
Degree Tables for Secure Distributed Matrix
Multiplication

Rafael G.L. D’Oliveira, Salim El Rouayheb, Daniel Heinlein, David Karpuk
ECE, Rutgers University, USA

Department of Communications and Networking, Aalto University, Finland
Departamento de Matemáticas, Universidad de los Andes, Colombia

Emails: {rafael.doliveira, salim.elrouayheb}@rutgers.edu, daniel.heinlein@aalto.fi, da.karpuk@uniandes.edu.co

Abstract—We consider the problem of secure distributed ma-
trix multiplication (SDMM) in which a user wishes to compute
the product of two matrices with the assistance of honest but
curious servers. We construct polynomial codes for SDMM by
studying a recently introduced combinatorial tool called the
degree table. Maximizing the download rate of a polynomial
code for SDMM is equivalent to minimizing N , the number of
distinct elements in the corresponding degree table. We propose
new constructions of degree tables with a low number of distinct
elements. These new constructions lead to a general family of
polynomial codes for SDMM, which we call GASPr (Gap Additive
Secure Polynomial codes) parametrized by an integer r. GASPr

outperforms all previously known polynomial codes for SDMM.
We also present lower bounds on N and show that GASPr

achieves the lower bounds in the case of no server collusion.

Index Terms—Secure distributed matrix multiplication, poly-
nomial codes, degree table, additive combinatorics, sumsets.

I. INTRODUCTION

We consider the problem of secure distributed matrix
multiplication (SDMM): A user has two matrices, A and B,
and wishes to compute their product, AB, with the assistance
of N servers, without leaking any information about either
A or B to any server. We assume that all servers are honest
but curious, i.e., any T of them may collude to try to deduce
information about either A or B.

The primary performance metric used in the literature to
compare different schemes for SDMM is the download rate,
which we denote by R. This rate R is defined as the ratio of the
amount of information about AB (in bits) the user downloads
from the servers to the total number of downloaded bits. The
goal is to construct an SDMM scheme with rate R as large
as possible, given some limit on the number of servers or on
their computational power.

The main technique used for constructing polynomial codes
for SDMM can be summarized as follows. We partition the
matrices A and B:

A =

A1

...
AK

 , B =
[
B1 · · · BL

]
,

so that AB =

A1B1 · · · A1BL
...

. . .
...

AKB1 · · · AKBL

 ,
(1)

making sure that all products AkB` are well-defined and of the
same size. Computing the product AB is equivalent to comput-
ing all subproducts AkB`. One then constructs a polynomial
h(x) = f(x) · g(x) whose coefficients encode the submatrices
AkB`, and utilizes N servers to compute the evaluations
h(a1), . . . , h(aN) for certain a1, . . . , aN . The polynomial h is
constructed so that every T -subset of evaluations reveals no
information about A or B (T -security), but so that the user can
reconstruct all of AB given all N evaluations (decodability).

The partition parameters K and L are inversely proportional
to the amount of computation that each of the servers will
have to perform. Mathematically, it is convenient to think of
the number of servers, N , as a function of K, L, and the
security parameter T . In this way, maximizing the download
rate R, and even the upload rate, is equivalent to minimizing
N as a function of K, L, and T . Consider polynomials of the
following type:

f(x) =
K∑
k=1

Akx
αk +

T∑
t=1

Rtx
αK+t

g(x) =
L∑
`=1

B`x
β` +

T∑
t=1

Stx
βL+t

(2)

The Rt and St are random matrices used to guarantee privacy.
The exponents of the terms in h(x) = f(x) ·g(x) will be given
by the sum of the exponents, denoted by the vectors α and β,
in f(x) and g(x).

The degree table was first introduced in [1]. The degree table
of h(x), depicted in Table I, shows the exponents in h(x) as a
function of α and β. In Theorem 1 of [1], it is shown that if the
degree table satisfies the following conditions: (i) the numbers
in the red block are unique in the table and; and (ii) numbers
in the green/blue block are pairwise distinct, then there exists
evaluation points such that the polynomial code in Equation (2)
is decodable and T -secure. More so, the number of servers,
N , is the number of distinct terms in the table. Thus, the main
question we are interested in is how to choose the degree table,
i.e., α and β, to minimize the number of servers, N .

