
1

Securing Dynamic Distributed Storage Systems
against Eavesdropping and Adversarial Attacks

Sameer Pawar, Salim El Rouayheb, Member, IEEE and Kannan Ramchandran, Fellow, IEEE

Abstract—We address the problem of securing distributed
storage systems against eavesdropping and adversarial attacks.
An important aspect of these systems is node failures over time,
necessitating, thus, a repair mechanism in order to maintain
a desired high system reliability. In such dynamic settings, an
important security problem is to safeguard the system from
an intruder who may come at different time instances during
the lifetime of the storage system to observe and possibly alter
the data stored on some nodes. In this scenario, we give upper
bounds on the maximum amount of information that can be
stored safely on the system. For an important operating regime
of the distributed storage system, which we call the bandwidth-
limited regime, we show that our upper bounds are tight and
provide explicit code constructions. Moreover, we provide a way
to short list the malicious nodes and expurgate the system.

Index Terms—Byzantine adversary, Distributed Storage, Net-
work Codes, Secrecy.

I. INTRODUCTION

Distributed storage systems (DSS) consist of a collection of
n data storage nodes, typically individually unreliable, that are
collectively used to reliably store data files over long periods
of time. Applications of such systems are innumerable and
include large data centers and peer-to-peer file storage systems
such as OceanStore [1], Total Recall [2] and DHash++ [3] that
use a large number of nodes spread widely across the Internet.
To satisfy important requirements such as data reliability and
load balancing, it is desirable for the system to be designed to
enable a user, also referred to as a data collector, to download
a file stored on the DSS by connecting to a smaller number k,
k < n, nodes. An important design problem for such systems
arises from the individual unreliability of the system nodes
due to many reasons, such as disk failures (often due to the
use of inexpensive “commodity” hardware) or peer “churning”
in peer-to-peer storage systems. In order to maintain a high
system reliability, the data is stored redundantly across the
storage nodes. Moreover, the system is repaired every time a
node fails by replacing it with a new node that connects to d
other nodes and download data to replace the lost one.

Codes for protecting data from erasures have been well
studied in classical channel coding theory, and can be used

This research was funded by an NSF grant (CCF-0964018), a DTRA grant
(HDTRA1-09-1-0032), and in part by an AFOSR grant (FA9550-09-1-0120).

Sameer Pawar is with the Wireless Foundation, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA
94704 USA (e-mail: spawar@eecs.berkeley.edu).

Salim El Rouayheb is with the Wireless Foundation, Department of Elec-
trical Engineering and Computer Science, University of California, Berkeley,
CA 94704 USA (e-mail: salim@eecs.berkeley.edu).

K. Ramchandran is with the Wireless Foundation, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA
94704 USA (e-mail: kannanr@eecs.berkeley.edu).

a1 + 2b1

2a2 + b2

v4

a1 + a2

a1 + 4a2

v5

DC

v3

a2 + b2

a1 + b1

File F

v1

v2

a1, a2

b1, b2

b1, b2

a1, a2

1

2

2

2

2

1

1

∞

∞

Fig. 1. An example of a distributed data storage system under repair. A file
F of 4 symbols (a1, a2, b1, b2) ∈ F4

5 is stored on four nodes using a (4, 2)
MDS code. Node v1 fails and is replaced by a new node v5 that downloads
(b1 + b2), (a1 + a2 + b1 + b2) and (a1 + 4a2 + 2b1 + 2b2) from nodes
v2, v3 and v4 respectively to compute and store (a1 +a2, a1 +4a2). Nodes
v2, . . . , v5 form a new (4, 2) MDS code. The edges in the graph are labeled
by their capacities. The figure also depicts a data collector connecting to nodes
v2 and v4 to recover the stored file.

here to increase the reliability of distributed storage systems.
Fig. 1 illustrates an example where a (4, 2) maximal distance
separable (MDS) code is used to store a file F of 4 symbols
(a1, a2, b1, b2) ∈ F4

5 distributively on n = 4 different nodes,
v1, . . . , v4, each having a storage capacity of two symbols.
The (4, 2) MDS code ensures that a data collector connecting
to any k = 2 storage nodes, out of n = 4, can reconstruct the
whole file F . However, what distinguishes the scenario here
from the erasure channel counterpart is that, in the event of a
node failure, the system needs to be repaired by replacing
the failed node with a new one. A straightforward repair
mechanism would be to add a replacement node that connects
to k = 2 other nodes, downloads the whole file, reconstructs
the lost part of the data and stores it. One drawback of this
solution is the relatively high repair bandwidth, i.e., the total
amount of data downloaded by the new replacement node.
For this straightforward repair scheme, the repair bandwidth
is equal to the size of the file F which can be large in
general. A more efficient repair scheme that requires less
repair bandwidth is depicted in Fig. 1 where node v1 fails
and is replaced by node v5. By making node v5 connect to
d = 3 nodes instead of k = 2, it is possible to decrease
the total repair bandwidth from 4 to 3 symbols. Note that,
in the proposed repair solution, v5 does not store the exact
data that was on v1; the only required property is that the

2

data stored on all the surviving nodes v2, v3, v4 and v5 form a
(4, 2) MDS code. The above important observations were the
basis of the original work of [4] where the authors showed
that there exists a fundamental tradeoff between the storage
capacity at each node and the repair bandwidth. They also
introduced and constructed regenerating codes as a new class
of codes that generalizes classical erasure codes and permits
the operation of a DSS at any operational point on the optimal
tradeoff curve.

When a distributed data storage system is formed using
nodes widely spread across the Internet, e.g., peer-to-peer
systems, individual nodes may not be secure and may be thus
susceptible to an intruder that can eavesdrop on the nodes and
possibly modify their data, e.g., viruses, botnet, etc. In this
work, we address the issue of securing dynamic distributed
storage systems, with nodes continually leaving and joining the
system, against such intruders. The dynamic behavior of the
system can jeopardize the data by making the intruder more
powerful. For instance, while eavesdropping on a new node
during the repair process, the intruder can observe not only
its stored content but also all its downloaded data. Moreover,
it allows an adversary to introduce errors on nodes beyond
his/her control by sending erroneous messages when contacted
for repair.

In our analysis, we focus on three different types of in-
truders: (i) a passive eavesdropper who can eavesdrop on `
nodes in the system, (ii) an active omniscient adversary who
has complete knowledge of the data stored in the system
and can maliciously modify the data on any b nodes in the
system, and (iii) an active limited-knowledge adversary who
can eavesdrop on any ` nodes and can maliciously corrupt
the data on any b nodes among the ` observed ones. In the
last case, the intruder’s knowledge about the stored data in
the system is limited to what can be inferred from the nodes
he/she is observing.

We define the secrecy and resiliency capacities of a dis-
tributed storage system as the maximum amount of informa-
tion that it can store safely, respectively, in the presence of
an eavesdropper or a malicious adversary. For these intruder
scenarios, we derive general upper bounds on the secrecy
and resiliency capacity of the system. Motivated by system
considerations, we define an important operation regime that
we call the bandwidth-limited regime where there is a fixed
allowed budget for the repair bandwidth with no constraints
on the node storage capacity. This regime is of increasing
importance due to the asymmetry in the cost of bandwidth vs.
storage. For the bandwidth-limited regime, we show that our
upper bounds are tight and provide explicit constructions of
capacity-achieving codes.

The work in this paper is related to the recent work in the lit-
erature on secure network coding for networks with restricted
wiretapping sets [5] and networks comprising traitor nodes
[6]. The problem of studying such networks is known to be
much harder in general than models considering (unrestricted)
compromised edges instead of nodes. For instance, the work
of [5] implies that finding the secrecy capacity of networks
with wiretapped nodes is an NP-hard problem. Moreover, non-
linear coding at intermediate network nodes may be necessary

for securing networks against malicious nodes as shown in
[6]. The contribution of this paper resides, at a high level,
in showing that the networks representing distributed storage
systems have structural symmetry that makes the security
problem more tractable than in general networks. We lever-
age this fact to derive the exact expressions of the secrecy
and resiliency capacities of these systems in the important
bandwidth-limited regime. Moreover, we present capacity-
achieving codes that are linear. These codes are characterized
by a separation property: the file to be stored is first encoded
for security then stored in the system without any modification
to the internal operation of the system nodes. An additional
interesting property of our proposed codes is that, in the active
adversary case, they permit the identification of a small list
of suspected nodes guaranteed to contain the malicious ones,
permitting thus the expurgation of the system.

The rest of this paper is organized as follows. In Section II,
we discuss related work on distributed storage systems and
secure network coding. In Section III, we describe the flow
graph model for distributed storage systems and elaborate on
the intruder model. We provide a brief summary of our main
results in Section IV. In Section V, we derive an upper bound
on the secrecy capacity of the system and provide an achiev-
able scheme for the bandwidth-limited regime. We provide
a similar analysis for the omniscient and limited-knowledge
adversary cases respectively in Section VI and Section VII,
where we find upper bounds on the resiliency capacity and
construct capacity achieving codes for the bandwidth-limited
regime. We conclude the paper in Section VIII and discuss
some related open problems.

II. RELATED WORK

The pioneering work of Dimakis et al. in [4], [7], [8],
demonstrated the fundamental trade-off between repair band-
width and storage cost in a distributed storage system, where
nodes fail over time and are repaired to maintain a desired
system reliability. They also introduced regenerating codes
as codes that are more efficient than classical erasure codes
for distributed storage applications. In many scenarios of
interest, the data is required to exist in the system always
in a systematic form. This has motivated the study of exact
regenerating codes [9], [10], [11], [12] that achieve this goal
by repairing a failed node with an exact copy of the lost
data. The construction of exact regenerating codes in [9] turns
out to be instrumental in achieving the secrecy and resiliency
capacity of a DSS in the bandwidth-limited regime.

In [7], the construction of regenerating codes was linked to
finding network codes for a suitable network. Network coding
was introduced in the seminal paper of [13] and extends the
classical routing approach by allowing the intermediate nodes
in the network to encode their incoming packets as opposed
to just copying and forwarding it. The literature on network
coding is now rich in interesting results which can be found
in references [14] and [15], that provide a comprehensive
overview of this area.

In this paper, we are interested in securing distributed
storage systems under repair dynamics, which is a special

3

case of the more general problem of achieving security in
dynamical systems. A node-based intruder model is natural
in this setting and is related to the recent work of [16] on
securing distributed storage systems in the presence of a
trusted verifier and that of Kosut et al. in [6] on protecting
data in networks with traitor nodes. An intruder model that
can observe and/or change the data on links, as opposed to
nodes, has been extensively studied in the network coding
literature. Cai and Yeung introduced in [17], [18] the problem
of designing secure network codes in the presence of an
eavesdropper, which was further studied in [19], [20], [21],
[5]. A Byzantine adversary that can maliciously introduce
errors on the network links was investigated in [22], [23], [24],
[25], [26]. The problem of error correction in networks was
also studied by Cai and Yeung in [27], [28] from a classical
coding theory perspective. A different approach for correcting
errors in networks was proposed by Koetter and Kschischang
in [29], where communication is established by transmitting
subspaces instead of vectors through the network. The use of
maximum rank-metric codes for error control under this model
was investigated in [30].

III. MODEL

A. Distributed Storage System

A distributed storage system (DSS) is a dynamic network
of storage nodes. These nodes include a source node that has
an incompressible data file F of R symbols, or units, each
belonging to a finite field F. The source node is connected to n
storage nodes v1, . . . , vn, each having a storage capacity of α
symbols, which may be utilized to save coded parts of the file
F . The storage nodes are individually unreliable and may fail
over time. To guarantee a certain desired level of reliability, we
assume that the DSS is required to always have n active, i.e.,
non-failed, storage nodes that are simultaneously in service.
Therefore, when a storage node fails, it is replaced by a new
node with the same storage capacity α. The DSS should be
designed in such a way as to allow any legitimate user or
data collector, that contacts any k out of the n active storage
nodes available at any given time, to be able to reconstruct the
original file F . We term this condition as the reconstruction
property of distributed storage systems.

We assume that nodes fail one at a time 1, and we denote by
vn+i the new replacement node added to the system to repair
the i-th failure. The new replacement node connects then to
some d nodes, d ≥ k, chosen, possibly randomly, out of the
remaining active n−1 nodes and downloads γ units of data in
total from them, which are then possibly compressed (if α <
γ) and stored on the node. The data stored on the replacement
node can be different than the one that was stored on the failed
node, as long as the reconstruction property of the DSS is
retained. The process of replenishing redundancy to maintain
the reliability of a DSS is referred to as the “regeneration” or

1Multiple nodes failing simultaneously is a rare event. When this occurs,
the DSS implements an “emergency” recovery process that employs a reserved
set of trusted nodes, guaranteed not to be compromised. The trusted nodes
then replace the failed ones by acting as data collectors and downloading data
from k active nodes. The trusted nodes then consecutively leave the system,
thus triggering multiple rounds of the repair process.

