
Codes for a Distributed Caching based
Video-On-Demand System

Sameer Pawar, Salim El Rouayheb, Hao Zhang, Kangwook Lee, Kannan Ramchandran
Dept. of Electrical Engineering and Computer Sciences

University of California, Berkeley
{spawar, salim, zhanghao, kangwooklee, kannanr}@eecs.berkeley.edu

Abstract—We study the role of codes in the optimization and
design of a large-scale Video-on-Demand (VoD) system based
on distributed caching, that we have architected and built at
Berkeley. We show how network codes can convert a combinato-
rial problem into a tractable one, and enable a fully distributed
algorithm that jointly optimizes the three-fold problem of cache
content placement, cache-to-users topology selection, and cache-
to-users rate-allocation. While a description of the general VoD
system optimization and design can be found in [1], this paper
focuses on the critical role of codes in enabling our VoD system.
Specifically, we motivate and describe a specific class of network
codes, called DRESS codes, that offer desirable tradeoffs between
cache-to-user and cache-to-cache communication aspects of the
problem needed to sustain a scalable VoD system.

I. INTRODUCTION

The increasing popularity of Video-on-Demand (VoD) ser-
vices motivates the need for a scalable and robust VoD content
delivery solution. We have recently proposed, designed and
built at Berkeley, an optimized VoD system based on dis-
tributed caching to address this problem [1]. A brief summary
follows.

Tier I: !
Server Cloud!…

Commodity disks

Tier II:!
 Cache Cloud!

Tier III: Users!

Fig. 1. The three-tier system architecture.
Our system architecture is three-tiered, as shown in Fig-

ure 1. The top tier is a server cloud which serves as a vault
for a potentially massive catalog of content (movies, to be
concrete) of demand to a large user base having an unknown
demand distribution (bottom tier). We address the scalability
requirement through a critical middle tier of distributed caches
that sit between the server cloud and the users, and help
distribute the content in a highly scalable and adaptive manner.
These distributed cache nodes are inexpensive to deploy but
are individually limited in storage, bandwidth, and the (degree
bound of) number of I/O connections they can open up to the
system users. That is, no single cache node can store more than

a tiny fraction of the catalog content, or have the bandwidth to
satisfy the streaming demands of more than a small subset of
all users, or have the ability to open up connections to more
than a small subset of the users in the system.

Given this architecture, our system goal is to effectively use
the collective resources of the cache network in minimizing
the load on the central server, which has to bear the burden
of covering the deficit between the supply (by the collective
cache network) and the demand (by the users). Concretely,
our problem is to minimize the server load while satisfying
the users’ streaming demands for their respective content by
optimizing (a) what content should be stored on each cache
node (while respecting the storage constraints)? (b) which
users should each cache connect to (while respecting the
I/O degree bounds)? and (c) how should each cache node
allocate its bandwidth among the users it connects to (while
respecting the bandwidth constraints)? Further, in order to
scale efficiently and have practical impact, we would like to
solve this optimization problem in a distributed manner using
a simple distributed algorithm.

While a general solution to this distributed optimization
problem was provided in [1], we would like to emphasize
the distributed optimization problem has two components
of a combinatorially difficult nature. (i) A first difficulty is
the content placement problem of deciding which packets of
which movies should each cache node store to be of optimal
system help. (ii) A second difficulty is the graph topology
selection problem of deciding which users each cache should
connect to (within the degree bound constraints). While details
of how we overcome the second difficulty (ii) can be found
in [2], [1], this paper provides the details of how we address
the first difficulty (i).

Specifically, the content placement problem (i) is of a com-
binatorially explosive nature when there are a lot of choices
of movies and cache nodes. We describe in this paper how we
resolve this combinatorial explosion problem through the use
of appropriately designed network codes, which convert this
combinatorial non-multicast VoD problem into a tractable one,
and enable a fully distributed algorithm that jointly optimizes
the three-fold problem of cache content placement, cache-to-
users topology selection, and cache-to-users rate-allocation.