A. Related Work

One distinguishing factor of the SDMM problem is that both
matrices, A and B, must be kept secure. In the case where

2019 IEEE Information Theory Workshop (ITW)

978-1-5386-6900-6/19/$31.00 ©2019 IEEE

β1 · · · βL βL+1 · · · βL+T

α1 α1+β1 · · · α1+βL α1+βL+1 · · · α1+βL+T

...
...

. . .
...

...
. . .

...
αK αK+β1 · · · αK+βL αK+βL+1 · · · αK+βL+T

αK+1 αK+1+β1 · · · αK+1+βL αK+1+βL+1 · · · αK+1+βL+T

...
...

. . .
...

...
. . .

...
αK+T αK+T +β1 · · · αK+T +βL αK+T +βL+1 · · · αK+T +βL+T

Table I: The Degree Table. The αi’s and βi’s are the exponents
of the polynomials f(x) and g(x) in (2) used to encode A and
B, respectively. The table entries are the monomial degrees
in f(x) · g(x). The problem is to choose the degrees αi’s and
βi’s to minimize the number of distinct entries in the table
subject to: (i) Decodability, the numbers in the red block must
be distinct to all the other ones; (ii) T -security, all numbers in
the green/blue block must be pairwise distinct.

only one of the matrices must be kept secure, one can use
methods like Shamir’s secret sharing [2], Staircase codes [3],
or Lagrange Coded Computing [4].

For distributed computations, polynomial codes were origi-
nally introduced in [5] in a slightly different setting, namely
to mitigate stragglers in distributed matrix multiplication. This
was followed by a series of works, [6]–[9].

In [10], a similar setting is studied with two major differences.
Workers can communicate with each other and an extra security
constraint, where a third party wants the final result of the
computation and should not learn anything about the inputs.

Our setting was first considered in [11] for K = L, in which
a polynomial scheme with N = (K + T)2 was presented.
In [12], this was improved to N = (K + T)(L+ 1)− 1. The
same N was obtained in [13] for T = 1.

The degree table was introduced in [1] together with two
schemes, GASPbig and GASPsmall. We omit restating the
formulas for N given in [1], since GASPbig is GASPr with
r = min{K,T} and GASPsmall is GASPr with r = 1 using
the newly introduced common generalization called GASPr in
Definition 1 and we give a new formula to compute the N
value of GASPr in Theorem 1.

The study of the degree table is related to the topic of
sumsets in additive combinatorics [14], [15]. In that context, a
problem, usually referred to as the inverse problem is to obtain
structural information on two finite sets, A and B, given that
the cardinality of A+B = {a+ b : a ∈ A, b ∈ B} is small.

In our case, the decodability condition implies that at least
KL integers appear only with multiplicity one in the sumset
and therefore classical theorems about sumsets yield only
meaningful results if KL is small.

B. Summary of the paper

The rest of the paper is organized as follows.

• In Section II, we summarize the highlights of this paper:
– We present a family of SDMM schemes, called

GASPr, which generalizes the best schemes pre-

viously known and outperforms them for many
parameters.

– We give a formula for the number of servers, N , in
GASPr.

– We give lower bounds on N in general and show
that GASPr is asymptotically optimal for certain
parameters, namely when K = L = T = n2 ≥ 4.

• In Section III, we demonstrate our polynomial code
GASPr via an explicit example, in order to show the
subtleties of the construction.

• In Section IV, we show the idea of the proof ultimately
leading to a formula of the N parameter of GASPr and
for certain parameters, we prove the optimal choice of r.

• In Section V, we give lower bounds on the constructions
using the degree table and show the optimality of GASPr
for certain parameters.

II. MAIN RESULTS

We start by introducing our main contribution, GASPr codes.