α

α

x2
in

x1
in

∞

∞

∞

∞

x3
in

x4
in

x1
out

x4
out

x2
out

x3
out

v3

v2

v4

α

α α

β = 1

β

x5
outx5

in

β = 1

s

v1

v5

∞

∞

DC

Fig. 2. The flow graph model of the DSS D(4, 2, 3) of Fig. 1 when node
v1 fails and is replaced by node v5. Each storage node vi is represented by
two nodes xi

in and xi
out connected by an edge (xi

in, xi
out) of capacity α

representing the node storage constraint. A data collector DC connecting to
nodes v2 and v4 is also depicted.

“repair” process, and we call γ, the total amount of data (in
symbols) downloaded for repair, the repair bandwidth of the
system.

Due to load balancing and “fairness” requirements in the
system, the repair process is typically symmetric where the
new replacement node downloads equal amount of data, β =
γ/d units, from each of the node participating in the repair
process. We will adopt the symmetric repair model throughout
this paper. A distributed storage system D is thus characterized
as D(n, k, d), where k ≤ d ≤ n − 1. For instance, the DSS
depicted in Fig. 1 corresponds to D(4, 2, 3) operating at the
point (α, γ) = (2, 3).

B. Flow Graph Representation

We adopt the same model as in [4] where the distributed
storage system is represented by an information flow graph
G. The graph G is a directed acyclic graph with capacity
constrained edges. It consists of three kinds of nodes: a single
source node s, input storage nodes xi

in and output storage
nodes xi

out, and data collectors DCj for i, j ∈ {1, 2, . . . }. The
source node s holds an information source S having the file
F as a special realization. Each storage node vi in the DSS
is represented by two nodes xi

in and xi
out in G. To account

for the storage capacity of vi, these two nodes are joined by
a directed edge (xi

in, xi
out) of capacity α (see Fig. 2).

The repair process that is initiated every time a failure
occurs, causes the DSS, and consequently the flow graph, to be
dynamic and evolving with time. At any given time, each node
in the graph is either active or inactive depending on whether it
has failed or not. The graph G starts with only the source node
s and the nodes x1

in, . . . , xn
in connected respectively to the

nodes x1
out, . . . , x

n
out. Initially, only the source node s is active

and is connected to the storage input nodes x1
in, . . . , xn

in by
outgoing edges of infinite capacity. From this point onwards,

4

the source node s becomes and remains inactive, and the n
input and output storage nodes become active. When a node vi

fails in a DSS, the corresponding nodes xi
in and xi

out become
inactive in G. If a replacement node vj joins the DSS in the
process of repairing a failure and connects to d active nodes
vi1 , . . . , vid

, the corresponding nodes xj
in and xj

out with the
edge (xj

in, xj
out) are added to the flow graph G, and node

xj
in is connected to the nodes xi1

out, . . . , x
id
out by incoming

edges of capacity β = γ/d units each. A data collector is
represented by a node connected to k active storage output
nodes through infinite capacity links enabling it to download
all their stored data and reconstruct the file F . The graph
G constitutes a multicast network with the data collectors as
destinations. An underlying assumption here is that the flow
graph corresponding to a distributed storage system depends
on the sequence of failed nodes. As an example, we depict in
Fig. 2 the flow graph corresponding to the DSS D(4, 2, 3) of
the previous section (see Fig. 1) when node v1 fails.

Let V be the set of nodes in the flow graph G. A cut C(V, V)
in the flow graph separating the source s from a data collector
DCi is a partition of the node set of G into two subsets V ⊂ V
and V = V \ V , such that s ∈ V and DCi ∈ V . We say that
an edge (n1, n2) belongs to a cut C(V, V) if n1 ∈ V and
n2 ∈ V . The value of a cut is the sum of the capacities of the
edges belonging to it.

C. Intruder Model

We assume the presence of an illegitimate intruder in the
DSS who can eavesdrop on some of the storage nodes, and
possibly alter the stored data on some of them in order to
sabotage the system. We characterize the power of an intruder
by two parameters ` and b, where ` denotes the number of
nodes that the intruder can eavesdrop on, and b denotes the
number of nodes it can control by maliciously corrupting
its data. We distinguish among three categories of intruders:
a passive eavesdropper “Eve”, an active omniscient adver-
sary “Calvin”, and an active limited-knowledge adversary
“Charlie”. We always assume that all the data collectors and
intruders have the complete knowledge of the storage and the
repair scheme implemented in the system.

a) Passive Eavesdropper: We assume that the eavesdrop-
per Eve can access up to `, ` < k, nodes of her choice among
all the storage nodes, v1, v2, . . . , possibly at different time
instances as the system evolves. Eve is passive and can only
read the data on the observed ` nodes without modifying it, i.e.,
b = 0. In the flow graph model, Eve is an eavesdropper that
can access a fixed number ` of nodes chosen from the storage
input nodes x1

in, x2
in, Notice that while a data collector

observes the output storage nodes, i.e., the data stored on the
nodes it connects to, Eve, has access to the input storage nodes,
and thus can observe, in addition to the stored data, all the
messages incoming to these nodes. As a result, Eve can choose
some of the compromised ` nodes to be among the initial n
storage nodes, and/or, if she deems it more profitable, she can
wait for certain failures to occur and then eavesdrop on the
replacement nodes by observing its downloaded data.

b) Active Omniscient Adversary: The active adversary
Calvin is omniscient [24], i.e., he knows the file F and the
data stored on all the nodes. Moreover, Calvin can control
b nodes in total, where 2b < k, that can include some of
the original nodes v1, . . . , vn, and/or some replacement nodes
vn+1, Calvin can maliciously alter the data stored on the
nodes under his control. It can also send erroneous outgoing
messages when contacted for repair or reconstruction. In the
flow graph, this corresponds to controlling a set of b input
nodes {xi1

in, xi2
in, . . . , xib

in} and the corresponding output nodes
{xi1

out, x
i2
out, . . . , x

ib
out}.

c) Active Limited-knowledge Adversary: The active ad-
versary Charlie is not omniscient but has limited knowledge
about the data stored in the system. In particular, he has a
limited eavesdropping capability ` not sufficient enough to
know all the stored data. In addition, Charlie can control b
nodes of his choice and maliciously corrupt their data. In
distributed storage systems, an intruder controlling a node will
also observe its data. Therefore, we assume that b ≤ `, and that
these b nodes are a subset of the ` eavesdropped nodes. In the
flow graph, this corresponds to eavesdropping on some ` input
nodes {xi1

in, . . . , xi`
in} and controlling a subset of size b of these

nodes and the corresponding output nodes. A similar model
was studied in [23], [24], [25] where the authors consider a
limited-knowledge adversary that can eavesdrop and control
edges rather than nodes in multicast networks.

IV. RESULTS

The primary goal of this work is to secure distributed stor-
age systems with repair dynamics in the presence of different
types of intruders: passive eavesdropper, active omniscient
adversary and active limited-knowledge adversary. We address
the following issues:
• In the case of a passive eavesdropper, we study the

secrecy capacity Cs of the DSS, i.e., the maximum
amount of data that can be stored on the DSS and
delivered to a legitimate data collector without revealing
any information about the data to the intruder.

• In the case of an active adversary, we study the resiliency
capacity Cr of the DSS, i.e., the maximum amount of
data that can be stored on the DSS and reliably made
available to a legitimate data collector.

For a DSS with symmetric repair, we provide upper bounds
on the secrecy capacity and resiliency capacity. These bounds
are maximized for the choice of repair degree d = n − 1.
In this case, we provide explicit coding schemes that can
achieve these bounds in the bandwidth-limited regime. Our
results are summarized in Table I. We also show that for the
active adversary controlling b nodes, our capacity achieving
schemes can identify a list, of size at most 2b nodes, that is
guaranteed to contain the malicious nodes. Thus, the system
can be expurgated of these corrupt nodes, and thereby its
resiliency to active adversaries is rejuvenated.

The upper bounds in Table I are based on cut arguments
over the information flow graph representing the DSS [4]. Note
that when there is no intruder, i.e., ` = b = 0, all the upper
bounds in the second column of the Table I collapse to the DSS

5

Adversary Model Upper bound Bandwidth limited regime (Γ)
γ = dβ d = n− 1, dβ = Γ

Passive eavesdropper (` < k, b = 0) Cs(α, γ) ≤ ∑k
i=`+1 min{(d− i + 1)β, α} CBL

s (Γ) =
∑k

i=`+1(n− i)β

Active omniscient adversary (` = k, 2b < k) Cr(α, γ) ≤ ∑k
i=2b+1 min{(d− i + 1)β, α} CBL

r (Γ) =
∑k

i=2b+1(n− i)β

Active limited-knowledge adversary(`, b ≤ `) Cr(α, γ) ≤ ∑k
i=b+1 min{(d− i + 1)β, α} CBL

r (Γ) =
∑k

i=b+1(n− i)β

TABLE I
SUMMARY OF OUR CAPACITY RESULTS FOR A DSS D(n, k, d), WITH α UNITS OF STORAGE CAPACITY AT EACH NODE AND γ = dβ REPAIR BANDWIDTH.
AN ADVERSARY IS CHARACTERIZED BY TWO PARAMETERS: `, THE NUMBER OF NODES IT CAN EAVESDROP ON, AND b, THE NUMBER OF NODES IT CAN

CONTROL. Cs AND Cr DENOTE THE SECRECY CAPACITY AND RESILIENCY CAPACITY, RESPECTIVELY. Γ IS THE UPPER LIMIT ON THE REPAIR
BANDWIDTH FOR THE BANDWIDTH-LIMITED REGIME. NOTE THAT IF THE CONDITIONS ON `, b SPECIFIED IN THE FIRST COLUMN ARE NOT SATISFIED,

THEN Cs, Cr ARE EQUAL TO ZERO

capacity M =
∑k

i=1 min{(d− i+1)β, α} which was derived
in the original work of [4]. The upper bound on the secrecy
capacity Cs, for the case of a passive eavesdropper can be
explained intuitively by recognizing that when the DSS knows
the identity of the ` compromised nodes it can discard them
and avoid using them for storage. Hence, in the expression
of the upper bound on Cs, we see a loss of ` terms in the
summation as compared to the capacity with no intruder.

The upper bound on the resiliency capacity Cr, for the
case of an active omniscient adversary, is similar to the one
derived in [6] and can be regarded as a network version of
the Singleton bound: a redundancy of 2b nodes is needed in
order to correct the adversarial errors on b nodes. Whereas,
a feasible strategy for the limited-knowledge adversary is to
delete the data stored on the b nodes it controls rendering them
useless resulting in the corresponding upper bound. Rigorous
proofs of these results will be provided in the coming sections.

To get more insight into the above results for the bandwidth-
limited case, we consider an asymptotic regime for the DSS
where the number of nodes goes to infinity whereas the
parameters k, ` and b are kept constant. We compute the ratios
CBL

s /M and CBL
r /M , where M is the capacity of the DSS in

the absence of any intruder. This ratio for the secrecy capacity
is,

CBL
s (Γ)
M

=

∑k
`+1(n− i)β

∑k
1(n− i)β

≈ 1− `

k
, (1)

as n → ∞. Similarly, for the resiliency capacities, we have
for omniscient adversary,

CBL
r (Γ)
M

≈ 1− 2b

k
. (2)

And for limited-knowledge adversary,

CBL
r (Γ)
M

≈ 1− b

k
. (3)

Note that these asymptotic ratios are reminiscent of the ca-
pacity of the classical wiretap channel [31] in the case of a
passive eavesdropper (1), the Singleton bound [32] in the case
of omniscient adversary (2), and the capacity of the erasure
channel [33] for the case of limited-knowledge adversary (3).

V. PASSIVE EAVESDROPPER

In this section, we consider a distributed storage system
D(n, k, d) in the presence of a passive intruder “Eve”. As
described in Section III, Eve can eavesdrop on any ` < k
storage nodes2 of her choice in order to learn information
about the stored file. However, Eve cannot modify the data
on these nodes. We assume that Eve has complete knowledge
of the storage and repair schemes implemented in the DSS.
Next, we define the secrecy capacity of a DSS as the maximum
amount of data that can be stored on a DSS under a perfect
secrecy requirement, i.e., without revealing any information
about it to the eavesdropper.

A. Secrecy Capacity

Let S be a random variable uniformly distributed over FR
q

representing the incompressible data file of size R symbols at
the source node, which is to be stored on the DSS. Thus, we
have H(S) = R (in base logq). Let Vin := {x1

in, x2
in, . . . }

and Vout := {x1
out, x

2
out, . . . } be the sets of input and output

storage nodes in the flow graph, respectively. For each storage
node vi, let Di and Ci be the random variables representing its
downloaded messages and stored content respectively. Thus,
Ci represents the data observed by a data collector DC when
connecting to node vi. If vi is compromised while joining
the DSS, Eve will observe all its downloaded data Di, with
H(Di) ≤ γ, and not only what it stores.