At a high level, joint design of appropriate network codes,
together with topology selection and rate-allocation strategies,
allow not only for a tractable solution to this hard combina-
torial problem, but even admit a fully distributed algorithmic
solution (which we have deployed in our Berkeley VoD test-
bed). We describe here the critical enabling role of network
codes in our VoD system due to their ability to provide a
fluid model approximation to the content placement problem,
thereby converting the combinatorially hard problem of packet

Server

A B A

Caches
Storage: 1GB

Bandwidth: 2 Mbps
out-degree: 2

Users

Demands

Movies A, B
1 GB, 1 Mbps

A B A B

Server

A B

Movies A, B
1 GB, 1 Mbps

A B A B

(a) (b)

1 Mbps

B

Server Bandwidth
1 Mbps

Server Bandwidth
0 Mbps

x11 x12
x21 x24

x33 x34

Fig. 2. A simple example of the problem of caching for a VoD system.
The server has two movies of size 1GB and rate 1Mbps and there are 2
users requesting each movie. The system employs 3 identical cache nodes
with constraints on storage (1GB), bandwidth (2Mbps) and out-degree equal
to 2. The problem is to decide, for each cache, which movies to store, which
users to connect to, and how much bandwidth to allocate for each user. These
questions are in fact coupled. The connections between the cache nodes and
users in (a) form a bad topology where the server has to provide at least one
movie to a user. The topology in (b) is a good topology where the server does
not have to intervene at all.

identity to the easy problem of content quantity. In the sequel,
we motivate and describe a specific class of network codes
called DRESS codes [4], [5] that are well-suited to our VoD
system due to their ability to offer desirable tradeoffs between
cache-to-user and cache-to-cache communication aspects of
the problem needed to sustain a scalable VoD system.

Related work: Content distribution over networks have
been studied in the literature, in terms of file distribution, live
streaming and video-on-demand, both from theoretical and
system perspectives [15], [16], [17], [18], also see [1] and
references therein. The importance of optimal content place-
ment in VoD systems have been explored in [18]. Recently,
in [13], the problem of replication based caching (no coding)
in wireless setting was studied, where the authors show that
it is NP-hard and propose an approximation algorithm. The
important role that codes play in caching for multicast demand
has also been studied in the network coding literature [14].

II. ROLE OF CODES

To minimize the server’s total upload, we have to optimally
leverage the resources of the cache nodes in order to maximize
their contribution to the system. To illustrate the problem, let
us consider a simple example depicted in the Fig. 2. Server
has two movies, A and B, each of size 1GB and streaming
rate of 1Mbps. There are 4 users in the system, two requesting
movie A and the other two movie B. The cache cloud consists
of 3 identical nodes each having 1 GB of storage capacity,
2 Mbps of upload bandwidth and can connect to any 2 users
simultaneously. For each cache node, we have to decide which
movie it should store, which users it should connect to, and
how it should allocate its upload bandwidth among these users.
Figure 2 shows that these problems are interdependent. If we
choose a bad topology such as the one in Fig. 2(a), the server
has to upload at least one movie to a user that is not served by
the caches. However, Fig. 2(b) shows a good topology where
the server does not have to intervene. Therefore, the content
placement and topology problems are coupled, making the
problem harder to solve for general large-scale settings. Later,
we will show that even if the optimal topology is known (given
by a genie), the problem remains hard.

In general, a cache node does not have to store a full copy of
a movie. This may not be possible due to the storage limitation
on the node. But more significantly, by having the freedom
to store different movies in part rather than in full, a cache
node has the potential to provide more help to the system.
A user can then get the full movie he wants by contacting a
few number of caches. Under this setting, to maximize the
aggregate help provided by the cache cloud, the following
questions have to be addressed:

(Q1) Topology: Which users among its neighbors should each
cache connect to, while respecting the connectivity con-
straint?

(Q2) Content placement: What packets of which movies should
each cache store, while respecting the storage constraint?

(Q3) Scheduling: Which packets and to which users should
each cache node serve its content, while respecting the
link rate constraints?

