
DRESS Codes for the Storage Cloud: Simple
Randomized Constructions

Sameer Pawar, Nima Noorshams, Salim El Rouayheb, Kannan Ramchandran
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley
{spawar, nshams, salim, kannanr}@eecs.berkeley.edu

Abstract—We introduce an efficient family of exact regener-
ating codes for data storage in large-scale distributed systems.
We refer to these new codes as Distributed Replication-based
Exact Simple Storage (DRESS) codes. A key property of DRESS
codes is their very efficient distributed and uncoded repair and
growth processes that have minimum bandwidth, reads and
computational overheads. This property is essential for large-
scale systems with high reliability and availability requirements.

DRESS codes will first encode the file using a Maximum
Distance Separable (MDS) code, then place multiple replicas of
the coded packets on different nodes in the system. We propose
a simple and flexible randomized scheme for placing those
replicas based on the balls-and-bins model. Our construction
showcases the power of the probabilistic approach in constructing
regenerating codes that can be efficiently repaired and grown.

I. INTRODUCTION

Cloud storage is a growing paradigm for providing online
storage of data and, thereby, making it accessible anywhere
and anytime. Such services are now being offered by data
centers, such as the ones run by Google [1] and Amazon
[2], or peer-to-peer (p2p) systems such as Wuala [3]. These
distributed storage systems (DSS) rely on large distributed
networks of inexpensive and individually unreliable storage
nodes to reliably store the data by leveraging the power of
redundancy. New nodes are frequently added to the system
to repair it from failures and maintain its reliability. This
is accomplished by replacing the nodes that were lost, due
for example to hardware failure or peer churning, by new
nodes. Moreover, new nodes are added to grow the system and
increase the availability of popular data. This is needed to be
able to serve the data to a larger number of users, or to reduce
delays by storing the data on nodes that are geographically
closer to new or mobile users. In either case, it is important
to make this process fast and efficient in order to lower the
cost on the system and reduce its downtime.

Most practical DSS nowadays use “off-the-shelf” erasure
codes, such as replication [1] or Reed-Solomon (RS) codes
[3], to achieve the reliability and availability requirements.
These codes offer different system tradeoffs. While RS codes
are more efficient than replication in terms of storage space,
they incur a higher bandwidth cost since regenerating lost
coded data requires downloading and decoding the whole
file. As distributed storage systems keep scaling and become
more and more distributed, many of the system resources,

This research was funded by an NSF grant (CCF-0964018), a DTRA grant
(HDTRA1-09-1-0032), and in part by an AFOSR grant (FA9550-09-1-0120).

X1 X2 X3

X3 X4 X5

X1 X5 X6

X1 X4 X7

v1

v2

v4

v3

X1 X2 X3

X1
X2

X3

MDS
X1,...,X6 X1,...,X7

X7=X1+...+X6

new node

X2 X5 X7

X3 X6 X7

X2 X4 X6

v5

v7

v6

failure

FR Code

User

File

(a)

(b)

1

54

2 6

3

7

Fig. 1. (a) An example of the minimum-bandwidth regenerating codes
proposed in [4] having exact and uncoded repair. These codes form the
motivation for the DRESS code construction proposed in this paper. The DSS
here has parameters (n, k, d) = (7, 3, 3), where n is the total number of
nodes, k is the number of nodes contacted by the user, and d is the number
of packets per node. A file of size 6 packets (see Eq. (1)) is first encoded using
an MDS code that appends to it a parity check packet. Then, an inner code,
referred to as Fractional Repetition (FR) code, places 3 replicas of each coded
packet in the system. Any user contacting 3 nodes will observe 6 distinct
packets and can recover any missing file packet by a simple xor operation.
Notice also the uncoded repair process illustrated when node v1 fails and
is replaced by a new node that downloads its data from the helper nodes
v4, v5 and v6. The system is then repaired with minimum reads, minimum
download bandwidth and no computations. (b) The Projective plane of order
2, also known as the Fano plane. The pattern of the FR code is derived by
associating points in the Fano plane to coded packets and lines (including the
circle) to storage nodes (see [4] for more details).

such as storage capacity, bandwidth, disk I/O and energy, are
becoming a bottleneck. Therefore, it is important to understand
the theoretical trade-offs that exist among these different
resources and construct codes that can achieve these tradeoffs,
thus offering practitioners more choices depending on the
application.