Let V a
out be the collection of all subsets of Vout of cardinal-

ity k consisting of the nodes that are simultaneously active,
i.e., not failed, at a certain instant in time. For any subset B of
Vout, define CB := {Ci : xi

out ∈ B}. Similarly for any subset
E of Vin, define DE := {Di : xi

in ∈ E}. The reconstruction
property at the data collector can be written as

H(S|CB) = 0 ∀B ∈ V a
out, (4)

and the perfect secrecy condition implies

H(S|DE) = H(S) ∀E ⊂ Vin and |E| ≤ `. (5)

2When Eve observes ` ≥ k the secrecy capacity of the system is trivially
equal to zero since Eve can implement the data collector’s scheme to recover
all the stored data.

6

Given a DSS D(n, k, d) with ` compromised nodes, its
secrecy capacity, denoted by Cs(α, γ), is then defined to be the
maximum amount of data that can be stored in this system such
that the reconstruction property in (4) and the perfect secrecy
condition in (5) are simultaneously satisfied for all possible
data collectors and eavesdroppers, i.e.,

Cs(α, γ) := sup
H(S|CB) = 0 ∀B

H(S|DE) = H(S) ∀E

H(S), (6)

where B ∈ V a
out, E ⊂ Vin and |E| ≤ `.

B. Special Cases

Before we proceed to the general problem of determining
the secrecy capacity of a DSS, we analyze two special cases
that shed light on the general problem.

1) Static Systems: A static version of the problem studied
here corresponds to a DSS with ideal storage nodes that do
not fail, and hence there is no need for repair in the system.
The flow graph of this system constitutes then a well-known
multicast network studied in network coding theory called
the combination network [15, Chap. 4]. Therefore, the static
storage problem can be regarded as a special case of wiretap
networks [18], [20], or equivalently, as the erasure-erasure
wiretap-II channel studied in [34]. The secrecy capacity for
such systems is equal to (k− `)α, and can be achieved using
either the nested MDS codes of [34] or the coset codes of
[20], [31].

Even though the above proposed solution is optimal for the
static case, it can have a very poor security performance when
applied directly to dynamic storage systems experiencing
failures and repairs. For instance, consider the straightforward
way of repairing a failed node by downloading the whole file
and regenerating the lost data. In this case, if Eve observes the
new replacement node while it is downloading the whole file,
she will be able to reconstruct the entire original data. Hence,
no secrecy scheme will be able to hide any part of the data
from Eve, and the secrecy rate would be zero.

The case of static systems highlights the new dimension that
the repair process brings into the secrecy picture of distributed
storage systems. The dynamic nature of the DSS renders it
intrinsically different from the static counterpart making the
repair process a key factor that should be carefully designed
in order not to jeopardize the whole stored data.

2) Systems Using Random Network Coding: Using the flow
graph model, the authors of [4] showed that random linear
network codes over a large finite field can achieve any point
(α, γ) on the optimal storage-repair bandwidth tradeoff curve
with a high probability. Consider an example of a random
linear network code used in a compromised DSS D(4, 3, 3)
which stores a file of size R = 6 symbols with β = 1, i.e.,
γ = dβ = 3, and α = 3. From [4], it can be shown using the
max-flow min-cut theorem that the maximum file size that can
be stored on this DSS is equal to 6 symbols. In this case, each
of the initial nodes v1, . . . , v4 store 3 independently generated
random linear combinations of the 6 information symbols.
Assume now that node v4 fails (see Fig. 3) and is replaced

DC

α

α

x5
in

x6
inx2

in

x1
in

β = 1

β = 1

∞

∞

∞

∞

x3
in

x4
in

x1
out

x5
out

x4
out

x6
outx2

out

x3
out

v1

v5
v3

v2

v4

α

α

v6
File

α

α

∞

∞
∞

s

R = 6

Fig. 3. The DSS D(4, 3, 3) with (α, γ) = (3, 3), i.e., β = 1. Eve can
observe ` = 2 nodes. Node v4 fails and is replaced by node v5, which fails
in turn after some time and is replaced by node v6. Nodes v5 and v6 are
compromised and shown with broken boundaries. If random network coding
is used and Eve observes nodes v5 and v6 during repair, it will be able to
decode all the stored data with a high probability.

by a new node v5 that connects to v1, v2, v3 and downloads
from each β = 1 random linear combination of their stored
data. Now suppose that node v5 fails after some time and is
replaced by node v6 in a similar fashion. If ` = 2 and Eve had
accessed nodes v5 and v6 while they were being repaired, it
would observe 6 random linear equations of the data symbols.
Since the underlying field is typically of large size, the 6 linear
equations observed by Eve are linearly independent with high
probability. Hence, she will be able to reconstruct the whole
file, and the secrecy rate here is equal to 0. Later in Example 3
we present a scheme that achieves a secrecy rate of 1 unit for
this DSS.

While random network codes are appealing for use in
distributed storage systems due to their decentralized nature
and low complexity, the above analysis shows that this may
not always be the case for achieving security. This is also in
contrast with the case of multicast networks where an intruder
can observe a fixed number of edges instead of nodes [18],
wherein, random network coding performs as good as any
deterministic secure code [21].

C. Results on Passive Eavesdropper

We present here our two main results for the compromised
DSS with passive eavesdropper:

Theorem 1: [Secrecy Capacity Upper Bound] For a dis-
tributed storage system D(n, k, d), with ` < k compromised
nodes, the secrecy capacity is upper bounded by

Cs(α, γ) ≤
k∑

i=`+1

min{(d− i + 1)β, α}, (7)

where β = γ/d.
In the bandwidth-limited regime, we have a constraint on

the repair bandwidth γ ≤ Γ, while no constraint is imposed
on the node storage capacity α. The secrecy capacity in this

7

α

v3

x3
in

x3
out

α
x2

in x2
out

v2

x1
in

α
x1

out

v1

v5

∞

∞
∞

∞

β = 1

α

v4
x4

in x4
out

x5
in x5

out
α

s

∞

∞

∞

DC

Fig. 4. The flow graph of the DSS D(4, 3, 3) with (α, γ) = (3, 3), β = 1
and ` = 2. Node v3 fails and is replaced by node v5. Nodes v1, v2

are compromised to Eve and are shown with broken boundaries. A data
collector DC connects to nodes v1, v2, v5 to retrieve the data file. The
data collector can get at most one unit of information securely on the path
(s, x4

in, x4
out, x

5
in, x5

out, DC) which is not observed by Eve.

regime is thus defined as

CBL
s (Γ) := sup

γ ≤ Γ
α ≥ 0

Cs(α, γ) (8)

≤ sup
γ ≤ Γ

k∑

i=`+1

(d− i + 1)β. (9)

The last inequality follows from Theorem 1 by setting α = Γ.
When the parameter d is a system design choice, the maximum
in the above optimization is attained at d∗ = n − 1. In
Section V-D, we demonstrate a scheme that achieves this upper
bound, thereby establishing the following theorem.

Theorem 2: [Secrecy Capacity: Bandwidth-Limited
Regime] For a distributed data storage system D(n, k, d)
with d = n − 1 and ` < k compromised nodes, the secrecy
capacity in the bandwidth-limited regime is given by

CBL
s (Γ) =

k∑

i=`+1

(n− i)β,

where β = Γ
n−1 and can be achieved for a node storage

capacity α = Γ.
Before we proceed to prove the above theorems, we consider

an example that gives insights into the proof techniques.
Example 3: Consider again the DSS D(4, 3, 3) operating at

α = 3, β = 1 and ` = 2 of Section V-B2. We show first that
the upper bound on the secrecy capacity of this system is 1 as
given by Theorem 1, and then provide a scheme that achieves
it.

To obtain the upper bound on the secrecy capacity, consider
the flow graph of this DSS shown in Fig. 4 where nodes v1

and v2 are compromised and observed by Eve. Suppose that
node v3 fails and is replaced by v5 that downloads β = 1
unit of information from each of the d = 3 nodes v1, v2, v4.
We focus now on a data collector that connects to the three
nodes v1, v2 and v5 to reconstruct the source file. Even if the
source node s and the data collector knew the location of the

eavesdropper, it can get at most one unit of secure information
by ignoring all the information received from the compromised
nodes. The data can only be conveyed securely through the
path (s, x4

in, x4
out, x

5
in, x5

out, DC), that has a “bottleneck” edge
(x4

out, x
5
in) with capacity β = 1 unit. Since our analysis is

based on a worst case scenario, this gives an upper bound of
1 unit on the secrecy capacity. This bound can be reinterpreted
as taking the minimum value of a cut separating the source
s from any data collector in the flow graph after deletion of
any two nodes. This argument can be generalized to any DSS
D(n, k, d) by finding an upper bound on the value of the
min-cut in the flow graph after deleting ` nodes. Thus, we
obtain the upper bound of Theorem 1 whose detailed proof is
provided in Appendix A.

Before we provide a coding scheme that achieves the previ-
ous upper bound, we define the nested MDS codes [34] which
will be an important building block in our code construction.

Definition 4 (Nested MDS Codes): An (n, k) MDS code
with generator matrix G is called nested if there exists a

positive integer k0 < k such that G =
[

G1

G2

]
, with G1, of

dimensions (k0×n), itself is a generator matrix of an (n, k0)
MDS code.

Our proposed capacity-achieving code is depicted in Fig. 5
and consists of the concatenation of an outer nested MDS code
with a special inner repetition code that was introduced in [9]
for constructing exact regeneration codes. Let S ∈ Fq denote
the information symbol that is to be securely stored on the
system and K = [K1 . . . K5] be a vector of independent
random keys each uniformly distributed over Fq . The MDS
coset code is chosen to be a nested MDS code [34] with its

generator matrix given by G :=
[

GK

GS

]
, where

GK =

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

, and

GS =
[

1 0 0 0 0 0
]
.

Note that the matrix G :=
[

GK

GS

]
a generator of a (6, 6)

MDS code and the sub-matrix GK is a generator of an (6, 5)
MDS code (k0 = 5). Hence, the code generated by G is a
nested MDS code. Set, Z = S +

∑5
i=1 Ki, then the codeword

X given by

X =
[K S

] [
GK

GS

]
, (10)

can be written as X =
[

Z K1 . . . K5

]
. The encoded

symbols Z, K1, . . . , K5 are then stored on the nodes v1, . . . , v4

as shown in Fig. 5, following the special repetition code of
Rashmi et al [9], which we henceforth refer to as RSKR-
repetition code.

In the RSKR-repetition code used here, nodes v1, . . . , v4

store respectively {Z,K1, K2}, {Z, K3,K4}, {K1,K3,K5}
and {K2,K4,K5}. Since d = 3, in the case of a failure

8

the new replacement node contacts all the 3 remaining active
nodes in the system and recovers an exact copy of the lost
data. For example, when node v1 fails the new replacement
node connects to nodes v2, v3 and v4 and downloads the
symbols Z, K1 and K2 from each, respectively. It can also
be checked that a data collector connecting to any 3 nodes
observes all the symbols Z,K1, . . . ,K5 and hence can decode
the information symbol S as S = Z − ∑5

i=1 Ki. However,
an eavesdropper accessing any two nodes will observe some
subset of 5 symbols out of 6, and therefore cannot obtain any
information about S.

RSKR−repetition code

coset code
MDS

K2K1

K1 K3 K5

K5K4K2

K3 K4Node v2

Node v3

Node v1

Node v4

Z

Z

S

Information
symbol

K1, . . . , K5

Z,K1, . . . , K5

Random keys

Z = S +
∑5

i=1 Ki

Fig. 5. A schematic representation of the optimal code for the DSS
D(4, 3, 3), operating at (α, γ) = (3, 3) with ` = 2, that achieves the secrecy
capacity of 1 unit. The information symbol S and 5 independent random keys
are mixed appropriately using an MDS coset code. The encoded symbols are
then stored on the DSS using the RSKR-repetition code. An eavesdropper
observing any ` = 2 nodes cannot get any information about the stored
symbol S.

In the following section, we provide a generalization of the
code in this example, and show that it achieves the secrecy
capacity of DSS for d = n−1 in the bandwidth-limited regime,
thus proving Theorem 2.

D. Secrecy Capacity in the Bandwidth-Limited Regime

The special cases studied in Section V-B pointed out that
the main difficulty in determining the secrecy capacity of
distributed storage systems is due to its dynamic nature. We
will demonstrate that in the bandwidth-limited regime for
d = n − 1, with a careful choice of code, it is possible to
transform the problem of secrecy over a dynamic DSS into
a static problem of secrecy over a point to point channel
equivalent to the erasure-erasure wiretap channel-II in [34].
Then, we show that using nested MDS codes at the source
one can achieve the secrecy capacity of the equivalent wiretap
channel.

