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DISTRIBUTED LINEAR REGRESSION

Linear regression is an algorithm aiming to represent
a data matrix A, labeled with a vector y, by a vector
of attributes x∗ such that Ax∗ ≈ y.

A possible solution is to run the following iterative
computation

x(t+1) = x(t) − α(t)AT (Ax(t) − y). (1)

Here α(t) is called the learning rate and x∗ is found
when x(t+1) ≈ x(t).

In a distributed setting, one wants to divide the main
computation into smaller tasks and distribute them
to nworker machines that can perform these smaller
tasks in parallel.

Fig. 1: An example of distributed linear regression.
The computation given in (1) is divided into two
multiplications: Ax and ATb, with b , Ax−y. Each
worker multiplies his matrix by the vector sent to
them and sends the result back to the Master.

SECRECY AND STRAGGLERS

Master M owns A and
wants Ax.

n workers are available.
n − k workers might be

stragglers (k < n).
z workers can collude to

learn A (z < k).
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Main challenges:
Secrecy: maintain the confidentiality of A, in an in-
formation theoretic sense.
Stragglers: Should M wait for the slow workers? [1]

Assumptions:
Communication cost as proxy for latency.
Delays are shifted exponential random variables [2],

F (delay = t) , 1− e−λ(t−c), for t ≥ c.

Goal:
Design codes that ensure secrecy, mitigate any num-
ber of stragglers up to a given threshold and mini-
mize the communication cost.

STAIRCASE CODES
Theorem 1 ([3]) The (n, k, z) Staircase code con-
structed as follows mitigates any number of stragglers
n− d, k ≤ d ≤ n, and achieves minimum download cost
given by

download cost =
d(k − z)
d− z

for all values of d.


Worker 1

...

Worker n

 =

Vandermonde




D2

. . . Dh−1
D1 Rh

S R3
. . .

R2 0R1 0
. . .

0

 .

Example: An (n, k, z) = (4, 2, 1) Staircase code con-
structed over GF (5).

Worker 1 Worker 2 Worker 3 Worker 4
A1 +A2 +A3 +R1 A1 + 2A2 + 4A3 + 3R1 A1 + 3A2 + 4A3 + 2R1 A1 + 4A2 +A3 + 4R1

A4 +A5 +A6 +R2 A4 + 2A5 + 4A6 + 3R2 A4 + 3A5 + 4A6 + 2R2 A4 + 4A5 +A6 + 4R2

R1 +R2 +R3 R1 + 2R2 + 4R3 R1 + 3R2 + 4R3 R1 + 4R2 +R3

A3 +R4 A3 + 2R4 A3 + 3R4 A3 + 4R4

A6 +R5 A6 + 2R5 A6 + 3R5 A6 + 4R5

R3 +R6 R3 + 2R6 R3 + 3R6 R3 + 4R6

ONGOING WORK AND FUTURE DIRECTIONS

� Heterogeneous system: Workers have
different properties.
� Malicious workers: Workers might
send wrong results to M.

� Beyond linear regression: Flexible
straggler mitigation for gradient de-
scent and stochastic gradient descent
algorithms.

� Dynamic environment: Workers can
join and leave the system at any time.
� Delay analysis: Study the delay
model for small amount of data.

IMPLEMENTATION ON AMAZON CLOUD
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(a) : (n, k, z) = (4, 2, 1).
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(b) : (n, k, z) = (10, 5, 1).
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(c) : (n, k, z) = (20, 10, 1).

Figure 2: Empirical complementary CDF of the Master’s waiting time (and its average) observed on Amazon
EC2 clusters for systems with rate k/n = 1/2. The data matrix A is a 378000 × 250 matrix with entries
generated uniformly at random from {1, . . . , 255}. Staircase codes bring 59% reduction in the mean waiting
time for n = 4. Those numbers were obtained by repeating the multiplication process 1000 times.

SAVINGS IN WAITING TIME AT THE MASTER
Theorem 2 (Lower bound on savings in mean waiting time [4]) The savings on mean waiting time E[TSC] of an
(n, k, z) system using Staircase codes compared to k-out-of-n classical codes is lower bounded by

Savings ≥ 1− min
d∈{k,...,n}

{
(k − z)(λc+Hn −Hn−d)

(d− z)(λc+Hn −Hn−k)

}
. (2)

where Hn is the nth harmonic sum defined as Hn ,
∑n
i=1

1
i , and H0 , 0.
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Figure 3: The savings brought by (n, n/2, 1) Staircase
codes on Amazon EC2 instances compared to theo-
retical results for large amounts of data. The data is
a matrix of size 387000 × 250. The savings obtained
on Amazon match the theoretical expectations.
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Figure 4: The savings brought by (4, 2, 1) Staircase
codes on Amazon EC2 instances compared to theo-
retical results for small amounts of data. The data is
a matrix of size 42000×250. The savings obtained on
Amazon EC2 do not match theoretical expectations.
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