Definition 1. Given the partitioning parameters, K and L, the
security parameter T , and 1 ≤ r ≤ min{K,T}, we define
the polynomial code GASPr as the polynomials in Equation 2
with exponents α and β given as
• α = (0, 1, . . . ,K−1,KL,KL+1, . . . ,KL+r−1,KL+
K,KL+K + 1, . . . ,KL+ r − 1, . . .) of length K + T ,

• β = (0,K, . . . ,K(L−1),KL,KL+1, . . . ,KL+T−1),
if L ≤ K. If K < L we just interchange the roles of K and
L in the definition.

We call the parameter r the chain length.

In the remainder of this work, we assume, without loss of
generality, that L ≤ K. In the case where K < L one needs
only to interchange the roles of K and L in all the expressions.

The following example will make Definition 1 clearer.

Example 1. For K = L = T = 4 we have four GASPr codes,
all of which have the same β = (0, 4, 8, 12, 16, 17, 18, 19).
• For r = 1: α = (0, 1, 2, 3, 16, 20, 24, 28).
• For r = 2: α = (0, 1, 2, 3, 16, 17, 20, 21).
• For r = 3: α = (0, 1, 2, 3, 16, 17, 18, 20).
• For r = 4: α = (0, 1, 2, 3, 16, 17, 18, 19).

This family of codes are a generalization of the codes
GASPsmall = GASP1 and GASPbig = GASPmin{K,T} pre-
sented in [1].

We are interested in finding the best chain length r, i.e., the
one which minimizes the number of servers needed, for any
given parameters.

Definition 2. Let K and L be the partitioning parameters, T
be the security parameter, and N(r), the number of distinct
terms in the degree table constructed by GASPr. The optimal
chain length is defined as

r∗ = arg min
r∈{1,2,...,min{K,T}}

N(r).

In Theorem 1 we show how to calculate the number of
distinct terms in the degree table, i.e., the number of servers

2019 IEEE Information Theory Workshop (ITW)

needed for the scheme, for GASPr. Due to space constraints,
we relegate the proof of this theorem to [16].

Theorem 1. Let K and L be the partitioning parameters, T
be the security parameter, and r be the chain length. Then, the
degree table constructed by GASPr has the number of terms
given by N = KL+K + T − 1 + T (L+ T)− S, where

S = max{0,min{r, ϕ}}L+ 2 max{0, r − z + 1}+ γ

+ (T − r)L+ max{0,K + T −KL− 1}
+ ηmax{0, T −K + r − 1}+ (T − 1− η)(T − 1),

(3)

ϕ = T − 1−KL+ 2K, η =

⌊
T − 1

r

⌋
, z = max{1, ϕ+ 1},

γ =

{
0 if r < z

K(x− a)(x+ a− 1)/2− ab+ xy + x else

with a, b, x, y defined by

T − 1− r = aK + b and 0 ≤ b ≤ K − 1,

T − 1− z = xK + y and 0 ≤ y ≤ K − 1.

The key to proving Theorem 1 is to determine the parameter
S, called the score of the chain. In Section III, we give insights,
using an example, on what S represents in the degree table,
and in Section IV, we show how to compute it.

Theorem 1 allows us to infer the optimal chain length, r∗,
by calculating S for every 1 ≤ r ≤ min{K,T}.

Under some conditions we are able to give a simple
expression for the optimal chain length. A particularly revealing
special case of this is presented in Corollary 1.

Corollary 1. In the setting of Theorem 1, if K = L = T = n2

for 1 ≤ n, then r∗ = n. Hence, for n = 1, N = 3 and for
n ≥ 2, we have N = n4 + 2n3 + 2n2 − n− 2.

In Theorem 2 we give three lower bounds for the number
of distinct terms, N , of any degree table.

Theorem 2. Let K and L be the partitioning parameters, T
be the security parameter, α and β be vectors such that the
degree table in Table I is decodable and T -secure, and N be
the number of distinct terms in this degree table. Then the
following three inequalities hold.