Our approach builds on the results of [9] where the authors
constructed a family of exact regenerating codes for the DSS
D(n, k, d) with d = n − 1, α = dβ. The “exact” property
of these codes allows any repair node to reconstruct and
store an identical copy of the data lost upon a failure. The
code construction in [9] consists of the concatenation of an
MDS code with the RSKR-repetition code. This construction
is instrumental for obtaining codes that can achieve the secrecy
capacity by carefully choosing the outer code to be a nested
MDS coset code as was done in Example 3.

For simplicity, we will explain the code for β = 1, i.e., Γ =
n−1. For any larger values of Γ, and in turn of β, the file can
be split into chunks, each of which can be separately encoded
using the construction corresponding to β = 1. Since the DSS

Node v1

Node v3

Node v2

Node vn

...

. . .

. . .

. . .

...

x1 x2 x3 xd

x2d−1

xd+1

x2d x3d−3

xd+2 x2d−1

x3d−3

x1

x2

xd

xd+1

...

xθ

Fig. 6. The structure of the RSKR-repetition code of Rashmi et al [9] for
n storage nodes, α = d = n − 1, β = 1 and θ =

n(n−1)
2

. The RSKR-
repetition code stores 2 copies of each coded symbol, i.e., the total number
of stored symbols is nd = 2θ.

is operating in the bandwidth-limited regime with no constraint
on the node storage capacity, we choose α = Γ. From [4], we
know that for a DSS D(n, k, d = n−1) with α = n−1, β = 1
the capacity in the absence of an intruder (` = 0) is M =∑k

i=1(n − i). Let R :=
∑k

i=`+1(n − i) be the maximum
number of information that we could store securely on the
DSS, and θ := n(n−1)

2 . Let S = (s1, . . . , sR) ∈ FR
q denote the

information file and K = (K1, . . . , KM−R) ∈ FM−R
q denote

M − R independent random keys each uniformly distributed
over Fq . Then, the proposed code consists of an outer (θ,M)
nested MDS code (see (10)) which takes S and K as an input
and outputs X = (x1, . . . , xθ), as,

X =
[K S

] [
GK

GS

]
,

where, G :=
[

GK

GS

]
is a generator matrix of a (θ, M) MDS

code such that GK itself is a generator matrix of a (θ,M −
R) MDS code. This outer (θ, M) nested MDS code is then
followed by an inner RSKR-repetition code which stores the
codeword X on the DSS following the pattern depicted in
Fig. 6.

The RSKR-repetition codes were introduced in [9] as a
method for constructing exact regenerating codes for a dis-
tributed storage system. These codes consist of “filling” the
storage nodes v1, . . . , vn successively, by repeating “verti-
cally” (i.e, across all the nodes) the data stored “horizontally”
(i.e., on a single storage node), as shown in Fig. 6. This
procedure can be described using an auxiliary complete graph
over n vertices u1, . . . , un that consists of θ edges. Suppose
the edges are indexed by the coded symbols x1, . . . , xθ. The
code then consists of storing on node vi the indices of the
edges adjacent to vertex ui in the complete graph. As a result,
the RSKR-repetition code has a special property that every
coded symbol xi is stored on exactly two storage nodes, and
any pair of two storage nodes have exactly one coded symbol
in common. This property along with the fact that the repair
degree d = n− 1, enables the exact repair of any failed node
in the DSS as it was explained in Example 3.

The use of the RSKR-repetition code transforms the dy-

9

namic storage system into a static point-to-point channel as
explained below. Notice first that since Γ = α = n−1, all the
data downloaded during the repair process is stored on the new
replacement node without any further compression3. Thus,
accessing a node during repair, i.e., observing its downloaded
data, is equivalent to accessing it after repair, i.e., only observ-
ing its stored data. Second, the RSKR-repetition code restore
the replacement node with an exact copy of the lost data.
Therefore, even though there are failures and repairs, the data
storage system looks exactly the same at any point of time:
any data collector downloads M symbols out of x1, . . . , xθ

by contacting k nodes, and any eavesdropper can observe
µ =

∑`
i=1(d − i + 1) = M − R symbols. Thus, the system

becomes similar to the erasure-erasure wiretap channel-II of
parameters (θ, M, µ)4. Therefore, since the outer code is a
nested MDS code, from [34] we know that it can achieve the
secrecy capacity of the erasure-erasure wiretap channel which
is equal to M − µ. Hence for the DSS, our codes achieve the
secrecy rate of

M − (M −R) = R =
k∑

i=`+1

(n− i).

This rate corresponds to β = 1. For the general case when
β = Γ/(n− 1), the total secrecy rate achieved is,

k∑

i=`+1

(n− i)β,

thus completing the proof of Theorem 2.

VI. ACTIVE OMNISCIENT ADVERSARY

In this section we study distributed storage systems in the
presence of an active adversary “Calvin” that can control up to
b nodes. Calvin can choose to control any b nodes among all
the storage nodes, v1, v2, . . . , and possibly at different time
instances as the system evolves in time due to failures and
repairs. Moreover, Calvin is assumed to be omniscient (l =
k), so he knows the source file F . Moreover, since he has
complete knowledge of the storage and repair schemes, he
knows the content stored on each node in the system. Under
this setting, we define the resiliency capacity of a DSS as the
maximum amount of data that can be stored on the DSS and
delivered reliably to any data collector that contacts any k
nodes in the system.

Example 5: Consider again our example of the DSS
D(4, 3, 3) with α = γ = 3. Assume that there is an omniscient
active adversary Calvin that can control one storage node, i.e.,
b = 1, and can modify its stored data and/or its messages
outgoing to data collectors and repair nodes.

A first approach for finding a scheme to reliably store data
on this DSS would be to use the results in the network coding
literature [24], [27], [28], [29] on the capacity of multicast

3This corresponds to the Minimum Bandwidth Regenerating (MBR) codes
described in [4].

4In the erasure-erasure wiretap channel-II of parameters (θ, M, µ), the
transmitter sends θ symbols through an erasure channel to a legitimate receiver
that receives M symbols. The eavesdropper can observe any µ symbols out
of the transmitted M [34].

Node v2

Node v3

Node v1

Node v4

x1, x2, . . . , x6

xi = m

x1 x2 x3

x1 x4 x5

x2

x3

x4

x5

x6

x6

m ∈ {0, 1}

code

(6, 1)

Repetition

Fig. 7. A coding scheme for storing 1 bit reliably on the DSS D(4,3,3) with
α = 3 bits and β = 1, in the presence of an omniscient adversary Calvin
who controls b = 1 node.

networks in the presence of an adversary that can control
t edges of unit capacity each. It is shown there that the
resiliency capacity of these networks is equal to Ω−2t, where
Ω is the capacity of the multicast network in the absence
of the adversary. This resiliency capacity can be achieved by
overlaying an error-correction code such as a Maximum Rank
Distance (MRD) code [21] on top of the network at the source.
This approach turns out to be not very useful here. In fact, the
capacity in the absence of Calvin is 6 (see [4]), and b = 1
corresponds to t = α = 3. Hence, the above approach will
achieve a storage rate of 6− 2t = 0.

We now give a coding scheme that can reliably store 1
bit of information for the DSS. Later, we show that this is
also the best that can be done, i.e., the resiliency capacity of
this DSS is equal to 1 unit. The proposed code is formed by
concatenating a (6, 1) repetition code with an RSKR-repetition
code as shown in Fig 7. The repair process is that of the
RSKR-repetition codes described in Section V-D. When a
node fails, the replacement node recovers the lost bits by
downloading the bits with same indices from the remaining
three active nodes.

Any data collector contacting three nodes will observe 9
bits. In the static case, when no failure or repair occur, only
3 bits (the ones stored on the compromised node) among the
9 bits observed by the data collector may be erroneous. In
that case, the DC can perform a majority decoding to recover
the information bit. However, in the dynamic model, the DC
can receive up to 5 erroneous bits. To show how this may
occur, assume that the DSS is storing the all-zero codeword,
i.e., xi = 0 for i = 1, . . . , 6, in Fig. 7, corresponding to
the message m = 0. Suppose that node v1 is the one that
is compromised and controlled by the adversary Calvin as
shown in Fig. 8. Assume that Calvin changes all the 3 stored
bits (x1, x2, x3) on node v1, from (0, 0, 0) to (1, 1, 1) and
also sends the erroneous bit “1” whenever v1 is contacted
for repair. Now suppose that node v2 fails and it is replaced
by node v5 which, based on the RSKR-repetition structure,
downloads bits x1 = 1, x4 = 0 and x5 = 0 from nodes
v1, v3 and v4 respectively. Suppose also that, after some period
of time, node v3 fails and is replaced by node v6 which
downloads bits x2 = 1, x4 = 0 and x6 = 0 from nodes
v1, v4 and v5 respectively. An important point to note here
is that our repair scheme is fixed and is based on the RSKR-
repetition structure irrespective of the possible errors in the
bits downloaded during the repair process. As a result a data
collector that contacts nodes v1, v5 and v6 observes the data
as shown in the table in Fig. 8 which includes 5 errors.

10

DC

DC observation

Node

Node

Node

1 1 1

1 0 0

1 0 0

v1

v6

v5

α

v4
x4

in x4
out

α
x5

in x5
out

v5

v6

α
x6

in x6
out

∞

∞
∞

∞

α

v3

x3
in

x3
out

x1
in

α
x1

out

v1

α
x2

in x2
out

v2

’1’

’1’

’0’

’0’

’0’

’0’

s

∞
∞

∞

Fig. 8. Node v1 with broken boundary is compromised and controlled by an
omniscient adversary Calvin. Nodes v2 and v3 fail, and are replaced by nodes
v5, v6 respectively. The all-zero codeword corresponding to message m = 0
is stored on the DSS. The Data collector DC connecting to nodes v1, v5 and
v6 observes a total number of 9 bits out of which 5 bits are erroneous and
equal to “1” as shown in the table above.

In a worst case scenario, Calvin will be able to corrupt all
the bits in the DSS having the same indices as the bits stored
on the nodes it controls (here the bits with labels x1, x2 and
x3). Therefore, Calvin can introduce at most 5 erroneous bits
on a collection of k = 3 nodes which may be observed by a
data collector. In this case, a majority decoder, or equivalently
a minimum Hamming distance decoder, will not be able to
decode to the correct message.

To overcome this problem, we exploit the fact that Calvin
controls only one node, so he can introduce errors only in
specific patterns, to design a special decoder that will always
decode to the correct message m irrespective of Calvin’s
adversarial strategy. In fact, for any possible choice of the
compromised node, one of the following four sets T1 =
{x4, x5, x6}, T2 = {x2, x3, x6}, T3 = {x1, x3, x5} and T4 =
{x1, x2, x4} is a trusted set that only contains symbols that
were not altered by Calvin. For example, when Calvin controls
v1, the trusted set is T1. The proposed decoder operates in
the following way. First, it finds a set T ∗ ∈ {T1, . . . , T4}
whose elements all agree to either 0 or 1. Then, it declares
accordingly that message m = 0 or m = 1 was stored. This
decoder will always decode to the correct message since each
set Ti intersects with every other set Tj , j 6= i, in exactly one
symbol and one of them is a trusted set. Therefore each set
Ti contains at least one symbol which is unaltered by Calvin.
Thus, if all the symbols in Ti agree, they will agree to the
correct message.

A. Results on Omniscient Adversary

In [6], the resiliency capacity of unicast networks with a
single compromised node was analyzed and a cut-set upper
bound was derived. In the following, Theorem 6 generalizes
the bound in [6] for the case of distributed storage systems,
where b ≥ 1 nodes are controlled by an omniscient adversary.

Theorem 6: [Resiliency Capacity Upper Bound] Consider
a distributed storage system DSS D(n, k, d). If an omniscient
adversary controls any b ≥ 1 nodes, with 2b < k, the resiliency
capacity Cr(α, γ) is upper bounded as,

Cr(α, γ) ≤
k∑

i=2b+1

min{(d− i + 1)β, α}, (11)

where β = γ/d. If 2b ≥ k, then Cr(α, γ) = 0.
This bound is a network version of the Singleton bound and

is obtained by computing the value of certain cuts in the flow
graph of the DSS after the deletion of 2b nodes. The detailed
proof of the above theorem is given in Appendix B.

The resiliency capacity in the bandwidth-limited regime is
defined as

CBL
r (Γ) := sup

γ ≤ Γ
α ≥ 0

Cr(α, γ),

where Γ is the upper limit on the total repair bandwidth. We
again note that if the parameter d is a system design choice,
the upper bound of Eq. (11) in the bandwidth-limited regime
is maximized for d = n − 1. In the following section we
exhibit a scheme that achieves this upper bound. This result
is summarized in Theorem 7.