Each of these questions involves an exponential number of
choices. Moreover, these questions cannot be solved indepen-
dently, as hinted by the example in Fig. 2. The result is a hard
combinatorial problem that is in general intractable.

The problem, as formulated above, remains hard even if we
restrict it to the special case of multicast demands, i.e., when
all the users want to watch the same movie. However, it is
known that the multicast problem is tractable and the key idea
for solving it is to use codes. In this case, each cache stores
coded packets of the movie. The intuition for the multicast
case, as explained in the Fountain coding [6] and network
coding literature [9], [10], [11], is that codes transform the
content into a fluid where coded packets can be thought of as
“drops”. A user has to collect enough drops (per time unit),
and does not need to keep track of the identity of the packets,
to be able to decode and play the content. Therefore, solving
the problem reduces to ensuring that the network can sustain
a flow equal to the movie rate to each user1.

In this work, we address a more general problem than
classic multicast over a known network. First, we do not have
a fixed network, rather we have to find the optimal topology
within the design constraints of maximum connectivity degree.
Secondly, we have a content-placement problem of deciding
what content to place where in the cache cloud. Thirdly,
we have a non-multicast setup where different users demand
different content. We show how to solve our problem through
the joint design of codes, content placement strategies, and
topology selection.

In the non-multicast setting, one question that arises is,
whether there is any benefit due to inter-movie coding, i.e.,
generating coded packets by mixing packets from different
movies? The example of Fig. 3 (b) answers this question
affirmatively. While inter-movie coding can lead to further
reduction in the server bandwidth, finding the right coding
scheme is a non-trivial task especially that it is related to
the general network coding problem which is known to be
notoriously hard. To avoid this problem, in this work, we
restrict coding to packets belonging to the same movie2. Thus,
our VoD problem is effectively transformed into multiple
multicast sessions that are coupled together since they have

1Practical codes can come close to this fluid abstraction.
2In many scenarios, this restriction may be a requirement imposed by the

system to guarantee the privacy of the data since, with inter-movie coding, a
user may have partial access to content that he is not authorized to receive.

Caches
Storage: 0.5 GB

Bandwidth: 2 Mbps
out-degree: 2

Users

Demands

Server

A1 A2

Movie A=(A1,A2)
1 GB, 1Mbps

A A A

A1+A2

(a)

Server

B A+B A

Movies A, B
1 GB, 1 Mbps

A B A B

(b)

Server Bandwidth
0 Mbps Server Bandwidth

0 Mbps

Caches
Storage: 1GB

Bandwidth: 2 Mbps
out-degree: 2

Fig. 3. (a) An example with VoD system with multicast demands where
all the users want to watch the same movie A. By storing coded packets of
the movie the bandwidth at the server is reduced to 0. Any other content
placement at the caches that does not use codes will incur an bandwidth cost
at the server of at least 1 Mbps. (b) An example of a VoD system where inter-
movie coding (as done on the middle cache node) is needed to minimize the
server load. Any other choice that does not involve inter-movie coding, for
example storing movie A on the middle cache instead of A+B, will result
in the server having an upload bandwidth of at least 1 Mbps.

to share the cache resources (storage, bandwidth, topology).
The question now is how much resources should be allocated
to each multicast session? To solve this problem, let us revisit
our previously posed questions Q2 and Q3, always keeping
the assumption that the answer to Q1 concerning the optimal
topology is given by a genie. The key observation is that
due to the use of coding which enables a fluid model of the
content, the solution space to the remaining two questions gets
exponentially reduced. Thanks to the use of codes, Q2 and Q3
now become:

(Q’2) How many, instead of “which”, (coded) packets should
each cache node store of each movie?

(Q’3) How many, instead of “what”, packets should each cache
node serve to each of the users he is connected to?