1) KL+ max{K,L}+ 2T − 1 ≤ N .
2) If 3 max{K,L} + 3T − 2 < KL or 2 ≤ K = L, then

KL+ max{K,L}+ 2T ≤ N .
3) KL+K + L+ 2T − 1− T min{K,L, T} ≤ N .

We note that Inequality 3 in Theorem 2 is stronger than
Inequality 1 if and only if T 2 < min{K,L}. Inequality 2 is
always stronger than Inequality 1 by one if its condition is
met and hence Inequality 3 is stronger than Inequality 2 if its
condition is met if and only if T 2 + 1 < min{K,L}.

By comparing the bounds in Theorem 2 to the number of
distinct terms in GASPr, counted via Theorem 1, we show in

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30

N
/L

B

n

GASPsmall/LB
GASPr∗/LB
GASPbig/LB

trivial lower bound
1 + 2n−1 + 2n−2

Figure 1: Comparison of GASPsmall = GASP1, GASPr∗ with
r∗ = n due to Corollary 1, and GASPbig = GASPmin{K,T} in
the setting of K = L = T = n2. The term “LB” refers to the
left hand side of Inequality 2 in Theorem 2.

Corollaries 4 and 5 that GASPr∗ is optimal whenever one of
the three parameters is one, K = 1, L = 1 or T = 1.

In the setting of Corollary 1, we can show that GASPr∗ is
asymptotically optimal.

Corollary 2. In the setting of Corollary 1, if K = L = T =
n2 ≥ 4, then the following lower bound on N holds

N ≥ n4 + 3n2. (4)

Moreover, GASPn is asymptotically optimal and within 38%
of the lower bound.

Proof. Inequality (2) in Theorem 2 is KL + max{K,L} +
2T = n4 + 3n2 and the fraction of the size of the degree
table constructed by GASPn divided by the left hand side of
Inequality (2) in Theorem 2 is

n4 + 2n3 + 2n2 − n− 2

n4 + 3n2
≤ n4 + 2n3 + 2n2

n4

= 1 + 2n−1 + 2n−2 ∈ 1 + Θ(n−1),

(5)

i.e., the left hand side is asymptotically optimal and its
maximum is < 1.38 by n ≈ 3.

In Figure 1, we draw GASPsmall, GASPmedium, and GASPbig.
The graphs are normalized to the left hand side of Inequality (2)
in Theorem 2 and we draw the right hand side of Inequality 5.

Remark 1. The lower bounds presented here are with respect to
the degree table construction. Thus, when we say a construction
is optimal, we mean with respect to the degree table.

III. A MOTIVATING EXAMPLE: K = L = T = 4

In this example we consider the multiplication of two
matrices A and B over a finite field Fq , partitioned as:

A =


A1

A2

A3

A4

 , B =
[
B1 B2 B3 B4

]

2019 IEEE Information Theory Workshop (ITW)

0 4 8 12 16 17 18 19

0 0 4 8 12 16 17 18 19
1 1 5 9 13 17 18 19 20
2 2 6 10 14 18 19 20 21
3 3 7 11 15 19 20 21 22

16 16 20 24 28 32 33 34 35
20 20 24 28 32 36 37 38 39
24 24 28 32 36 40 41 42 43
28 28 32 36 40 44 45 46 47

(a) r=1, S=14, N=41

0 4 8 12 16 17 18 19

0 0 4 8 12 16 17 18 19
1 1 5 9 13 17 18 19 20
2 2 6 10 14 18 19 20 21
3 3 7 11 15 19 20 21 22

16 16 20 24 28 32 33 34 35
17 17 21 25 29 33 34 35 36
20 20 24 28 32 36 37 38 39
21 21 25 29 33 37 38 39 40

(b) r=2, S=19, N=36

0 4 8 12 16 17 18 19

0 0 4 8 12 16 17 18 19
1 1 5 9 13 17 18 19 20
2 2 6 10 14 18 19 20 21
3 3 7 11 15 19 20 21 22