Recently, Dimakis et al. demonstrated in [5] a fundamental
tradeoff between storage capacity and bandwidth in DSS. They
also introduced a new class of codes, called regenerating
codes, that achieve any point in this tradeoff. While regen-
erating codes studied in the literature minimize the bandwidth
needed for repair, they generally incur high disk I/O (for reads)
and computational overheads. They require a helper node to
read all its stored data in order to form linear combinations
of it and send it to the new node joining the system. As the
storage per node keeps increasing, this means that each helper
node has to read and process data in the order of terabytes
while the read bandwidth of disks is still in the order of
100 MB/s [6]. This can result in high computational cost

and excessive delays that cannot be tolerated in systems with
stringent reliability and availability requirements.

In this paper, we are interested in constructing regenerating
codes with efficient and low-complexity distributed repair and
growth processes that require minimum bandwidth, minimum
disk reads and no computations. This is achieved by imposing
what we refer to as the uncoded repair and growth property
on the code. Moreover, we want the repair process to be exact,
i.e., we want to always reproduce an exact copy of the lost
data on a new node replacing a failed one1.

Codes that minimize reads when repairing systematic nodes
were studied in [8] for RAID-like systems (few parity nodes)
where storage is minimized instead of bandwidth. In contrast,
we are interested in large-scale distributed systems with low-
rate codes (large number of parity nodes). Such systems are
intended to provide ubiquitous and pervasive presence of the
data for applications that demand high availability and serving
mobile users. In these systems, the failure of parity nodes is
a frequent event that should be handled efficiently along with
growth. Deterministic constructions of codes for such systems
that have exact and uncoded repair were proposed in [4] by
a subset of the authors. These codes are formed by the con-
catenation of an outer Maximum Distance Separable (MDS)
code with an inner code dubbed Fractional Repetition (FR)
code that replicates the coded packets across the system (see
Fig. 1 for a detailed example). The existence of these codes
was shown to depend on the existence of some combinatorial
objects such as projective spaces and Steiner systems.

The codes in [4] were constructed to maximize the perfor-
mance of the system for the worst-case user. In this paper, we
advocate a probabilistic approach that permits more flexibility
in terms of possible system parameters and produces codes
with the desired repair and growth properties. Our proposed
codes are based on the same concatenated design of Fig. 1.
However, the inner FR code here randomly places the coded
packet replicas on the nodes based on a bins-and-balls model.
We call these codes Distributed Replication-based Exact Sim-
ple Storage (DRESS) codes. The benefits of the probabilistic
construction comes at the expense of sacrificing the “perfect”
MDS property of the code and allowing a small overhead in
the number of nodes contacted by a user, much like the case
of Fountain codes. Moreover, our codes require a repair table
that indicates to a new node joining the system which specific
nodes it can contact to download its data.

The rest of the paper is organized as follows: In Section II
we describe our model for distributed storage systems. In
Section III, we describe our DRESS code construction and
motivate it using simulation results. Section IV provides
summary of our main results followed by a discussion in
Section V. Section VI contains the theoretical analysis of our
constructed codes. We conclude the paper in Section VII and
discuss some related open problems.

1Exact repair is a desired property for system reasons such as preserving
the systematic form of the data and keeping the code alphabet size small, and
also for security purposes [7]. Moreover, exactness guarantees that the repair
process does not compromise desired properties in the initial code (before any
repairs). For instance, starting with a Fountain code, the decoding at the user
side will always have a complexity that is linear in the size of the file at any
point in the lifetime of the system.

II. BACKGROUND AND MODEL

A distributed storage system is defined by the triplet
(n, k, d), where n is the total number of storage nodes,
v1, . . . , vn, in the system, k < n is the number of nodes
contacted by the user to retrieve the stored file, and d is the
number of helper nodes contacted by a new node when added
to the system .

We consider DSS operating in the minimum-bandwidth
regime (MBR) on the storage vs. bandwidth tradeoff curve
described in [9]. Our focus on this regime is motivated by the
asymmetrical cost of resources in typical applications where
bandwidth is more expensive than storage. In this case, the
bandwidth needed for repair or growth, i.e., the total amount
of data downloaded by a new node from the helper nodes,
is minimized and is equal to the amount of data lost. For
load-balancing requirements, we assume that the new node
downloads and stores an equal amount of data, referred to
as a packet, from each of the d contacted nodes. Therefore, d
also represents the node storage capacity expressed in packets.
Under this model, the storage capacity CMBR of the DSS
in packets, representing the information-theoretic limit on the
maximum file size that can be delivered to any user contacting
k out of the n nodes, was shown in [9] to be