Theorem 7: Consider a distributed storage system
D(n, k, d = n − 1) operating in the bandwidth-limited
regime. If an omniscient adversary controls b nodes, with
2b < k, the resiliency capacity of the DSS is given by

CBL
r (Γ) =

k∑

i=2b+1

(n− i)β, (12)

where β = Γ
n−1 and can be achieved for a node storage

capacity α = Γ. If 2b ≥ k, then CBL
r (Γ) = 0.

B. Resiliency Capacity in the Bandwidth-Limited Regime

Similar to the proof of Theorem 2, it suffices to show the
achievability for β = 1, i.e., Γ = n − 1. In this case, our
capacity achieving code uses a node storage capacity α = n−1
symbols.

The code has a similar structure to the scheme used in
Section V for the case of a passive adversary and is a gener-
alization of the code used in Example 5. The (6, 1) repetition
code in the example is replaced by an (θ,R) MDS code
where R := Cr(n − 1) =

∑k
i=2b+1(n − i) and θ = n(n−1)

2 .
In the second layer, the output of the MDS code is stored
on the DSS following the RSKR-repetition structure as in
Fig 6. As explained in Example 5, node failures are repaired
using the RSKR-repetition structure (also see Section V for
additional details) irrespective of the possible errors introduced
by Calvin. Notice that the MDS code used here has a rate

11

lower then the one used in the passive adversary case in
Section V-D to allow for correcting the errors introduced by
the adversary.

A data collector accessing any k nodes will observe a total
of αk = (n− 1)k symbols, out of which M =

∑k
i=1(n− i)

symbols have distinct indices, and k(k−1)
2 symbols are re-

peated due to the RSKR-repetition code. The adversary can
corrupt identically the two copies of each symbol stored on
the b controlled nodes. Therefore, the data collector focuses
on M symbols with distinct indices out of (n− 1)k and uses
them for decoding. These M symbols with distinct indices
form a codeword of an (M, R) MDS code, say X , which are
possibly corrupted by the errors introduced by the adversary.
The minimum distance of the MDS code X is,

dmin(X) = M −R + 1 =
2b∑

i=1

(n− i) + 1. (13)

The adversary that controls b nodes can introduce up to
t =

∑b
i=1(n− i) errors in the set of M symbols with distinct

indices. A simple manipulation shows that t > bdmin(X)−1
2 c.

Therefore, a classical minimum distance decoder for X will
not be able to recover the original file. Thus, the minimum
distance decoder fails for this specific adversarial strategy
where Calvin corrupts the repeated symbols identically and
cannot be used for a general adversarial strategy.

Next, we present a novel decoder that can correct errors
beyond the classical upper bound of bdmin(X)−1

2 c in the DSS.
The main idea is to take advantage of the special structure of
the error patterns that can be introduced by the adversary.

First, we introduce two definitions that will be useful in
describing the decoding algorithm and that will serve as a
generalization of the concept of trusted set in the previous
example.

Definition 8: Puncturing a vector: Consider a vector ~v ∈
FN for some field F. Let I ⊂ {1, 2, . . . , N}, |I| = p, be a
given set. Then puncturing vector ~v with pattern I corresponds
to deleting the entries in ~v indexed by the elements in I to
obtain a vector ~vI ∈ FN−p.

Definition 9: Puncturing a Code: Consider a code C in
FN . Let I ⊂ {1, 2, . . . , N}, |I| = p, be a given set. The
punctured code CI is obtained by puncturing all the codewords
of C with pattern I , i.e.,

CI := {~xI |~x ∈ C}.

Proposition 10: If C is an MDS code with parameters (n, k)
then for any given fixed pattern I ⊂ {1, 2, . . . , n}, |I| = p <
(n− k +1), the punctured code CI is also an MDS code with
parameters (n− p, k).

Decoding Algorithm: Let B, |B| ≤ b, denote the set of
storage nodes controlled by the adversary. Because of the exact
repair property of the RSKR-repetition codes, it is sufficient
to focus on the case when B ⊂ {v1, . . . , vn} with |B| = b.
For each such set B, we define IB ⊂ {1, 2, . . . , θ} to be the
set of the indices of the symbols stored on the nodes in B.
For instance, in Example 5, if B = {v1}, IB = {1, 2, 3}.

The decoding algorithm proceeds in the following way:

1) The data collector connecting to k nodes selects any
M symbols with distinct indices, out of the (n − 1)k
observed symbols, as its input Y ∈ FM

q for decoding. In
Example 5, Fig. 8, the DC connecting to nodes v1, v5, v6

observes vector (y1, y2, y3, y1, y4, y5, y2, y4, y6). Af-
ter removing the repeated symbols, we get Y =
(y1, y2, y3, y4, y5, y6). Note for a fixed DC, Y is a
codeword of an (M,R) MDS code which we call X .
Y includes possible errors introduced by the adversary.
The code X itself is a punctured code of the outer (θ,R)
MDS code.

2) For each B ⊂ {v1, . . . , vn}, |B| = b, find IB .
3) Puncture Y and the code X with pattern IB to obtain

the observed word YIB and punctured code XIB . Note
that due to the RSKR-repetition structure, the size of
such puncturing pattern is

|IB | =
b∑

i=1

(n− i)

which is less than the minimum distance of the MDS
code X (see (13)). Hence, by Proposition 10 XIB

is an
MDS code.

4) Let HXIB
be the parity check matrix of the punctured

code XIB . Compute the syndrome of the observed word
YIB as

~σIB = HXIB
Y T

IB
.

5) If ~σIB
= 0, then YIB

is a codeword of XIB
. Assume it

to be a trusted codeword and decode to message using
the code XIB .

Proof of Correctness: We now prove the correctness of
the above decoding algorithm by showing that it will always
correct the errors introduced by the adversary and output
the correct message. Notice first that the syndrome ~σIB

will
always be equal to zero whenever B = B∗, the actual set of
nodes controlled by the adversary (which is not known to the
data collector). Therefore, the above decoding algorithm will
always give an output. Next, we show that this output always
corresponds to the correct message stored on the DSS. Denote
by X the true codeword in X , that would have been observed
by the DC in the absence of Calvin. Let B∗ be the set of the b
traitor nodes. Then, the proposed decoding algorithm fails iff
there exists some other set B 6= B∗, and some other codeword
X ′ ∈ X , s.t. X ′ 6= X , for which YIB

= X ′
IB
∈ XIB

. This
implies that

XIB∗∪IB
= X ′

IB∪IB∗ . (14)

But, from the RSKR-repetition code structure we know

|IB∗ ∪ IB | ≤
2b∑

i=1

(n− i). (15)

Equations (14) and (15) imply that dmin(X) ≤ ∑2b
i=1(n−i)

which contradicts equation (13).

Remark 11 (Decoder complexity): The complexity of the
proposed decoder is exponential in the number b of malicious
nodes. Therefore, it is not practical for systems with large

12

values of b. However, this decoder can be regarded as a proof
technique for the achievability of the resiliency capacity CBL

r

of Theorem 7.
Remark 12: [Expurgation of malicious nodes] As shown

above, the proposed decoder always decodes to the correct
message, and thus, can identify the indices of any erroneous
symbols. The data collector can then report this set of indices
to a central authority (tracker) in the system. This authority
will combine all the sets it receives, and knowing the RSKR-
repetition structure (see Fig. 6), it forms a list of suspected
nodes that will surely include the malicious nodes that are
sending corrupted data to the data collectors. Since there are
at most b malicious nodes and each symbol xi is stored on
exactly two nodes, the size of the list will be at most 2b. The
system is then purged by discarding the nodes in this list.

VII. ACTIVE LIMITED-KNOWLEDGE ADVERSARY

In this section, we consider the case of a non-omniscient
active adversary with limited eavesdropping and controlling
capabilities. We assume the adversary can eavesdrop on `
nodes and control some subset of b ≤ ` nodes out of these
` nodes. The adversary’s knowledge about the stored file
is limited to what it can deduce from the observed nodes.
Moreover, we assume that the adversary knows the coding
and decoding strategies at every node in the system. Clearly
when ` ≥ k, the adversary becomes omniscient. We are
interested here in the limited-knowledge scenario that does not
degenerate into the omniscient model studied in the previous
section. For this case, we demonstrate that the resiliency
capacity of the DSS exceeds that of the omniscient case, and
can be achieved by storing a small hash on the nodes in
addition to the data. Our approach is similar to that of [23],
[24], [25], where the authors consider a limited-knowledge
adversary that can eavesdrop and control edges rather than
nodes in multicast networks.

Example 13: Consider a DSS D(5, 3, 4) with α = γ = 4
with an adversary Charlie that can eavesdrop on and control
one node, i.e., b = ` = 1. In the omniscient case with b = 1,
the resiliency capacity of this system as given by Theorem 7
is equal to 2. Here, we show that the limitation on Charlie’s
knowledge can be leveraged to increase the resiliency capacity
to 5.

First, we show that the resiliency capacity for this DSS is
upper bounded by 5. To that end, consider the case when node
v1 is observed and controlled by Charlie. Moreover, assume
that nodes v2 and v3 fail successively and are replaced by
nodes v6 and v7 as shown in Fig. 9. Consider now a data
collector DC that connects to nodes v1, v6, v7 and wants to
reconstruct the stored file. One possible attack that Charlie
can perform, is to erase all the data stored on node v1, i.e.,
always change it to a fixed value irrespective of the stored
file. This renders node v1 useless and the system performs as
if node v1 was removed which reduces the value of the cut
C(V, V̄) (see Fig. 9) between the source s and data collector
DC to 5.

We now exhibit a code that uses a simple “correlation”
hash scheme to achieve the above upper bound with high
probability.

DC

α
s

x2
in

x1
in

x3
in

x4
in

x1
out

x4
out

x2
out

x3
out

v1

v3

v2

v4

α

α

∞

∞

∞

α

v7

x7
in x7

out

α

C(V, V̄)

β = 1

∞

∞ x6
in x6

out

v6

α

∞

∞

∞

x5
in x5

out

α = 4

v5

Fig. 9. The limited-knowledge adversary Charlie eavesdrops and con-
trols node v1, shown with the broken boundary. If Charlie erases the
data stored on node v1, the value of the cut C(V, V̄), with V̄ =
{x1

out, x
6
in, x6

out, x
7
in, x7

out, DC}, between the source node s and a data
collector DC accessing nodes v6, v7, v8 becomes equal to 5.

a) Code Construction: The code consists of an outer
(10, 5) MDS code over Fqv , followed by the RSKR-repetition
code enabling the exact repair of the nodes in the case of
failures. Furthermore, each data packet xi ∈ Fqv is appended
with a hash vector hi = (hi,1, . . . , hi,10) ∈ F10

q computed as,

hi,j = xixj
T ,

for j = 1, 2, . . . , 10, where with abuse of notation, xi also
denotes the vector (xi,1, . . . , xi,v) in Fv

q representing the
corresponding element of Fqv . The schematic form of the code
is shown in Table II below.

For simplicity, we assume in this example that the hash
values stored on the nodes are made secure from Charlie who
can neither observe, nor corrupt them. Later in Appendix C,
we explain how this can be achieved in the general case with
a negligible sacrifice in the system capacity. Note that even
though Charlie cannot directly observe the hash table, he can
generate some of the hash values using the observed data
packets on ` = 1 eavesdropped nodes, since he knows the
coding scheme. Charlie can use these computed hash values
to carefully introduce errors in the data symbols such that it
is still consistent with these hash values.

Node data ∈ Fqv hash ∈ F10
q

v1 x1,x2,x3,x4 h1,h2,h3,h4

v2 x1,x5,x6,x7 h1,h5,h6,h7

v3 x2,x5,x8,x9 h2,h5,h8,h9

v4 x3,x6,x8,x10 h3,h6,h8,h10

v5 x4,x7,x9,x10 h4,h7,h9,h10

TABLE II
THE SCHEMATIC FORM OF THE CODE STORED ON THE DSS D(5,3,4),

ALONG WITH THE SECURE HASH TABLE THAT IS NOT ACCESSIBLE TO THE
ADVERSARY CHARLIE.

b) Decoding logic: A data collector contacting 3 nodes
observes 12 symbols in total. In a worst case scenario, Charlie
can corrupt 6 out of these 12 symbols. This can happen,
for instance, when Charlie eavesdrops and controls node v1,

13

and maliciously changes its stored data from xi to yi =
xi + ei, ei 6= 0, i = 1, . . . , 4. Then, v2, v3 fail successively
(as shown in Fig. 9) and Charlie sends the erroneous symbols
y1 and y2, respectively, to nodes v5 and v6 during the
repair process. In this scenario, a data collector, unaware of
Charlie’s actual node location, accessing nodes v1, v6 and
v7 will have among its observation 6 corrupted symbols,
namely those having indices 1, . . . , 4 as shown in Table III,
where the symbol yi denotes the possibly corrupted version
of xi, i = 1, . . . , 9. Here, we have yi = xi, i = 5, . . . , 9. The
table also shows the hash vectors observed by the same data
collector.