In summary, codes transform the problem from one of wor-
rying about the combinatorics of individual packet “identities”
to the easier one of only “quantities” of content. Answering
the above two questions can be now formulated as an LP
program3. Let us consider again the scenario of Fig. 2(a) and
let us index the cache nodes from left to right as 1 to 3.
Similarly, we index the users from 1 to 4. Also, let xij denote
the rate on the link that connects cache i to user j, and fiA, fiB
denote the fractions of movie A and movie B stored on cache
i. Then the problem of maximizing the contribution of cache
nodes, for example in Fig. 2 (a), can be formulated as below:

maximize x11 + x12 + x21 + x24 + x33 + x34
subject to

1 · fiA + 1 · fiB ≤ 1 }Cache storage constraints∑
j xij ≤ 2 ∀i

}
Cache bandwidth constraints∑

i xij ≤ 1 ∀j }User streaming constraints
x11 ≤ 1 · f1A, x12 ≤ 1 · f1B
x21 ≤ 1 · f2A, x24 ≤ 1 · f2B
x33 ≤ 1 · f3A, x34 ≤ 1 · f3B

}
Availability constraints

The cache storage and bandwidth constraints make sure that
the total content stored on each cache and the sum upload rate
of each cache are within its storage and bandwidth capacity

3Of course, since we are interested in a decentralized architecture, this LP
needs to be solved using a distributed algorithm.

respectively. The streaming constraints ensure that the total
download rate of each user does not exceed the streaming
rate of the movie. The last set of constraints, which we call
feasibility constraints, essentially say that a cache node cannot
serve a user more than what it has stored. This may sound
innocuous but turns out to be an important constraint that
“couples” storage and bandwidth. A general formulation of
this LP, program along with a fully decentralized primal-dual
algorithm for solving it, can be found in [1]. Moreover, the
algorithm optimizes the topology selection by iteratively ex-
ploring the various topologies using a “Soft-Worst-Neighbor-
Choking” algorithm with provable convergence guarantees
based on a Markov approximation relaxation concept. The
VoD system we built at Berkeley uses this algorithm. More
details about the VoD system and the performance of the
algorithm are discussed in the section V.

III. CODE DESIGN

In this section, we will elaborate on the choice of the prac-
tical codes for our VoD system. We start by describing general
properties that such codes should satisfy. Then, we propose a
solution based on a family of codes called DRESS (Distributed
Replication-based Simple Storage) codes that offer desirable
tradeoffs among these properties.

A. Desirable Code Properties

Due to the streaming nature of VoD systems, a movie is
encoded in the following way. First, it is split into small chunks
of length R packets, where R depends on the allowed play-
buffer size, i.e., the amount of initial buffering needed before
playback starts. Each chunk is then encoded separately.

We identify the following properties that codes should
satisfy when used for VoD systems:
1) MDS or Quasi-MDS property to approximate the fluid
model. The code should allow a user to recover a video chunk
formed of R packets by downloading any R, or a little more
then R, of its coded packets. This corresponds to encoding
the chunk using a Maximum Distance Separable (MDS) code,
such as a Reed-Solomon (RS) code [19] or Quasi-MDS codes
like Fountain codes [6].
2) Small block length to satisfy the buffering constraint.
The streaming nature of the VoD problem imposes stringent
restrictions on the the number R of the packets that can be
coded together. For example, for a video of rate 1Mbps, a 10s
play-buffer and packets of size 1 KB, R = 1250 packets.
3) Decentralized growth Our problem formulation in sec-
tion II, precluded cache-to-cache communication. Since the
formulation assumes a static scenario where users’ demands do
not change over time and cache nodes never leave the system,
the cost of populating the caches from the server is amortized
over time. However, in the scenarios where:

1) Cache nodes are volatile peers that stochastically join
and leave the system e.g., in p2p system.

2) The server upload bandwidth and the number of simul-
taneous connections it can sustain is restrictive.

3) The users demands change abruptly, for example when
the system experiences a “flash crowd” requesting a
video that is becoming viral.

it may be more beneficial for the system, that a cache down-
loads its content from other caches instead of downloading
from the server i.e., decentralized growth.