CMBR(n, k, d) = kd−
(
k

2

)
. (1)

This expression is based on a functional repair model where
any d nodes can help in repair and where the only constraint
on the data stored on a new node is to maintain the MDS
property of the entire code. Thus, the regenerated data can be
different from the lost data, but it should be “functionally”
equivalent. In this paper, we require a stricter form of repair
where an exact copy of the lost data should be reproduced
on a replacement node. Recently, Rashmi et al. showed in
[10] that, in the minimum bandwidth regime, there is no loss
in the DSS capacity incurred by requiring exact repair and
constructed codes that achieve the capacity CMBR of (1). We
are interested here in constructing codes with exact but also
uncoded repair that minimizes the disk reads and does not
involve data processing when repairing or growing the system.

The literature on regenerating codes implicitly imposes a
stringent requirement on the repair process which is required to
efficiently recover from up to n−d failures (any d nodes should
be able to help in repair). However, this may be unnecessary
in large-scale systems where n >> d. Typically, DSS are
repaired at periodic intervals. Therefore, we assume here that,
with high probability, the repair process should be able to
tolerate efficiently ρ′ < n− k failures, where ρ′ is determined
based on the disk failure statistics and on the inter-repair time.
In the unlikely event of more than ρ′, but less then n − k,
failures the system can implement a costly repair where each
new node downloads and decodes the whole file.

Consider a file F of size R packets. A regenerating code
with exact and uncoded repair can be constructed in the
following way. First, F is encoded using an outer (θ,R)
MDS code, where θ = nd

ρ , and ρ a code parameter called
replication factor. The coded packets are then replicated on ρ

distinct nodes following a certain pattern dictated by an inner
Fractional Repetition code. By choosing ρ = ρ′+1, there will
always be, with high probability, a surviving copy of any lost
packet which can be efficiently replicated on new nodes when
repairing the system2. A good design rule for the FR code, that
guarantees that all users observe at least CMBR packets, is to
make sure that nodes have at most one packet in common.
Combinatorial constructions based on this rule were studied
in [4]. We are interested here in code construction that allow
more flexibility in terms of admissible system parameters
and that can be easily grown when appending more nodes
to the system. Next, we will describe a simple randomized
construction that achieves these desired properties.

III. CONSTRUCTION AND SIMULATION

A DRESS code for a DSS with parameters (n, k, d) having a
replication factor ρ is constructed in the following way. First,
a file of size R is encoded using a (θ,R) MDS code with
θ = nd

ρ . We think of the n storage nodes as n bins and the
θ MDS coded packets as θ balls having distinct colors. The
code is then obtained by throwing successively in each bin a
set of d distinct balls picked uniformly at random from the
possible

(
θ
d

)
subsets of balls. The sets of balls corresponding

to the different bins are assumed to be picked independently
and with replacement.

In this setting, a user contacts k bins and counts the number
of distinct colors it can observe. This corresponds to the
number of distinct coded packets that it can download. By
the MDS property of the outer code, the user can always
decode the stored file whenever the number of observed colors
is larger or equal to the file size R. The number of observed
colors will be relatively small when the contacted bins have a
large number of colors in common. We will show that, for the
system parameters of interest, this is a rare event and that the
number of colors observed by a user is highly concentrated
around its mean.

Simulations: To motivate our proposed construction, we
provide simulation results for the performance of DRESS
codes for an example of a DSS with (n, k, d) = (400, 10, 15)
and a replication factor ρ = 20. The obtained histogram
depicted in Fig. 2 shows a concentration of the number of
colors observed by a user around its mean which is roughly
118 colors. Moreover, a user can decode a file of size
R = CMBR = 105 packets with more than 99% probability.

The simulations results indicate the benefits of abandoning
a worst-case design of the system in favor of a probabilistic
one that allows a small percentage of users that cannot decode
the file. This way we can easily construct codes for distributed
storage that have efficient repair and growth capabilities.