16 16 20 24 28 32 33 34 35
17 17 21 25 29 33 34 35 36
18 18 22 26 30 34 35 36 37
20 20 24 28 32 36 37 38 39

(c) r=3, S=18, N=37

0 4 8 12 16 17 18 19

0 0 4 8 12 16 17 18 19
1 1 5 9 13 17 18 19 20
2 2 6 10 14 18 19 20 21
3 3 7 11 15 19 20 21 22

16 16 20 24 28 32 33 34 35
17 17 21 25 29 33 34 35 36
18 18 22 26 30 34 35 36 37
19 19 23 27 31 35 36 37 38

(d) r=4, S=16, N=39

Table II: The degree tables for GASPr, for all r, in the setting where K = L = T = 22. As per Corollary 1, r∗ = 2 achieves
N = 36. The lower bound for these tables, given in (4), is N ≥ 28. The gray region in the lower half of the degree table
consists of the terms which have already appeared before. Their quantity is precisely the score, S, appearing in Theorem 1.

so that all the products AkB` are of the same size. The product
AB is given by

AB =


A1B1 A1B2 A1B3 A1B4

A2B1 A2B2 A2B3 A2B4

A3B1 A3B2 A3B3 A3B4

A4B1 A4B2 A4B3 A4B4


We construct a scheme which computes each term AkB`,

and therefore all of AB via polynomial interpolation. The
scheme must be private for any T = 4 servers colluding to
infer any information about the A or B.

Let R1, . . . , R4 and S1, . . . , S4 be matrices picked indepen-
dently and uniformly at random with entries in Fq, of sizes
equal to the Ak and B`, respectively. Define the polynomials

f(x) = A1x
α1 +A2x

α2 +A3x
α3 +A3x

α4

+R1x
α5 +R2x

α6 +R3x
α7 +R4x

α8

g(x) = B1x
β1 +B2x

β2 +B3x
β3 +B4x

β4

+ S1x
β5 + S2x

β6 + S3x
β7 + S4x

β8

We recover the products AkB` by interpolating the product
h(x) = f(x)g(x). Specifically, for some evaluation points an ∈
Fq, we send f(an) and g(an) to server n = 1, . . . , N , who
then responds with h(an) = f(an)g(an). These evaluations
suffice to interpolate all of h(x). In particular, we are able to
retrieve the coefficients of h(x), which in turn will allow us
to decode all the AkB`.

In [1], it was shown that if the degree table of α and β
satisfy the conditions in Table I, then the number of evaluation
points needed, N , is equal to the number of distinct terms in
the degree table.

In Table II, we show the degree tables of GASPr for all r.
The upper half of the degree table coincides for every r, and
consists of the numbers from 0 to KL+K + T − 2 = 22.

The gray region in the lower half of the degree table consists
of the terms which have already appeared before, by ordering
them up to down. The number of terms in the gray region is
precisely the score, S, appearing in Theorem 1.

We calculate the number of distinct terms in the degree table
as follows. As seen previously, the upper half of the degree
table has KL + K + T − 1 = 23 distinct terms. The lower

half has a total of T (L+ T) = 32 terms, S of which appear
elsewhere. Thus N = KL+K+T−1+T (L+T)−S = 55−S.

In Theorem 1 we show how to compute the score, S, for
any r. In general, we can determine the best chain length,
r∗, by computing all min{K,T} = 4 possibilities for r and
choosing the one which maximizes the score, S. In this case
r∗ = 2 which could have also been obtained directly through
Corollary 1. Thus, for this case, GASP2 is the best known
scheme requiring N = 36 servers.

Using the best lower bound for this case in Theorem 2, we
obtain N ≥ KL+ max{K,L}+ 2T = 28.

IV. GASPr

A. The Number of Distinct Terms in GASPr

In this section we will show the key ingredient for proving
Theorem 1, the computation of the score of, S, of the chain.