Node data ∈ Fqv hash ∈ F10
q

v1 y1,y2,y3,y4 h1,h2,h3,h4

v6 y1,y5,y6,y7 h1,h5,h6,h7

v7 y2,y5,y8,y9 h2,h6,h8,h9

TABLE III
THE DATA SYMBOLS AND HASH VALUES OBSERVED BY THE DATA

COLLECTOR CONTACTING NODES v1, v6, v7 , WHEN NODE v1 IS
CONTROLLED BY CHARLIE.

Among the 12 stored symbols xi observed by the data
collector and their hashes hi, each of the 3 symbols with
indices 1, 2, 5 and the corresponding hash vectors h1, h2, h5

are repeated twice. Since the adversary can change both copies
of each repeated data symbol identically, our decoder focuses
only on a set of M = 9 symbols of distinct indices and
the corresponding hash vectors for decoding. Note that the
corresponding 9 symbols (x1, . . . ,x9) form a codeword of a
(9, 5) MDS code that we refer to as X .

Let H denote the 9 × 9 hash matrix observed by the data
collector, obtained as

H =

h1

h2

...
h9

 ,

where the ith row hi ∈ F10
q corresponds to the hash vector of

the symbol yi, i = 1, . . . , 9. The data collector then computes
its own 9× 9 hash matrix Ĥ from the 9 observed symbols yi

as
Ĥij = yiyj

T , 1 ≤ i, j ≤ 9.

Then, it compares the entries in Ĥ with the corresponding
entries in H to generate a 9×9 comparison table. Table IV is
an example of such a comparison table where a “X” in position
(i, j) indicates that the computed hash and the observed hash
match, i.e., Ĥij = Hij , whereas “×” indicates that Ĥij 6= Hij

due to the errors introduced by the adversary.
The decoder selects a trusted set of 5 symbols from

{y1, . . . ,y9} that index a 5 × 5 sub-table of the com-
parison table where all the entries are “X”, e.g., symbols
y5,y6,y7,y8,y9 in Table IV. It then sets the remaining 4
symbols as erasures and proceeds to decode using a min-
imum distance decoder for the (9, 5) MDS code X , that
can correct up to 4 erasures. There always exists at least
one set of 5 symbols that generates a consistent hash table,
e.g., T = {y5,y6,y7,y8,y9} when Charlie controls node

Data Symbol y1 y2 y3 y4 y5 y6 y7 y8 y9

y1 X X X X × × × × ×
y2 X X X X × × × × ×
y3 X X X X × × × × ×
y4 X X X X × × × × ×
y5 × × × × X X X X X
y6 × × × × X X X X X
y7 × × × × X X X X X
y8 × × × × X X X X X
y9 × × × × X X X X X

TABLE IV
EXAMPLE OF THE COMPARISON TABLE OF THE HASH MATRICES H AND

Ĥ . NOTE THAT SINCE CHARLIE OBSERVES THE DATA SYMBOLS
{x1, . . . ,x4}, HE CAN INTRODUCE ERRORS SUCH THAT THE HASH

VALUES OF {y1 . . . ,y4} ARE CONSISTENT.

v1. Hence, the proposed decoding will eventually stop and
output a decoding decision. Next, we analyze the probability
of selecting a trusted set that results in an error in decoding.

c) Error Analysis: Let E = {x1, . . . ,x4} denote the
set of data symbols observed by Charlie by eavesdropping on
` = 1 node (v1 in this case). The above proposed decoder may
result in an error only if the chosen trusted set T contains at
least one erroneous symbol, say y1. Therefore, we can write
y1 = x1 + e1 for some error e1 6= 0 ∈ Fqv . Any chosen
trusted set T is also guaranteed to contain at least one error-
free symbol that is not observed by Charlie, say y5 = x5 /∈ E.
To see this, note that the cardinality of the trusted set T is 5,
and by eavesdropping and controlling any one node Charlie
can observe and introduce errors in a maximum of 4 symbols
with distinct indices to any data collector observation. For the
set T , containing y1,y5 along with 3 other symbols, to be a
trusted set, it has to generate a consistent hash table of size
5 × 5. Therefore, Charlie has to pick the error e1 to satisfy
x5e1

T = 0.
The observation E = {x1, . . . ,x4} of Charlie is inde-

pendent of x5 due to the MDS property of the outer code.
Therefore, for any choice of e1 that Charlie makes, there
are qv equally likely choices of x5, out of which qv−1 are
orthogonal to the chosen e1. Hence, the consistency condition
of hash Ĥ5,1 = H5,1 is satisfied with probability,

Pr(x5e1
T = 0|E, e1) =

1
q
.

Note that if Charlie could observe the complete hash table,
then x5 is no more independent of Charlie’s observation. For
example, if Charlie observes the hash value H2,5 = x2x5

T ,
then for a given value of x2 and H2,5, there are only qv−1

equally likely choices for x5. In which case Charlie can
always choose e1 to belong to the space orthogonal to v − 1
dimensional space of possible choices of x5, thus, deceiving
the proposed decoder. Therefore, it is crucial to keep the hash
values secure from Charlie.

It can be verified that the above reasoning easily carries to
any choice of b = 1 node controlled by Charlie. Therefore, the
probability of error is upper bounded by 1/q which vanishes
with increasing the field size q.

d) Rate Analysis: We encode 5 information symbols in
Fqv to form the coded symbols xi, i = 1, . . . , 10. For these
10 symbols we construct a hash table of size 10 × 10 with
elements in Fq . Hence the total overhead of the hash table

14

is 100
5v = O(1

v) per information symbol. Thus, the rate of our
code is 5−O(1

v) which approaches 5 with an increasing block
length v.

A. Results on Active Limited-Knowledge Adversary

Below we summarize our two main results on the resiliency
capacity in the case of a limited-knowledge adversary.

Theorem 14: For a DSS D(n, k, d) with an adversary that
can eavesdrop on any ` < k nodes and control a subset of size
b of these ` nodes (b ≤ `), the following upper bound holds
on the resiliency capacity,

Cr(α, γ) ≤
k∑

i=b+1

min{(d− i + 1)β, α} (16)

where dβ = γ.
Proof: (sketch) Consider a case when nodes v1, . . . , vk

fail successively and are replaced by nodes vn+1, . . . , vn+k

as shown in Fig. 10. Also consider a data collector DC
that contacts these k nodes {vn+1, . . . , vn+k} to retrieve the
source file. If the adversary Charlie controls the b nodes
{vn+1, . . . , vn+b}, one possible adversarial strategy that Char-
lie can use is to erase all the data stored on these b nodes,
i.e., always change it to a fixed value irrespective of the file
stored on the DSS. This renders the b controlled nodes useless,
resulting in the upper bound stated in the theorem.

Let R :=
∑k

i=b+1 min{(d − i + 1)β, α} and E :=∑`
i=1 min{(d − i + 1)β, α}. Our second results states that

if the eavesdropping capability ` of the adversary Charlie is
limited, in particular ` is such that E < R, the upper bound in
Theorem 14 can be achieved for d = n− 1 in the bandwidth-
limited regime.

Theorem 15: Consider a DSS D(n, k, d = n−1) operating
in the bandwidth-limited regime in the presence of an adver-
sary that can eavesdrop on ` nodes and controls a subset of
size b of these ` nodes (b ≤ `). Then, if the adversary is
limited-knowledge, i.e., ` is such that E < R, the resiliency
capacity of the system is,

CBL
r (Γ) =

k∑

i=b+1

(n− i)β, (17)

where β = Γ/(n− 1).
The condition E < R in Theorem 15 says that the

eavesdropping capability of the adversary is insufficient to
determine the message stored on the DSS, i.e., the adversary is
not omniscient. This limitation in the adversary’s knowledge
enables every data collector to identify the erroneous symbols
introduced by the adversary and discard them, thus, resulting
in erasures rather than errors. In this case also, identifying the
erroneous symbols helps in the expurgation of the system and
discarding the malicious nodes, as pointed out in Remark 12.

The proof of Theorem 15 is detailed in Appendix C and
is composed of two parts. In the first part, we assume that
the hash table is secure from the adversary and generalize the
reasoning of Example 13 to show how the hash table can be
used to identify, with high probability, the erroneous symbols
introduced by Charlie and thus decode correctly. In the second

dβ

α

α

(d− ` + 1)β

(d− k + 1)β

(d− 1)β

α

α

β

β

β

β

β

DC
xn+1

in

xn+2
in

xn+`
in

xn+k
in

xn+1
out

xn+`
out

xn+2
out

xn+k
out

vn+1

vn+2

vn+`

vn+k

∞
∞

∞

∞

Fig. 10. Part of the information flow graph corresponding to a DSS
D(n, k, d), when nodes v1, . . . , vk fail successively and are replaced by
nodes vn+1, . . . , vn+k . A data collector contacts these k nodes and wants
to reconstruct the stored file. Nodes vn+1, . . . , vn+` shown with broken
boundaries are compromised by Eve while they were being repaired.

part, we demonstrate an efficient scheme to store the hash table
securely and reliably with a negligible sacrifice in the system
capacity.

VIII. CONCLUSION

In this paper we have considered the problem of securing
a distributed storage system under repair dynamics against
eavesdropping and adversarial attacks. We proposed a new
dynamical model for the intrusion, wherein the adversary in-
trudes the system at different time instances in order to exploit
the system repair dynamics to its own benefit. For the general
model of an adversary that can eavesdrop and/or maliciously
change the data on some nodes in the system, we investigate
the problem of determining the secrecy capacity and resiliency
capacity of the system. We provide upper bounds on the
secrecy and resiliency capacity and show their achievability
in the bandwidth-limited regime. General expressions of these
capacities in addition to efficient decoding algorithms remain
an open problem.

APPENDIX

A. Proof of Theorem 1

Consider a DSS D(n, k, d) with ` < k, operating at
point (α, γ) with dβ = γ. Assume that nodes v1, v2, . . . , vk

have failed successively and were replaced during the repair
process by the nodes vn+1, vn+2, . . . , vn+k respectively as
shown in the corresponding information flow graph G in
Fig. 10. Now suppose that Eve accesses the ` input nodes
in the set E = {xn+1

in , xn+2
in , . . . , xn+`

in } ⊂ Vin while
they were being repaired. Consider also a data collector
DC that downloads data from the k output nodes in B =
{xn+1

out , xn+2
out , . . . , xn+k

out } ∈ V a
out. The reconstruction property

of Eq. (4) implies H(S|CB) = 0 and the perfect secrecy

15

condition in Eq. (5) implies H(S|DE) = H(S). We can
therefore write

H(S) = H(S|DE)−H(S|CB)
(1)

≤ H(S|CE)−H(S|CB)
(2)
= H(S|CE)−H(S|CE , CB\E)
= I(S, CB\E |CE)
≤ H(CB\E |CE)

=
k∑

i=`+1

H(Cn+i|Cn+1, . . . , Cn+i−1)

(3)

≤
k∑

i=`+1

min{(d− i + 1)β, α}

Inequality (1) follows from the Markov chain S →
DE → CE i.e., the stored data CE is dependent on S
only through the downloaded data DE , (2) from CB\E :=
{Cn+`+1, . . . , Cn+k}, (3) follows from the fact that each node
can store at most α units, and for each replacement node we
have H(Ci) ≤ H(Di) ≤ dβ, also from the topology of the
network (see Fig. 10) where each node xn+i

in is connected to
each of the nodes xn+1

out , . . . , xn+i−1
out by an edge of capacity

β. The upper bound of Theorem 1 then follows directly from
the definition of Eq. (6).

B. Proof of Theorem 6

Consider a DSS D(n, k, d) operating at point (α, γ)
with dβ = γ, in the presence of an omniscient adver-
sary that can control b nodes, with 2b < k. Assume
that nodes vj+1, vj+2, . . . , vk, for some j, 2b < j <
k, have failed consecutively and were replaced by nodes
vn+1, vn+2, . . . , vn+(k−j), respectively. The information flow
graph G of the DSS corresponding to this sequence of
node failures and repairs is shown in Fig. 11. Consider a
data collector (Fig. 11) that observes the stored data on
the k nodes v1, . . . , vj , vn+1, . . . , vn+k−j . Consider also the
cut C(V, V̄) with V̄ = {x1

out, . . . , x
j
out, x

n+1
in , . . . , xn+k−j

in ,
xn+1

out , . . . , xn+k−j
out , DC} that separates the source node s from

the data collector DC. We group the edges belonging to this
cut into 3 disjoint sets as follows:

1) E1: the set of edges outgoing from nodes xp
in, p =

1, . . . , b.
2) E2: the set of edges outgoing from nodes xp

in, p = b +
1, . . . , 2b.