IV. THEORETICAL RESULTS

To simplify the theoretical analysis, we relax the condition
that the d balls thrown in each bin are of distinct colors and
analyze a slightly different construction where these d balls
that go in each bin are picked independently and uniformly

2We assume that there is a repair table in the system that stores information
on which packets are stored on each node. This repair table can be contacted
by the new nodes added to the system.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of distinct colors

F
re

q
u
e
n
cy

Fig. 2. Performance of DRESS codes based on the balls-and-bins randomized
construction for a distributed storage system with parameters (n, k, d) =
(400, 10, 15) and ρ = 20. The graph shows the histogram of the number of
distinct colors (coded packets) observed by a single user contacting, without
loss of generality, the first k nodes. The numbers are based on randomly
generating 107 code instances.

at random (with replacement) from the set of θ balls. It is
clear that the DRESS code construction of Section III always
performs better than this construction. Moreover, when the
number of colors θ is large (large n and small ρ and d),
which is the typical range of system parameters, this relaxation
will give a good approximation of the performance of DRESS
codes. The analysis in the remainder of the paper will focus
only on this relaxed construction.

Let I, I ⊂ {1, . . . , n}, be a set of size k containing
the indices of the k different storage nodes contacted by a
user. Denote by FI the random variable representing the total
number of distinct colors (coded packets) stored on the nodes
indexed by I. Recall also that, by the MDS property of the
outer code, the user will be able to recover the stored file
whenever FI is larger or equal then the size of the stored file,
i.e., R ≥ FI . It can be shown that the probability distribution
of FI has the following expression [11], [12] ,

P (FI = f) =
(
θ

f

) f∑
i=0

(−1)i
(
f

i

)(
f − i
θ

)kd
, (2)

for f = 1, . . . ,min{θ, kd}. In addition to the above classical
result, we provide here a new upper bound on the probability
distribution of FI that is more amenable to engineering inter-
pretation and that highlights the interplay among the different
system parameters. This bound is given in the following
theorem which says that for DRESS codes FI is concentrated
around its mean Fave. Therefore, any user will observe roughly
Fave colors with a high probability.

Theorem 1: Consider a DRESS code of replication factor
ρ obtained from the randomized construction described in
Sec. III and used for an (n, k, d) DSS. Then we have:

a) The average distinct colors observed by a user is

Fave := E[FI] = θ

(
1− (1− 1

θ
)kd
)
. (3)

b) Furthermore, FI is concentrated around its mean. More
precisely, for any fixed B > 0, we have

P (|FI − Fave| ≥ B) ≤ 2 exp
(
− B

2

2σ2

)
, (4)

where σ2 := θ2(1−(1− 1
θ)2kd)

2θ−1 .
c) We also have

P (|FI − Fave| ≥ B) ≤ 2 exp
(
− B

2

2kd

)
. (5)

The bound in (4) is stronger, but equation (5) gives better
intuition on the system performance.

Corollary 2: For any given 0 < δ < 1, a user will be able
to decode a file of size Fave = θ(1 − (1 − 1/θ)kd) with a
success probability equal to 1 − δ as long as he contacts at
least k′ = k(1 + ε) nodes, where

ε ≥
log
(

1−
√

2σ2 log(1/δ)

θ(1−1/θ)kd

)
kd log(1− 1/θ)

. (6)

V. DISCUSSION

Before providing the proof to Th. 1, we discuss the effect
of the probabilistic construction on the system parameters.

A. File Size

Since the number of colors observed by a user is concen-
trated around its mean Fave, the size of the stored file can
be chosen to be R = Fave(k). If a user contacting k nodes
happens to observe less than Fave, we allow him to contact a
few extra nodes so that with high probability it will be able
to recover the file. The idea is similar to the Fountain codes
setting, where a small overhead for k is allowed. Using the
one-sided version of the bound in (4), one can compute the
probability of not being able to decode the file when the user
contacts k′ ≥ k nodes as,

P (FI(k′) < R) ≤ exp
(
− (Fave(k′)−R)2

2σ2

)
. (7)

Cor. 2 follows immediately from (7) by taking R = Fave(k).
Consider our example with (n, k, d) = (400, 10, 15) and
ρ = 20, Cor. 2 suggests contacting up to k′ = 13 nodes to
guarantee that a user can recover the file of size R = Fave =
118 with a 96.5% success probability. Indeed, numerical
simulations show that for k′ = 10, 11, 12 the probability of
recovering the file is 47%, 97.5% and 99.99%, respectively.

Alternatively, if the number of nodes a user contacts cannot
exceeds k, one can back off from Fave and choose R = Fave−
B < Fave depending on the probability of error δ < 0.5 that
can be tolerated. The file size R can be deduced from Eq. (4)
which gives R = Fave −

√
2σ2 log(1/δ). For instance, for

the system with (n, k, d) = (400, 10, 15) and ρ = 20, Eq. (4)
gives that taking R = 88 packets guarantees that each user
can decode the file with probability equal to 99%. Note that
the simulation results of Fig. 2 show that it is possible to take
R = 108 packets and still guarantee a 99% success probability.