Definition 3. Let K and L be the partitioning parameters, T
be the security parameter, and r be the chain length of the
code GASPr.

For 1 ≤ i ≤ T we define Li (and Ri) to be the set of
integers that are in the first L (last T) entries of row K + i
such that these integers appear in the first K + i− 1 rows of
the degree table constructed by GASPr.

We call the cardinalities, |Li| and |Ri|, the left and,
respectively, right score of the row K + i.

In Table II, the left scores are represented by the gray regions
in the lower left side of the degree table, and the right scores
by the gray regions in the lower right side.

Definition 4. In the setting of Definition 3, we define the score
of row i as Si = |Li|+ |Ri| and the score of the chain r as
S = S1 + . . .+ ST .

By the arguments in Section III, we showed that N =
KL+K + T − 1 + T (L+ T)− S. Thus, determining N is a
matter of determining S which is a function of left and right
scores. In Lemma 1 we show how to find these scores.

Lemma 1. In the setting of Definition 3, it follows that

|Li| =

{
min{L, 2 + b(T − 1− i)/Kc} if 1 ≤ i ≤ r
L if r + 1 ≤ i ≤ T

2019 IEEE Information Theory Workshop (ITW)

and

|Ri| =


max{0,K + T −KL− 1} if i = 1

max{0, T −K + r − 1} if 2 ≤ i
and i ≡ 1 (mod r)

T − 1 if i 6≡ 1 (mod r)

.

The proof is rather technical and can be found in [16].
This allows us to compute the score of GASPr in a straight-

forward but technical way ultimately leading to Theorem 1.

B. Determining the Optimal Chain Length, r∗

As stated previously, the optimal chain length, r∗, can be
found by calculating S, using Theorem 1, for every 1 ≤ r ≤
min{K,T}.

In Corollary 1 we showed that for K = L = T = n2,
r∗ = n. The proof of this follows from Theorem 1.

Proof of Corollary 1. Plugging K = L = T = n2 in the
terms of Theorem 1 yields γ = −1 if r = n2 and γ = 0 if
r ≤ n2 − 1. Then,

arg max
r
{S} = arg min

r
{r(n2 − 2) + η(n2 − r)− γ︸ ︷︷ ︸

=g(r)

},

so that a comparison of g(n) to g(n2) (to eliminate γ), the
application of x− 1 < bxc in η, and a comparison of g(n) to
g(r) in general complete the proof.

The following corollary also follows from Theorem 1.

Corollary 3. In the setting of Theorem 1, if r < z, then r∗ =
min{K,T, ϕ}. In particular, if max{K, 1 +K(L− 1)} ≤ T ,
then r∗ = K. If T ≤ K and L = 1, then r∗ = T .

V. LOWER BOUNDS FOR THE DEGREE TABLE

In this section we will prove Inequality 1 in Theorem 2. The
proof for Inequalities 2 and 3 in Theorem 2 and Corollary 2, 4,
and 5 can be found in [16].

We will need the following lemma from the theory of sumsets
(see [15, Lemma 5.3, Proposition 5.8]).

Lemma 2 ([15]). Let A and B be sets of integers. Then
|A| + |B| − 1 ≤ |A + B| and if 2 ≤ |A|, |B|, then equality
holds iff A and B are arithmetic progressions with the same
common difference.

Using this lemma, we can prove Inequality 1 in Theorem 2.

Proof of Inequality 1 in Theorem 2. Without loss of general-
ity, let L ≤ K. Due to the decodability property, all integers
in the first K rows and first L columns are distinct among
themselves and among all other entries in the table, so that
we count KL for the bound and omit these integers. Next,
we omit all integers in the last T rows and first L columns.
The remaining entries correspond to a sumset formed by all
entries of α and the last T entries of β. The minimum size of
this sumset is bounded by Lemma 2 as greater or equal than
(K + T) + (T)− 1.

Inequality 1 in Theorem 2 shows that GASPr∗ is optimal
for K = 1 or L = 1.

Corollary 4. If K = 1 or L = 1, then the GASP1 = GASPbig
is optimal.

