≥ 0 it holds that I
is (ε,R, n) feasible if and only if Î is (ε, R̂, ĉB , n) feasible.
Here, the rate vector R̂ for Î can be efficiently computed from
R and I, and the corresponding network and index codes that
imply feasibility in the reduction can be efficiently constructed
from one another.

Proof: Let G = (V,E) and I = (G,S, T,B). Let n be
any integer, and let R = (R1, . . . , R|S|). We start by defining
Î = (Ŝ, T̂ , {Ŵt̂}, {Ĥt̂}), the integer ĉB , and the rate vector
R̂. See Fig. 2 for an example. To simplify notation, we use
the notation X̂ŝ to denote both the source ŝ ∈ Ŝ and the
corresponding random variable. For e = (u, v) in E, let In(e)
be the set of edges entering u in G. If u is a source s let
In(e) = {s}. For ti ∈ T , let In(ti) be the set of edges
entering ti in G.

Set Ŝ consists of |S|+ |E| sources: one source, denoted X̂s,
for each source s ∈ S from I, and one source, denoted X̂e,
for each edge e in E. Thus, Ŝ = {X̂s}s∈S ∪ {X̂e}e∈E . Set
T̂ consists of |E|+ |T |+ 1 terminals: |E| terminals, denoted
t̂e, corresponding to the edges in E, |T | terminals, denoted
t̂i, corresponding to the terminals in I, and a single terminal,
denoted t̂all. Thus, T̂ = {t̂e}e∈E ∪ {t̂i}i∈[|T |] ∪ {t̂all}. For
each t̂e ∈ T̂ , we set Ĥt̂e

= {X̂e′}e′∈In(e) and Ŵt̂e
= {X̂e}.

For each t̂i ∈ T̂ , let ti be the corresponding terminal in T .
We set Ĥt̂i

= {X̂e′}e′∈In(ti) and Ŵt̂i
= {X̂s}s:b(s,ti)=1. For

t̂all set Ĥt̂all
= {X̂s}s∈S and Ŵt̂all

= {X̂e}e∈E . Let R̂ be a
vector of length |S|+|E| consisting of two parts: (R̂s : s ∈ S)
represents the rate R̂s of each X̂s and (R̂e : e ∈ E) represents
the rate R̂e of each X̂e. Set R̂s = Rs for each s ∈ S and
R̂e = ce for each e ∈ E. (Here Rs is the entry corresponding
to s in the vector R, and ce is the capacity of the edge e in
G.) Finally, set ĉB =

∑
e∈E ce =

∑
e∈E R̂e.

We now present our proof. The fact that I is (ε,R, n)
feasible implies that Î is (ε, R̂, ĉB , n) feasible is essentially
shown in [16] and is omitted here due to space limitations.
Full details appear in [18]. The other direction is the major
technical contribution of this work.
Î is (ε, R̂, ĉB , n) feasible implies that I is (ε,R, n)

feasible: We assume that Î is (ε, R̂, ĉB , n) feasible with
ĉB =

∑
e∈E ce =

∑
e∈E R̂e (as defined above). Thus, there

exists an index code (F̂ , Ĝ) = (f̂B , {ĝt̂}) for Î with block
length n and success probability at least 1 − ε. In what
follows, we obtain a network code (F ,G) = {fe} ∪ {gt} for

I. The key observation we use is that, by our definition of
ĉB =

∑
e∈E R̂e, the support [2ĉBn] of the encoding function

f̂B is exactly the size of the product of the supports of the
source variables {X̂e} in Î. Implications of this observation
follow.

We start with some notation. For each realization x̂S =
{x̂s}s∈S of source information {X̂s}s∈S in Î, let Ax̂S

be
the realizations x̂E = {x̂e}e∈E of {X̂e}e∈E for which
all terminals decode correctly. That is, if we use the term
“good” to refer to any source realization pair (x̂S, x̂E) for
which all terminals decode correctly, then Ax̂S

= {x̂E |
the pair (x̂S, x̂E) is good}.

Claim 1: For any σ ∈ [2ĉBn] and any x̂S, there is at most
one x̂E ∈ Ax̂S

for which f̂B(x̂S, x̂E) = σ.
Claim 2: There exists a σ ∈ [2ĉBn] such that at least a

(1−ε) fraction of source realizations x̂S satisfy f̂B(x̂S, x̂E) =
σ for some x̂E ∈ Ax̂S

.
The proofs of Claims 1 and 2 appear in the full version

of this paper [18]. We now define the encoding and decoding
functions of (F ,G) for the network code instance I. Specifi-
cally, we define the encoding functions {fe} and the decoding
functions {gt} for the edges e in E and terminals t in T
(where, E and T are the edge set and terminal set of the
network coding instance I). We start by formally defining the
functions. We then prove that they yield an (ε,R, n) feasible
network code for I.

Let σ be the value whose existence is proven in Claim 2.
Let Aσ be the set of realizations x̂S for which there exists a
realization x̂E ∈ Ax̂S

with f̂B(x̂S, x̂E) = σ. By Claim 2, the
size of Aσ is at least (1−ε)2n(

∑
s∈S R̂s) = (1−ε)2n(

∑
s∈S Rs).