3) E3: the set of edges outgoing from nodes xp
in, p = 2b+

1, . . . , j, in addition to the edges belonging to the cut
C(V, V̄) that are incoming to the nodes xq

in, q = n +
1, . . . , n + k − j.

Let XEi(m), i = 1, 2, 3, be the symbols transmitted on the
edges in set Ei corresponding to the stored message m. We
claim that in the presence of an adversary controlling any
b nodes and for any two distinct messages m1 6= m2 the
following condition is necessary for the DC to not make a
decoding error:

XE3(m1) 6= XE3(m2).

vn+1

vn+k−j

α

α

DC

∞

∞

∞ ∞

α

v1

α

vj

(d− k + 1)β

(d− j)β

x1
in x1

out

xj
in xj

out

xn+1
in xn+1

out

xn+k−j
in xn+k−j

out

jβ

C(V, V̄)

Fig. 11. Part of the information flow graph corresponding to a
DSS (n, k, d) when nodes vj+1, . . . , vk fail successively and are re-
placed by nodes vn+1, . . . , vn+k−j . A data collector connects to nodes
v1, . . . , vj , vn+1, . . . , vn+k−j to retrieve the file.

Suppose that there exist two distinct messages m1 6= m2

satisfying XE3(m1) = XE3(m2). Now, if the symbols
carried on the edges belonging to the cut C(V, V̄) are
XE1(m1), XE2(m2) and XE3(m1) = XE3(m2). Then, as-
suming all the messages to be equally likely, the data collector
will make a decoding error with probability at least 1/2. This
is true since it will not be able to distinguish between the
following two cases:

• The true message is m2 and the nodes x1
in, . . . , xb

in

are controlled by the adversary Calvin who changed the
transmitted symbols on the edges in the set E1, from
XE1(m2) to XE1(m1).

• The true message is m1 and the nodes xb+1
in , . . . , x2b

in

are controlled by the adversary Calvin who changed the
transmitted symbols on the edges in the set E2, from
XE2(m1) to XE2(m2).

Thus, the capacity of the DSS is upper bounded by the total
capacity of the edges in the set E3, i.e.,

Cr(α, γ) ≤
j∑

i=2b+1

α+
k∑

i=j+1

(d−i+1)β, j = 2b+1, . . . , k−1.

The same analysis, as above, can be applied for j = 2b
resulting in,

Cr(α, γ) ≤
k∑

i=2b+1

(d− i + 1)β.

16

And also for j = k, which gives,

Cr(α, γ) ≤
k∑

i=2b+1

α.

The bound in Theorem 6 then follows by taking the minimum
of all the above upper bounds obtained for j = 2b, . . . , k. It
can be easily seen that the above argument extends to the case
of 2b ≥ k for which the set E3 is empty and Cr(α, γ) = 0.
2

C. Proof of Theorem 15

Consider a DSS D(n, k, d), with d = n−1, operating in the
bandwidth-limited regime, in the presence of an adversary that
can eavesdrop on ` nodes and control a subset of them of size
b, b ≤ `. As in the earlier proofs, we show the achievability
for β = 1, i.e., Γ = n − 1. Any larger values of β or Γ
can be achieved by repeatedly applying the proposed scheme.
Since there is no constraint on the node storage capacity α in
bandwidth-limited regime, we choose α = n − 1. Let θ :=
n(n−1)

2 , M :=
∑k

i=1(n − i), R :=
∑k

i=b+1(n − i) and E :=∑`
i=1(n− i).
Our proof consists of two parts: 1) We assume that the

hash table can be stored securely and reliably, and show an
achievable scheme that can attain the resiliency capacity. 2) We
present an efficient method to reliably and securely store the
hash table in the presence of a limited-knowledge adversary
Charlie.

C.1 Resiliency Capacity in the Limited-knowledge Case for
the Bandwidth-Limited Regime

Code Construction: The code that we propose here is a
generalization of the one used in Example 13 of Section VII.
It consists of an outer (θ, R) MDS code whose output X =
(x1, . . . ,xθ) ∈ Fθ

qv is stored on the n storage nodes using an
inner RSKR-repetition code that enables exact repair in case
of any node failure. As shown in Table V, each data packet
xi ∈ Fqv , i = 1, . . . , θ, is further appended with a hash vector
hi = (hi,1, . . . , hi,θ) ∈ Fθ

q . The values of these hashes are
computed as follows,

hi,j = xixj
T ,

for j = 1, 2, . . . , θ, where with abuse of notation xi also de-
notes the vector in Fv

q representing the corresponding element
of Fqv . We assume for now that the hash values stored on
the nodes are secure from Charlie who can neither observe
nor corrupt them (as shown in the next section). Although
Charlie cannot directly observe the hash table, he can compute
some of the hash values using the observed data packets on
` eavesdropped nodes and possibly introduce errors that are
consistent with these hash values.

Decoding Logic: A data collector accessing any k nodes
will observe a total of (n−1)k symbols and the corresponding
hash vectors, where

(
k
2

)
indices are repeated twice. As noted

earlier, since the adversary can corrupt both of the stored
symbols with same indices identically, the decoder focuses
only on a set of M =

∑k
i=1(n − i) symbols with distinct

Node data packet ∈ Fqv hash ∈ Fθ
q

v1 x1 x2 . . . xn−1 h1 h2 . . . hn−1

v2 x1 xn . . . x2n−3 h1 hn . . . h2n−3

v3 x2 xn . . . x3n−6 h2 hn . . . h3n−6

... . . .
...

. . .
...

...
...

. . .
...

vn xn−1 x2n−3 . . . xθ hn−1 h2n−3 . . . hθ

TABLE V
SCHEMATIC FORM OF THE CODE STORED ON THE DSS (n, k, d = n− 1),

ALONG WITH THE HASH TABLE THAT IS NOT ACCESSIBLE TO THE
ADVERSARY CHARLIE.

indices along with their hash vectors to make a decoding
decision. These M symbols form a codeword of an (M, R)
MDS code X possibly corrupted by errors introduced by the
adversary.

Recall that Charlie can eavesdrop on a total of ` nodes and
control some subset b ≤ ` of these eavesdropped nodes in
the system. Let yi, i = 1, . . . , θ, denote the possibly corrupted
version of the original data symbols xi. We have yi = xi+ei,
where ei is the error introduced by Charlie on the symbols
stored on the nodes he controls, and for rest of symbols
ei = 0. Without loss of generality, we suppose that the
data collector observes nodes v1, . . . , vk, i.e., data symbols
yi and hash values hi, i ∈ {1, 2, . . . ,M}. The data collector
observes the hash values with no errors since the hash table
is assumed to be secure and reliable against the adversary.
Let H denote the observed M × θ hash matrix having the
vectors hi ∈ Fθ

q , i = 1, . . . , M as rows. The data collector
then computes its own M ×M hash matrix Ĥ as

Ĥij = yiyj
T , 1 ≤ i, j ≤ M

from the observed M data packets and compares it with the
corresponding entries in H . It generates an M×M comparison
table similar to Table IV in Example 13. In this table a “X”
in the i-th row and j-th column indicates that the computed
hash and the observed hash match, i.e., Ĥij = Hij , whereas
“×” indicates that Ĥij 6= Hij due to the errors introduced by
the adversary.

The decoder then selects a set of R symbols, among
(y1, . . . ,yM), that index an R × R sub-table of the
comparison table with all its entries equal to “X”, and
declares it as a trusted set with no errors. Then, it sets the
rest of the M − R observed symbols as erased and proceeds
to decode the obtained vector as a codeword of an (M, R)
MDS code X with M − R erasures. Since Charlie can
control only b nodes there always exists at least one set
of size M − ∑b

i=1(n − i) = R symbols that generates a
consistent hash sub-table of size R×R with “X”. Hence, the
proposed decoder is guaranteed to stop. Next, we compute
the probability that the above decoder decodes to an incorrect
message.

Error Analysis: The proposed decoder may result in an error
in decoding only if the chosen trusted set of R observed sym-
bols contains at least one erroneous symbol, say yj = xj +ej,

17

ej 6= 0. Also, since b ≤ `, we have,
b∑

i=1

(n− i) ≤
∑̀

i=1

(n− i) < R, (18)

where the last inequality follows from our assumption (see
Theorem 15) that the eavesdropping capability E is strictly
less than the desired storage rate R. From equation (18), it is
clear that the chosen trusted set contains at least one error-free
symbol that is not observed by Charlie, say yi = xi /∈ E. For
this set to be a trusted set, it has to generate a consistent hash
table of size R×R. In particular Ĥij = Hij , i.e., xiej

T = 0.
Next, we compute the probability of such event. Let E be

the set of symbols in the codeword X that are observed by
Charlie. Since X is the output of a (θ,R) MDS code and
|E| < R, any symbol xi of X that does not belong to E is
uniformly distributed in Fqv conditioned on E, i.e.,

Pr(xi = xi|E) =
1
qv

, xi ∈ Fqv . (19)

Therefore, for any choice of ej that Charlie makes based
on his observation E, there are qv equally likely choices of
xi out of which qv−1 are orthogonal to the chosen ej. Hence,
the consistency condition of hash Ĥi,j = Hi,j is satisfied with
probability,

Pr(xiej
T = 0|E, ej) =

1
q
,

which goes to zero with increasing field size q.
Note that if Charlie could observe the complete hash table,

xi would no more be independent of Charlie’s observation.
Then, as shown in Example 13, Charlie can always choose ej

to belong to the orthogonal space of all possible choices of xi,
thus deceiving the proposed decoder. Therefore, it is crucial
to keep the hash values secure from Charlie.

Rate Analysis: We encode R information symbols in Fqv

using a (θ, R) MDS code to form a codeword (x1, . . . ,xθ).
For these symbols we construct a hash table of size θ×θ with
symbols in Fq . Hence the total overhead of the hash table
is θ2

Rv = O(1
v) per information symbol which goes to zero

with increasing block length v. Hence, asymptotically in block
length v, these codes achieve the capacity of Theorem 15.

C.2 Reliable and Secure Storage of the Hash Table

The scheme described here for storing the hash table
securely and reliably is along the parallel lines of the scheme
proposed [25]5 in the context of securing multicast networks.
It aims at storing 1 bit of information securely and reliably.
The scheme can then be repeated to store the complete
hash table which, as shown in the previous section, is of
constant size and independent of the block length v of
the information symbols. The total overhead incurred by
this scheme can be then made arbitrarily small by increasing v.

5The scheme of [25] is matrix-based and is designed for networks where
intermediate nodes perform random network coding. Our scheme here can be
regarded as a simple vector version of the one in [25]. This simplification
is possible due to the special structure of the networks (information flow
graphs) representing distributed storage systems in conjunction with the
RSKR-repetition codes that limit coding in these networks to the source.

Code Construction: Let G =
(

GK

GS

)
be a generator

matrix of a (θ, M) nested MDS code over the finite field Fq

(symbols in the hash table also belong to the same field). The
matrix GK in itself is a generator matrix of a (θ, E) MDS
code over Fq . If the bit to be stored is “1” then choose a
vector S randomly and uniformly from FM−E

q , otherwise, set
S = 0 ∈ FM−E

q . Let K = (K1 . . . , KE) denote E random keys
mutually independent and each uniformly distributed over Fq .
Now, we form the vector X ∈ Fθ

q to be stored on the DSS as
part of the hash table by “mixing” S with the random keys
using the nested MDS code as,

X = KGK + SGS .

This encoded vector X ∈ Fθ
q is then stored on the (n, k, d)

DSS using the RSKR-repetition code as shown in Fig. 6. The
RSKR-repetition structure allows the exact repair of a node
in case of failure as explained in Section V.

Security Analysis: The coding scheme used here is same as
the one in Section V-D that discusses passive adversary and
hence the vector S, which is of the appropriate rate M −E , is
perfectly secure from Charlie eavesdropping on ` nodes. The
perfect secrecy of S implies the perfect secrecy of the hash
bit.

Next we describe a decoding algorithm that the data
collector uses to decode the stored bit with high probability
of success even in the presence of errors introduced by
Charlie controlling b nodes.

Decoding Logic: We denote by D the decoder used by the
data collector to recover the stored bit belonging to the hash
table. D implements the same decoding steps as the decoder of
Section VI-B, of omniscient adversary, except for the decision
rule that determines the output. The input to D is the data
observed by the data collector accessing k nodes which is
formed of kα = k(n − 1) symbols, among which

(
k
2

)
pairs

have the same indices. The decoder executes the following
steps:

1) D selects any set of M symbols having distinct indices
among the observed kα symbols. These symbols are
grouped in a vector Y ∈ FM

q which can be written as

Y = KḠK + SḠS + e,

where ḠK and ḠS are submatrices of GK and GS of
size E ×M and (M −E)×M , respectively. The vector
e ∈ FM

q , with up to
∑b

i=1(n− i) non-zero terms, is the
error vector that accounts for the errors introduced by
the adversary.

