
Examples on using APIndexCoding and FindNetworkCode

MATLAB functions

Xiao Huang and Salim El Rouayheb

1 APIndexCoding function

In this section, we illustrate through an example (Fig. 1) how to use the MATLAB function APIn-
dexCoding to find a scalar linear solution for a given index coding problem.

Wants:"
Has:"

Wants:"
Has:""

Wants:"
Has:"

Wants:"
Has:""

X1 + X4

X1 + X2 + X3

X1 X2 X3 X4

u1 u2 u3 u4
X1 X2 X3 X4

X1X3X2X3 X2X4 X1

Figure 1: An index coding example.

The index coding problem of Fig. 1 can be seen as a rank minimization problem of the following
matrix

M =

X1 X2 X3X4

u1


1 ∗ ∗ 0
∗ 1 ∗ 0
0 ∗ 1 ∗
∗ 0 0 1

u2
u3
u4

.

So we could use M as input and get the optimal scalar linear solution. The MATLAB inputs are
shown as follows, and the output is depicted in Fig. 2.
M = [1 NaN NaN 0; NaN 1 NaN 0; 0 NaN 1 NaN; NaN 0 0 1];
[Rmin, M] = APIndexCoding(M)

Figure 2: Screenshot from MATLAB showing the optimal scalar linear solution of the index coding problem
in Fig. 1 corresponding to a completed matrix M of rank 2.

1



This is the default way of using the function APIndexCoding. Check the help section in the
MATLAB code for more details on the different options that this function offers.

2 FindNetworkCode Function

In this section, we show by constructing a scalar linear index code for the well known “Butterfly”
network (Fig. 3) how to use the FindNetworkCode function. For more details about the function,
please check the help section of FindNetworkCode in MATLAB.

1

X1

2

X2

5

X2

6

X1

3

4

e1,5

e1,3

e2,6

e2,3

e3,4

e4,5 e4,6

(a)

1

X1

2

X2

5
d1=1.430544m2+

1.674813m6=X2

6
d2=0.822154m4+

1.690643m7=X1

3

4

m
2
=

−
1
.2
0
3
3
4
3
X

1

m
1
=
0.959554X

1

m
4
=

−
0
.7
0
3
2
6
7
X

2

m
3
=
0.
99
38
68
X
2

m5 = 1.135385m1 + 0.634765m3

m
6
=
0.
94
47
51
m
5

m
7
=
0.541636m

5

(b)

Figure 3: (a) The Butterfly network and (b) its corresponding network code obtained from function
FindNetworkCode.

Consider the Butterfly network depicted in Fig. 3 (a). To generate a scalar linear index code for
this network, define “Edges” as a 7 × 2 matrix, 7 being the total number of edges. Where in each
row the edge eij is represented by i in the first column and j in the second column. Create a
“Demand” vector where the value in the ith entry is the number of the source that terminal i is
interested in receiving its packet and is 0 if node i is not a terminal. Run the function as shown in
the following code, the output is depicted in Fig. 5.
Edges = [1 5 ;1 3 ;2 3 ;2 6 ;3 4 ;4 5 ;4 6];
Demand = [0 0 0 0 2 1];
FindNetworkCode(Edges, Demand)

Updates: The screenshots here are from the old FindNetworkCode function. The new function
will first try to find a solution to the equivalent index coding problem over GF (2) using the LDG
method from Birk and Kol. If it does not succeed it will try APIndexCoding to find a code over

2



Figure 4: Screenshot from MATLAB showing the resulting index code.

the reals. The way to call the function is still the same.

2.1 Output interpretations

In this section, we interpret the given results. First, notice that for some networks scalar linear
codes are not optimal. In such case, the function FindNetworkCode will output “Cannot find scalar
linear network code”.

When scalar linear codes are optimal (e.g. butterfly network in Fig 3), we may get the results in
Fig. 5. Now each “edge[i, j]” can be seen as the encoding of the message mk sent through edge ei,j
as a function of the incoming messages and the data packets. For instance, the output in Fig. 5
can be written as follows:

m1 = e1,3 = 0.959554X1,

m2 = e1,5 = −1.203343X1,

m3 = e2,3 = 0.993868X2,

m4 = e2,6 = −0.703267X2,

m5 = e3,4 = 1.135385m1 + 0.634765m3,

m6 = e4,5 = 0.944751m5,

m7 = e4,6 = 0.541636m5.

However, each “Node[i]” can be seen as the decoding function of the terminal tl. Hence,

d1 = Node[5] = 1.430544m2 + 1.674813m6 = X2,

d2 = Node[6] = 0.822154m4 + 1.690643m7 = X1.

And the resulting network code is depicted in Fig. 3 (b).

3 Graphical User Interface

The Matlab file is graph gui.m. The GUI in the figure below allows the user to draw the network
and call the FindNetworkFunction by hitting the FindNetworkCode Button. The demands are

3



specified in the corresponding text box under the following format: “source1 destination1; source2
destination2; ...” The dimension text box takes as an input the desired dimension of the vector
linear solution. However, in the current version this number is ignored and always taken to be 1
(i.e. the function tries to construct a scalar linear network code).

Figure 5: GUI for the FindNetworkCode function

4


	APIndexCoding function
	FindNetworkCode Function
	Output interpretations

	Graphical User Interface