For e ∈ E let fe :
[
2n

∑
e′∈In(e) ce′

]
→ [2nce ] be the func-

tion that takes as input the random variables (Xe′ : e′ ∈ In(e))
and returns as output Xe = ĝt̂e(σ, (Xe′ : e′ ∈ In(e))). Here,
we consider Xe′ to be a random variable of support [2ce′n].

For terminals ti ∈ T in I let gti :
[
2n

∑
e′∈In(ti)

ce′
]
→[

2n
∑

s∈S:b(s,ti)=1 Rs

]
be the function that takes as input the

random variables (Xe′ : e′ ∈ In(ti)) and returns as output
ĝt̂i(σ, (Xe′ : e′ ∈ In(ti))).

The following argument shows that the network code (F ,G)
defined above decodes correctly with probability 1− ε. Con-
sider any rate-R realization xS = {xs}s∈S of the source
information in I, where R = (R1, . . . , R|S|). Consider the
source information x̂S of Î corresponding to xS, namely let
x̂S = xS. If x̂S ∈ Aσ , then there exists a realization x̂E of
source information {X̂e} in Î for which f̂B(x̂S, x̂E) = σ.
Recall that, by our definitions, all terminals of Î decode
correctly given source realization (x̂S, x̂E). For any s ∈ S,
let x̂S(s) = xs be the entry in x̂S that corresponds to X̂s. For
e ∈ E, let x̂E(e) be the entry in x̂E that corresponds to X̂e.

We show by induction on the topological order of G
that, for source information xS, the evaluation of fe in the
network code above results in the value xe which is equal
to x̂E(e). For the base case, consider any edge e = (u, v)
in which u is a source with no incoming edges. In that
case, by our definitions, the information xe on edge e equals
fe(xs) = ĝt̂e(σ, xs) = ĝt̂e(f̂B(x̂S, x̂E), x̂S(s)) = x̂E(e). The



last equality follows from the fact that the index code (F̂ , Ĝ)
succeeds on source realization (x̂S, x̂E). Thus all terminals
(and, in particular, terminal t̂e) decode correctly.

Next, consider any edge e = (u, v) with incoming edges
e′ ∈ In(e). In that case, by our definitions, the information xe
on edge e equals fe(xe′ : e′ ∈ In(e)). However, by induction,
each xe′ for which e′ ∈ In(e) satisfies xe′ = x̂E(e′). Thus
xe = ĝt̂e(σ, (xe′ : e′ ∈ In(e))) = ĝt̂e(f̂B(x̂S, x̂E), (x̂E(e′) :
e′ ∈ In(e))) = x̂E(e). Again, the last equality follows
because the index code (F̂ , Ĝ) succeeds on (x̂S, x̂E).

Finally, we address the value of the decoding functions gt
for any t ∈ T . By definition, the outcome of gt is exactly
ĝt̂i(σ, (xe′ : e′ ∈ In(ti))) = ĝt̂i(f̂B(x̂S, x̂E), (x̂E(e′) : e′ ∈
In(ti))) = (x̂S(s) : b(s, ti) = 1) = (xs : b(s, ti) = 1).
This suffices to show that the proposed network code (F ,G)
succeeds with probability 1 − ε on a source input with rate
vector R. Namely, we have presented correct decoding for I
when xS = x̂S ∈ Aσ and have shown that |Aσ| ≥ (1 −
ε)2n(

∑
s∈S Rs).

V. CONCLUSIONS

In this work, we address the equivalence between the
network and index coding paradigms. Following the line of
proof presented in [16] for a restricted equivalence in the
case of linear encoding, we present an equivalence for general
(not necessarily linear) encoding and decoding functions. Our
results show that the study and understanding of the index
coding paradigm imply a corresponding understanding of the
network coding paradigm.

Although our connection between network and index coding
is very general it does not directly imply a tool for determining
the network coding capacity region as defined in Section II for
general network coding instances. In the full version of this
work [18], we show that for the case of colocated sources, one
can determine the capacity region of network coding using
that of index coding. However, a naive attempt to reduce the
problem of determining whether a certain rate vector R is in
the capacity region of a general network coding instance I
to the problem of determining whether a corresponding rate
vector R̂ is in the capacity region of an index coding instance
Î (with broadcast rate ĉB), shows that a stronger, more robust
connection between index and network coding is needed.
Specifically, a connection which allows some flexibility in the
value of the broadcast rate ĉB might suffice. Such a connection
is the subject of continuing research.

Recently, it has been shown [19], [20] that certain intriguing
open questions in the context of network coding are well
understood in the context of index coding (or the so-called
“super-source” setting of network coding). These include the
“zero-vs-ε error” question [21], [19], the “edge removal”
question [22], [23], and the “δ-dependent source” question
[20]. At first, it may seem that the equivalence presented in
this work implies a full understanding of the open questions
above in the context of network coding. Although this may be
the case, a naive attempt to use our results with those presented
in [19], [20] again shows the need for a stronger connection
between index and network coding that (as above) allows some
flexibility in the value of ĉB .
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