4) Security to protect the system from malicious nodes.
When a cache node or a user downloads a packet from the
cache network, it needs to verify its integrity and detect any
malicious nodes in order to prevent it from polluting the whole
network. When new coded packets are generated at the caches,
verifying the integrity of these newly generated packets pose
some security challenges on the system. Hence we require that
all packets be created at and authenticated at the server.

Different codes in the literature, such as random linear
network codes [10], Fountain codes [6] or Regenerating codes
[7], [8] provide different tradeoffs of the code properties
discussed in this subsection. In the VoD system we built, we
chose a new class of network code called “DRESS codes”,
due to their desirable tradeoffs in terms of security, disk reads,
computations and delay cost.

IV. DISTRIBUTED REPLICATION BASED SIMPLE
STORAGE(DRESS) CODE

A class of Distributed Replication based Simple Storage
(DRESS) codes were introduced in [4], [5] in the context
of a distributed storage application. In this section we show
how these codes can be efficiently used for a VoD system. As
explained in subsection III-A, encoding of video is performed
by first splitting the video file into small chunks and then
encoding each chunk separately. Let R denote the number of
data packets in a chunk. For expository purpose, in this section,
we treat a chunk of video as a file of interest.

A. DRESS Codes for VoD system

DRESS code first encodes the R data packets, of every
chunk, using any outer (θ,R) (θ to be chosen later) MDS
code at the server layer. A cache node that is required to store
a certain fraction, say f , of a movie, stores the fraction f of
each chunk of that movie and the DRESS code dictates how
to store this fraction as explained next. Let the atomic unit
of storage be α coded packets. A DRESS code consists of
successively stored sets of α distinct coded packets, picked
uniformly at random from the possible

(
θ
α

)
subsets of the θ

coded packets, till we store fR number of coded packets from
every chunk of the movie. Each set of α coded packets is
drawn independently and with replacement4.

B. User Performance for DRESS codes

For the DRESS codes to satisfy the MDS or Quasi-MDS
property (fluid model) specified in subsection III-A, we need
θ →∞. Due to practical limitations and as will be clear later
for the ‘decentralized growth’ of DRESS codes, θ cannot be
too large. We show in this subsection that, due to the way
DRESS codes populate the cache nodes, even if θ is not too
large, there is minimal loss in the system performance. To see
this, consider the following example of DRESS code,

Example 1: Consider a DRESS code with parameters R =
20, θ = 40, α = 5, that uses RS-code as an outer code.
Table I shows the user performance for θ = 40 (as compared
to θ →∞ in case of the true fluid model). Almost all the users
get the file by accessing 6 to 7 atomic storage units instead of

4One can also think of the coded packets as distinct coupons and DRESS
codes as populating the cache nodes by successively drawing α distinct
coupons uniformly at random from a bag containing a total of θ coupons.

4 as implied by the fluid model. From the system view point
this translates into merely a control plane overhead5.

More generally, let F (k) denote a random number of coded
packets observed by a user that accesses k number of atomic
storage units. Then, using the Azuma-Hoeffding concentration
result, we get the following bound on users performance,

P (F (k) < R) ≤ exp

(
− (Fave(k)−R)2

2kα

)
. (1)

where Fave(k) = θ(1− (1− 1/θ)kα) (see [4] for details).

C. Decentralized Growth for DRESS codes
Decentralized growth for DRESS codes occurs as follows:

A cache node that desires to store a fraction f , of a movie,
successively chooses the sets of indices of α distinct coded
packets, picked uniformly at random, to sum up to fR. Each
set is chosen independently and with replacement. After the
cache node determines the total set, it randomly contacts some
G other cache nodes in the system, and requests the coded
packets corresponding to this set. This procedure amounts to
the server providing the coded packets in the form of sets
of uniformly random α packets, thus resulting in a seamless
decentralized growth. As a result, the user performance guar-
antees remain as given in (1). Table I shows the expected
behavior of G for the example 1.