2) Let B, |B| = b, denote the set of storage nodes con-
trolled by the adversary. Again, due to the exact repair
property of the RSKR-repetition code it is sufficient to
consider B ⊂ {v1, . . . , vn} with |B| = b. For each such
set B, let IB ⊂ {1, 2, . . . , θ} denote the set of indices
of the symbols stored on the nodes in B.

3) For each possible B ⊂ {v1, v2, . . . , vn}, |B| = b, D
punctures Y with pattern IB to obtain YIB

as

YIB
= KḠKIB

+ SḠSIB
+ eIB

,

18

where ḠKIB
and ḠSIB

are the submatrices of ḠK and
ḠS obtained by deleting the columns corresponding to
the punctured elements of Y , and eIB

is the punctured
error vector.

4) D checks whether YIB is a valid codeword of the code
generated by the matrix ḠKIB

by checking whether the
corresponding syndrome is zero.

5) The decoder D repeats steps 3) and 4) for each of the(
n
b

)
sets B until the syndrome obtained in step 4) is

zero. In this case, D declares that bit “0” was stored.
Otherwise, if for all possible values of B no zero
syndrome is obtained, D declares that “1” was stored.

Error Analysis: We do the error analysis of the above
decoding logic considering two different cases based on the
value of the stored hash bit.
• Hash bit ‘0’: We will show that when the stored infor-

mation bit is ‘0’, the decoder D makes no error. In fact,
this case corresponds to S = 0 and, thus, Y = KḠK +e.
Let B∗ be the actual set of nodes controlled by Charlie.
Then, there is at least one set B = B∗ for which
YI∗B = KḠKI∗

B
, since eIB∗ = 0. As a result, the decoder

always outputs “0”.
• Hash bit ‘1’: Information bit ‘1’ corresponds to

Y = KḠK + SḠS + e,

where (K, S) is a uniformly random vector in FM
q and

e ∈ FM
q is the error vector introduced by Charlie. Note

that the matrix G is a generator matrix of a (θ, M) MDS

code, hence the M × M sub-matrix Ḡ :=
(

ḠK

ḠS

)
is

invertible. Thus, we can write

Y = (K + eK)ḠK + (S + eS)ḠS , (20)

where eK , eS are the coefficients of the error vector e in
terms of the basis corresponding to the rows of ḠK , ḠS .
We have already shown in the security analysis above,
that S is perfectly secure from Charlie’s observation.
Hence S + eS is a uniformly random vector in FM−E

q .
Consider any set B ⊂ {v1, . . . , vn} of cardinality |B| = b
with index set IB . Then, |IB | =

∑b
i=1(n − i), hence

the matrix ḠIB
obtained by deleting the columns of Ḡ

corresponding to the indices IB has R = M − |IB | or
more columns. Now, the matrix ḠKIB

is a generator of an
(M, E) MDS code and E < R (Theorem 15). Hence, the
rank of ḠKIB

is E . This, along with the fact that Ḡ is an
invertible matrix, implies that the rank of matrix ḠSIB

is R − E or more. The probability, that the syndrome
computed in the step 4) of the proposed decoding logic
for this set B is equal to zero, is equal to the probability
of the event that a uniformly random vector (S+eS) lies
in the space orthogonal to the span of columns of ḠSIB

.
This probability is upper bounded by 1/qR−E .
Now applying the union bound to all

(
n
b

)
choices of the

set B that the decoder attempts, the probability of error
can be upper bounded by,

lim
q→∞

(
n
b

)

qR−E → 0

which goes to zero with increasing the field size q.

Rate Analysis: In the code proposed above to store the hash
values securely and reliably we need θ symbols in Fq for
each 1 bit of hash information. Also, in the previous section
we showed that the total size of the hash table of interest is
θ2 symbols in Fq . Thus, the total overhead of the proposed
code to store the hash table is θ3 log q symbols of Fq, that is
independent of the block length v of information packets.

Thus, we have shown how the hash table described in
Table V can be stored on the DSS with a negligible overhead
and is guaranteed with a high probability to be secret and
resilient to the adversary provided that field size q and block
length v are large enough.

REFERENCES

[1] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet
Computing, pp. 40–49, 2001.

[2] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total
recall: System support for automated availability management,” in Proc.
NSDI, 2004.

[3] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” in Proc. NSDI,
2004.

[4] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions
on Information Theory, vol. 56, pp. 4539–4551, Sep. 2010.

[5] T. Cui, T. Ho, and J. Kliewer, “On secure network coding over networks
with unequal link capacities and restricted wiretapping sets,” in IEEE
Internat. Symp. Inform. Th. (ISIT), 2010.

[6] O. Kosut, L. Tong, and D. Tse, “Nonlinear network coding is necessary
to combat general byzantine attacks,” in Proc. of 47th Annual Allerton
Conf. on Comm., Control, and Computing, Oct. 2009.

[7] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” in IEEE Internat.
Conf. on Comp. Comm. (INFOCOM), 2007.

[8] Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regener-
ating codes for distributed storage,” in Proc. of 45th Annual Allerton
Conf. on Comm., Control, and Computing, 2007.

[9] K. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Exact
regenerating codes for distributed storage,” in Proc. of 47th Annual
Allerton Conf. on Comm., Control, and Computing, 2009.

[10] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in IEEE Internat. Symp.
Inform. Th. (ISIT), 2009.

[11] C. Suh and K. Ramchandran, “Exact regeneration codes for distributed
storage repair using interference alignment,” in IEEE Internat. Symp.
Inform. Th. (ISIT), 2010.

[12] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit
codes minimizing repair bandwidth for distributed storage,” in Proceed-
ings of IEEE Information Theory Workshop (ITW’10), 2010.

[13] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Informa-
tion Flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, 2000.

[14] C. Fragouli and E. Soljanin, Network Coding Fundamentals (Founda-
tions and Trends in Networking). Now Publishers Inc, 2007.

[15] R. Yeung, S.-Y. Li, and N. Cai, Network Coding Theory (Foundations
and Trends in Communications and Information Theory). Now Publish-
ers Inc, 2006.

[16] T. K. Dikaliotis, A. G. Dimakis, and T. Ho, “Security in distributed
storage systems by communicating a logarithmic number of bits,” in
IEEE Internat. Symp. Inform. Th. (ISIT), 2010.

[17] N. Cai and R. W. Yeung, “Secure network coding,” in IEEE Internat.
Symp. Inform. Th. (ISIT), 2002.

[18] N. Cai and R. W. Yeung, “Secure Network Coding on a Wiretap
Network,” IEEE Transactions on Information Theory, vol. 57, pp. 424–
435, 2011.

[19] J. Feldman, T. Malkin, C. Stein, and R. A. Servedio, “On the capacity
of secure network coding,” in Proc. of 42nd Annual Allerton Conf. on
Comm., Control, and Computing, 2004.

19

Notation Explanation
G Information flow graph of a distributed storage system.
V Set of nodes in the information flow graph.

C(V, V̄) Cut partitioning the set of nodes V in a graph into two sets V ⊂ V and V̄ = V \ V .
S Random variable representing an incompressible source file.
n Total number of active nodes in a distributed storage system.
k Number of nodes a data collector connects to in order to retrieve the source file.
d Number of nodes a new replacement node connects to during the repair process.
α Storage capacity at each storage node in a distributed storage system.
β Amount of data downloaded from every node participating in the repair process.
γ The total amount of data downloaded during the repair process i.e., repair bandwidth.
Γ Upper limit on the repair bandwidth in the bandwidth-limited regime.
Di All the data\messages downloaded on the replacement node vi during the repair process.
Ci Data stored on the node vi.
R Desired or achieved storage rate.
M Capacity of the distributed storage system in the absence of an adversary.
xi Data symbol or packet stored on a distributed storage system.
yi Data symbol or packet, possibly corrupted by an adversary, observed by a data collector.
` Number of nodes an adversary can eavesdrop on in a distributed storage system.
b Number of nodes an active adversary can maliciously control.
E A set of symbols\nodes observed by an adversary by eavesdropping on ` nodes.
Cs Secrecy capacity of a distributed storage system.
Cr Resiliency capacity of a distributed storage system.

TABLE VI
TABLE OF IMPORTANT NOTATIONS

[20] S. El Rouayheb and E. Soljanin, “On wiretap networks II,” in IEEE
Internat. Symp. Inform. Th. (ISIT), 2007.

[21] D. Silva and F. R. Kschischang, “Security for wiretap networks via
rank-metric codes,” in IEEE Internat. Symp. Inform. Th. (ISIT), 2008.

[22] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D. Karger,
“Byzantine modification detection in multicast networks using random-
ized network coding,” in IEEE Internat. Symp. Inform. Th. (ISIT),
pp. 616–624, 2004.

[23] S. Jaggi and M. Langberg, “Resilient network codes in the presence of
eavesdropping byzantine adversaries,” in IEEE Internat. Symp. Inform.
Th. (ISIT), pp. 541–545, 2007.

[24] Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and
M. Effros, “Resilient network coding in the presence of byzantine
adversaries,” in IEEE Transactions on Information Theory (special issue
on information-theoretic security), pp. 2596–2603, 2008.

[25] H. Yao, D. Silva, S. Jaggi, and M. Langberg, “Network codes resilient
to jamming and eavesdropping,” in IEEE Internat. on Network Coding
(NetCod’10), 2010.

[26] S. Ki, T. Ho, M. Effros, and S. Avestimehr, “New results on network
error correction: capacities and upper bounds,” in Information Theory
and Applications Workshop (ITA’10), 2010.

[27] R. W. Yeung and N. Cai, “Network error correction, part I: Basic
concepts and upper bounds,” in Commun. Inf. Syst, vol. 6, pp. 19–36,
2006.

[28] R. W. Yeung and N. Cai, “Network error correction, part II: Lower
bounds,” in Commun. Inf. Syst, vol. 6, pp. 37–54, 2006.

[29] R. Koetter and F. Kschischang, “Coding for errors and erasures in
random network coding,” in IEEE Transactions on Information Theory,
pp. 3579–3591, 2008.

[30] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach
to error control in random network coding,” in IEEE Transactions on
Information Theory, 2008.

[31] L. H. Ozarow and A. D. Wyner, “Wire-tap channel-II,” in AT&T Bell
lab tech. journal vol. 63, no. 10, 1984.

[32] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge
University Press, 2002.

[33] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[34] S. Arunkumar and S. W. Mclaughlin, “MDS codes on erasure-erasure
wire-tap channel,” in arXiv:0902.3286v1, 2009.

Sameer Pawar received the M.S. degree in electrical engineering from
Indian Institute of Science (IISc), Bangalore, India, in 2005. Since 2007,

he has been with the Department of Electrical Engineering and Computer
Science in the University of California at Berkeley. Prior to that, he had
been with the Communications Department, Infineon Technologies India. His
research interests include information theory and Coding theory for Storage
and communication systems. He is recipient of Gold Medal for the Best
Masters thesis in Electrical Division in IISc.

Salim El Rouayheb (S’07M’09) received the Diploma degree in electrical
engineering from the Lebanese University, Faculty of Engineering, Roumieh,
Lebanon, in 2002, and the M.S. degree in computer and communications
engineering from the American University of Beirut, Lebanon, in 2004.
He received the Ph.D. degree in electrical engineering from Texas A&M
University, College Station, in 2009. He is currently a Postdoctoral Research
Fellow with the Electrical Engineering and Computer Science Department,
University of California, Berkeley. His research interests lie in the broad
area of communications with a focus on reliable an secure distributed
information systems and on the algorithmic and information-theoretic aspects
of networking.

Kannan Ramchandran is a Professor of Electrical Engineering and Com-
puter Science at the University of California at Berkeley, where he has been
since 1999. Prior to that, he was with the University of Illinois at Urbana-
Champaign from 1993 to 1999, and was at AT&T Bell Laboratories from 1984
to 1990. His current research interests include distributed signal processing
algorithms for wireless sensor and ad hoc networks, multimedia and peer-
to-peer networking, multi-user information and communication theory, and
wavelets and multi-resolution signal and image processing. Prof. Ramchan-
dran is a Fellow of the IEEE. His research awards include the Elaihu Jury
award for the best doctoral thesis in the systems area at Columbia University,
the NSF CAREER award, the ONR and ARO Young Investigator Awards, two
Best Paper awards from the IEEE Signal Processing Society, a Hank Magnuski
Scholar award for excellence in junior faculty at the University of Illinois, and
an Okawa Foundation Prize for excellence in research at Berkeley. He is a
Fellow of the IEEE. He has published extensively in his field, holds 8 patents,
serves as an active consultant to industry, and has held various editorial and
Technical Program Committee positions.