B. Replication Factor

Recall that the system requires each packet to be replicated ρ
times. However, with the randomized construction the number
of replicas of each coded packet is random. Let r denote
the random variable indicating the number of replication of a
particular packet, say without loss of generality the first one.

In other words, r represents the number of distinct bins con-
taining the ball of color 1. It can be shown that r is a binomial
random variable B(n, p), with p = 1 −

(
1− 1

θ

)d
. Therefore,

r is concentrated around its average r̄ = n
(

1−
(
1− 1

θ

)d)
as

indicated by the following Chernoff bound:

P (r ≤ (1− ε)r̄) ≤ e−r̄ε
2/2. (8)

Note that for large values of θ, the expectation of r is
approximatively equal to the desired replication factor ρ, since
r̄ ≈ nd/θ = ρ. To guarantee that the number of replicas
is at least ρ with high probability, the balls-and-bins random
construction can be applied with an over-provisioned value
ρ∗ > ρ of the repetition factor which can be obtained
from the bound in (8). Going back to our example with
(n, k, d) = (400, 10, 15) and ρ = 20, by taking ρ∗ = 34
one can guarantee that with 90% probability each packet is
replicated at least ρ = 20 times. Note that the effect of over-
provisioning ρ is a decrease in the average file size as dictated
by (3). For this example, the average file size drops from 118
(for ρ = 20) to 101 packets (for ρ∗ = 34).

C. Repair and Growth

As mentioned earlier, DRESS codes are intended for large-
scale distributed storage systems providing ubiquitous data
storage. Therefore, in addition to repair, it is essential to be
able to efficiently and distributively grow the system by adding
more nodes to it. With the proposed randomized construction,
the system can be easily grown or repaired in the following
way. In case of growth, each added node will independently
pick d distinct colors at random from a total of θ colors, while
for repair these d colors correspond to the ones that were
stored on the failed node3. It then consults the repair table
to know which helper nodes can be contacted to download
the packets corresponding to its chosen colors. The new
system can again be repaired or grown in the same way while
reading and downloading the minimum amount of data with
no computations, while retaining the same guarantees on the
file size delivered to the user. Moreover, in the case of growth,
the number of replicas of each packet will increase resulting
in better guarantees on the replication factor ρ.

VI. THEORETICAL ANALYSIS

In this section we present the proof for Th. 1. Recall that
there are n bins and θ distinct balls. Each bin selects d balls
with replacement from a pool of θ balls, each time drawing a
ball uniformly at random.

a) Computing the average: Each user contacts k distinct
bins. Hence effectively each user draws kd balls from the pool
of θ balls. Let Si denote the number of distinct colors after
picking i balls. By construction we know that {Si}kdi=0 forms
a Markov chain with transition probability

Si+1 =
{
Si + 1 with probability θ−Si

θ

Si with probability Si
θ

,

3The monitoring process that initiates the repair knows the identity of the
failed node and can convey it to new node joining the system.

for i = 0, 1, 2, · · · , kd − 1, where S0 = 0. Taking the
conditional expectation yields

E [Si+1|Si] = (Si + 1)
θ − Si
θ

+ Si
Si
θ

= 1 + (1− 1
θ

)Si.

Therefore, using the tower property of expectation we obtain
E [Si+1] = 1 + (1 − 1

θ)E [Si]. Using the initial condition
E [S0] = 0 and induction on i, one can easily show that
E [Si] =

∑i−1
j=0(1− 1

θ)j . Finally, simplifying this geometric
series, we obtain Fave = E [Skd] = θ

(
1− (1− 1

θ)kd
)
.

b) Concentration result: Let Xi denote the color of the
ball drawn at ith round by a user for i = 1, 2, · · · , kd.
To reduce the notation overhead, we use Xi

1 to denote the
the sequence (X1, X2, · · · , Xi). Define Yi = E

[
Skd|Xi

1

]
for

i = 0, 1, · · · , kd, where Skd is the total number of distinct
colors observed by the user. It is known that Yi forms a
Doob martingale, where it can be seen that FI = Ykd, and
E [FI] = Fave = Y0. Since Si is a function of Xi

1, we
have Yi = E

[
Skd|Xi

1, Si
]
. Moreover, it is clear that knowing

Si, the random variable Skd is independent of Xi
1 (Si is a

sufficient statistic). Therefore, we have Yi = E [Skd|Si] for
i = 0, 1, · · · , kd, and

E [Si+2|Si] = E [E [Si+2|Si+1, Si] |Si]

= E
[
1 + (1− 1

θ
)Si+1|Si

]
= 1 + (1− 1

θ
)E [Si+1|Si]

= (1− 1
θ

)0 + (1− 1
θ

)1 + (1− 1
θ

)2Si.