The decentralized growth corresponds to cache node at-
tempting to collect a specific set of fR coupons out of θ
coupons. This coupon collection process can be slow, as
also seen in the Table I. Also, it turns out that for DRESS
codes there is tradeoff between the user performance and
the growth performance [3]. To avoid the coupon collection
process involved in the decentralized growth, one may try
other alternatives like Random sampling or rarest first, but
these algorithms suffer from well known issues like the rarest
packet syndrome [12]. Although, some system level tweaks
alleviate this issue and these algorithms are heuristically
known to perform well for the delay insensitive applications
like file download, they are not fundamentally well-suited to
delay-sensitive applications like our VoD system under study.

V. EXPERIMENTAL RESULTS

We have built a VoD test-bed at Berkeley to validate the
theoretical analysis and algorithm in a real system.

A. Video-on-Demand Test-bed
The system consists of a server, a tracker, and a number of

user nodes and cache nodes interconnected by a wired TCP/IP
network.
Server and Tracker: A server maintains all the available
videos. Each video is divided into smaller chunks of duration
10s each. Each chunk is further divided into R = 20 data
packets and encoded using an outer (40, 20) Reed-Solomon
code. DRESS code then populates the cache nodes with these
coded packets.
Cache nodes: initially connect to randomly chosen users, re-
specting individual connectivity constraints. Each cache node

5A user has to exchange control information to establish a connection with
a cache node. Accessing slightly more, than minimal, number of cache nodes
thus translates into additional control overhead. Once connected to the cache
nodes, the user first exchanges the map of the coded packets and then requests
any R distinct packets from its neighboring cache nodes, thus optimally
utilizing the network bandwidth resource.

User Performance Number of atomic storage units accessed 4 5 6 7 8 9 10
Expected percentage of File missing 20.5375 7.2145 1.2211 0.1123 0.0068 0.0003 0

Decentralized Growth Performance Number of atomic storage units accessed 10 15 20 25 30 35 40
Expected percentage of packets missing 28.1988 14.9743 7.9517 4.2226 2.2423 1.1907 0.6323

TABLE I
TABLE SHOWING THE AVERAGE PERFORMANCE OF USER AND DECENTRALIZED GROWTH, FOR THE DREES CODE OF THE EXAMPLE 1, IN TERMS OF THE

PERCENTAGES OF FILE AND PACKETS MISSING RESPECTIVELY, AS A FUNCTION OF NUMBER OF THE ATOMIC STORAGE UNITS ACCESSED.

then executes the primal-dual algorithm for the LP program
[1] to distributively figure out the content placement and rate
allocation. The topology is then updated every 30s using the
“Soft-Worst-Neighbor-Choking” algorithm of [2], [1].
Users: maintain a play-back buffer equivalent to 4 chunks. As
a particular user decodes and plays the chunk right ahead of its
playback time, it also receives packets of the next unfulfilled
chunk from the cache nodes. If the number of chunks in
the play-back buffer falls below 2, the user immediately
fetches the coded packets from the server, thus guaranteeing
an interruption free streaming service.

B. Experimental setup and Results
Consider a setup with 3 videos that are 10, 11 and 8

minutes long in duration, have streaming rate of 593, 450 and
600 Kbps and of size 31, 36, and 46 MBytes respectively.
There are 30 users and 20 cache nodes in the system. Each
user independently picks a video from the video popularity
distribution {0.6, 0.3, 0.1}. Each cache node has total storage
capacity of 30MB, a sum upload capacity of 750Kbps and a
connectivity constraint of 6, i.e., at any given time a cache
node can serve maximum of 6 users. The objective is to
maximally use the distributed cache network resources so that
all users have an interruption-free streaming experience while
minimizing the amount of data served by the server. The
system performance plot, for this setup, is shown in Fig. 4.
From the performance plots in Fig. 4, we note that the server

Fig. 4. System performance plots: 1) Brown plot: the server upload rate
to users in Kbps versus time (1 unit is 10 sec) for the test-setup, 2) Green
plot: total server upload rate to users plus cache (populating load) in Kbps
versus time, 3) Red plot: Total user demand in Kbps versus time. 4) Blue
plot: Lower bound on the server load computed using the system resources.

load, in terms of the amount of data uploaded by the server, to
users is very close to the lower bound and is almost optimal.
We have made similar observations for multiple test setups
with varied configuration of resources.