Inequality 3 in Theorem 2 shows that GASPr∗ is optimal
for T = 1.

Corollary 5. If T = 1, then GASPsmall = GASP1 = GASPbig
is optimal.

ACKNOWLEDGMENT

The first two authors were partially supported by the NSF under
Grant CNS-1801630. The third author was supported by the Academy
of Finland under Grant #289002. The development of parts of the
results presented here started when the second and third authors
attended the Dagstuhl Seminar 18511 – “Algebraic Coding Theory
for Networks, Storage, and Security”. The authors are grateful to the
organizers of the seminar and to Schloss Dagstuhl for this opportunity
and to Alessandro Neri for insightful discussions.

REFERENCES

[1] R.G.L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “GASP Codes for
Secure Distributed Matrix Multiplication,” arXiv:1812.09962, 2018.

[2] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22,
no. 11, pp. 612-613, 1979.

[3] R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in International Symposium on Information
Theory, pp. 2900-2904, June 2017.

[4] Q. Yu, S. Li, N. Raviv, S.M.M. Kalan, M. Soltanolkotabi, A.S. Avestimehr,
“Lagrange Coded Computing: Optimal Design for Resiliency, Security
and Privacy,” arXiv:1806.00939, 2018.

[5] Q. Yu, M.A. Maddah-Ali, A.S. Avestimehr, “ Polynomial Codes: an
Optimal Design for High-Dimensional Coded Matrix Multiplication,”
arXiv:1705.10464, 2017.

[6] Q. Yu, M.A. Maddah-Ali, A.S. Avestimehr, “Straggler Mitigation in
Distributed Matrix Multiplication: Fundamental Limits and Optimal
Coding,” arXiv:1801.07487, 2018.

[7] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, P. Grover,
“On the Optimal Recovery Threshold of Coded Matrix Multiplication,”
arXiv:1801.10292, 2018.

[8] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen, T.
Roos, P. Grover, “An Application of Storage-Optimal MatDot Codes
for Coded Matrix Multiplication: Fast k-Nearest Neighbors Estimation,”
arXiv:1811.11811, 2018.

[9] S. Li, M.A. Maddah-Ali, Q. Yu and A.S. Avestimehr, “A Fundamental
Tradeoff Between Computation and Communication in Distributed
Computing,” in IEEE Transactions on Information Theory, vol. 64, no. 1,
pp. 109-128, Jan. 2018.

[10] H.A. Nodehi and M.A. Maddah-Ali, “Limited-Sharing Multi-Party
Computation for Massive Matrix Operations,” in IEEE Transactions
on Information Theory, pp. 1231-1235, 2018.

[11] W.-T. Chang, R. Tandon, “ On the Capacity of Secure Distributed Matrix
Multiplication,” arXiv:1806.00469, 2018.

[12] J. Kakar, S. Ebadifar, and A. Sezgin, “ Rate-Efficiency and Straggler-
Robustness through Partition in Distributed Two-Sided Secure Matrix
Computation,” arXiv:1810.13006, 2018.

[13] H. Yang and J. Lee, “Secure Distributed Computing With Straggling
Servers Using Polynomial Codes,” in IEEE Transactions on Information
Forensics and Security, vol. 14, no. 1, pp. 141-150, Jan. 2019.

[14] A. Geroldinger, and I.Z. Ruzsa, “Combinatorial number theory and
additive group theory,” in Advanced Courses in Mathematics. CRM
Barcelona, 2009.

[15] T. Tao, and V. Vu, “Additive combinatorics,” in Cambridge Studies in
Advanced Mathematics, vol. 105, 2006.

[16] R.G.L. D’Oliveira, S. El Rouayheb, D. Heinlein, and D. Karpuk,
“Degree Tables for Secure Distributed Matrix Multiplication,”
http://eceweb1.rutgers.edu/∼csi/dtsdmm.pdf, 2019.

2019 IEEE Information Theory Workshop (ITW)