In general, one can show that

E
[
Si+(kd−i)|Si

]
=

kd−i−1∑
j=0

(1− 1
θ

)j + (1− 1
θ

)kd−iSi,

for i = 0, 1, 2, · · · , kd− 1. Therefore, we have

| Yi − Yi+1 |=| (1−
1
θ

)kd−(i+1)

[
1 + (1− 1

θ
)Si − Si+1

]
| .

(9)

It can be verified that for two possibilities
Si+1 ∈ {Si + 1, Si}, it holds that |1 + (1− 1

θ)Si−Si+1| ≤ 1,
and hence | Yi − Yi+1 | ≤ (1− 1

θ)kd−(i+1).
Now we use Azuma-Hoeffding inequality to bound the

concentration probability. Having a martingale {Yi}kdi=0 with
bounded differences | Yi − Yi+1 |≤ ci for i = 0, 1, · · · , kd−1,
the inequality states that

P (|Ykd − Y0| ≥ B) ≤ 2 exp

(
− B2

2
∑kd−1
i=0 c2i

)
.

In our setup, we have ci = (1− 1
θ)kd−(i+1), thus

kd−1∑
i=0

c2i =
θ2(1− (1− 1

θ)2kd)
2θ − 1

:= σ2.

Putting the pieces together, we obtain

P (|FI − Fave| > B) ≤ 2 exp
(
− (2θ − 1)B2

2θ2(1− (1− 1
θ)2kd)

)
.

To show equation (5), we use the fact that 0 < ci ≤ 1.
Therefore σ2 =

∑kd−1
i=0 c2i ≤

∑kd−1
i=0 ci ≤ kd. This concludes

the proof of Theorem 1.

VII. CONCLUSION

We proposed new low-complexity regenerating codes for
data storage in large-scale distributed systems. A key property
of these codes is their very lightweight distributed repair and
growth processes which is essential for systems with high
availability requirements. This was achieved by requiring the
repair and growth processes to be uncoded, thus minimizing
their associated bandwidth, Disk I/O and computational costs.
Our proposed construction consisted of first encoding a file
using an MDS codes then placing copies of the coded packets
randomly in the system using the balls-and-bins model. We
showed that by allowing a small overhead in the number
of contacted nodes, the user is able to recover his file with
high probability. While one can think of other randomized
constructions that may be a better fit in different scenarios,
such as when the original data is not co-located or when it is
being streamed, our goal here was to showcase the power of
the probabilistic approach for constructing efficient codes for
distributed storage. Our codes assume the existence of a repair
table that stores the system blueprint. In some systems such
table may not exist or is hard to handle. An important question
that we are currently investigating is how to replace the repair
table with an efficient distributed gossip-style algorithm for
finding the location of any needed packets.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in 19th ACM Symposium on Operating Systems Principles, 2003.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in ACM SIGOPS, 2007.

[3] http://www.wuala.com/en/learn/technology.
[4] S. E. Rouayheb and K. Ramchandran, “Fractional repetition codes for

repair in distributed storage systems,” in Allerton, 2010.
[5] A. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,

“Network coding for distributed storage systems,” in INFOCOM, 2007.
[6] V. Venkatesan, “Fast rebuilds in distributed storage systems using

network coding,” tech. rep., IBM Research GmbH, Zurich Research
Laboratory, 2009.

[7] S. A. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic
distributed storage systems against eavesdropping and adversarial at-
tacks,” in arXiv:1009.2556v2, 2011.

[8] I. Tamo, Z. Wang, and J. Bruck, “MDS array codes with optimal
rebuilding,” arXiv:1103.3737v1, 2011.

[9] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inform.
Theory, vol. 56, pp. 4539–4551, Sep. 2010.

[10] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a product-
matrix construction,” in arxiv:1005.4178, 2010.

[11] W. Feller, An Introduction to Probability and Its Applications, vol. 1.
Wiley, 1968.

[12] http://www.math.uah.edu/stat/urn/Birthday.pdf.