VI. CONCLUSION

We have shown how appropriately designed network codes
convert a combinatorially hard non-multicast VoD problem

into a tractable one. In addition enabling a fully distributed
algorithm that jointly optimizes the three-fold problem of
cache content placement, cache-to-users topology selection,
and cache-to-users rate-allocation. Based on this simple, dis-
tributed and provably optimal algorithm, we have built a
VoD test-bed at Berkeley. Inspired by the practical aspects of
the VoD system, we characterized the desirable properties of
network codes that are well suited for VoD application and also
proposed a new class of network codes called ”DRESS codes”
that provide a very desirable tradeoff of these properties.

REFERENCES

[1] H. Zhang, M. Chen, A. Parekh, K. Ramchandran, “An Adaptive Multi-
channel P2P Video-on-Demand System using Plug-and-Play Helpers,”
arXiv:1011.5469, Nov 2010.

[2] H. Zhang, Z. Shao, M. Chen, and K. Ramchandran, “Optimal Neighbor
Selection in BitTorrent-like Peer-to-Peer Networks,” in Proceedings of
ACM SIGMETRICS, San Jose, CA, US, June 7-11, 2011.

[3] S. Pawar, S. El Rouayheb, H. Zhang, K. Lee and
K. Ramchandran, “Codes for a Distributed Caching
based Video-On-Demand System,” Extended Version
http://basics.eecs.berkeley.edu/BasicsGroup/ScalableVideo/VoDExtended.pdf
2011.

[4] S. Pawar, N. Noorshams, S. El Rouayheb and K. Ramchandran, “DRESS
Codes for the Storage Cloud: Simple Randomized Constructions,”
Proceedings of IEEE International Symposium on Information Theory,
2011.

[5] S. El Rouayheb and K. Ramchandran, “Fractional Repetition Codes for
Repair in Distributed Storage Systems,”in Proc. Annual Allerton Conf.
On Comm. Control and Compute, 2010.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain
approach to reliable distribution of bulk data,”. Proc. ACM SIGCOMM,
September 1998.

[7] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inform.
Theory, 2005.

[8] K. V. Rashmi, N. B. Shah and P. V. Kumar, “Enabling Node Repair
in Any Erasure Code for Distributed Storage,” Proceedings of IEEE
International Symposium on Information Theory, 2011.

[9] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, Jul. 2000.

[10] T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi, and D. Karger, “A ran-
dom linear network coding approach to multicast,” IEEE Transactions
on Information Theory, 2006.

[11] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, L.
Tolhuizen, “Polynomial Time Algorithms for Multicast Network Code
Construction,” IEEE Transactions on Information Theory, June 2005.

[12] B. Hajek and J. Zhu, “The Missing Piece Syndrome in Peer-to-Peer
Communication,” Proceedings of IEEE International Symposium on
Information Theory, 2010.

[13] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, G. Caire,
“FemtoCaching: Wireless Video Content Delivery through Distributed
Caching Helpers,” arXiv:1109.4179, Sep. 2011.

[14] S. Huang, A. Ramamoorthy, M. Medard, “Minimum cost mirror sites
using network coding: Replication vs. coding at the source nodes,” IEEE
Transactions on Information Theory, February 2011.

[15] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content
distribution,” in IEEE INFOCOM, 2005.

[16] C. Gkantsidis, J. Miller and P. Rodriguez, “Comprehensive view of
live network coding P2P system,” in Proc. ACM SIGGCOMM/USENIX,
2006.

[17] S. Annapureddy, C. Gkantsidis and L. Massoulie, “Proviondg video-
on-demand using P2P networks,” in Proc. Internet Protocol TeleVision
(IPTV), 2006.

[18] B. Tan and L. Massoulie, “Optimal content placement for P2P VoD
systems,” IEEE INFOCOM, 2011.

[19] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. SIAM, vol. 8, June 1960.

