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Linear regression is an algorithm aiming to represent
a data matrix A, labeled with a vector y, by a vector
of attributes x* such that Ax™ ~ y.

A possible solution is to run the following iterative
computation

xUH) = x() — o0 AT (A% — y). (1)

Here o'?) is called the learning rate and x* is found
when x(+1) ~ x(¥),

In a distributed setting, one wants to divide the main
computation into smaller tasks and distribute them
to n worker machines that can perform these smaller
tasks in parallel.

SECRECY AND STRAGGLERS STAIRCASE CODES

Master M owns A and
wants Ax.

e n workers are available.

* n — k workers might be
stragglers (k < n).

e > workers can collude to
learn A (z < k).

Main challenges:

Secrecy: maintain the confidentiality of A, in an in-
formation theoretic sense.

Stragglers: Should M wait for the slow workers? [1]

Assumptions:
Communication cost as proxy for latency.
Delays are shifted exponential random variables [2],

F(delay=t) 2 1—e 279 fort>c.

Goal:

Design codes that ensure secrecy, mitigate any num-
ber of stragglers up to a given threshold and mini-
mize the communication cost.
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Fig. 1: An example of distributed linear regression.
The computation given in (1) is divided into two
multiplications: Ax and A”b, with b = Ax —y. Each
worker multiplies his matrix by the vector sent to
them and sends the result back to the Master.

Theorem 1 ([3]) The (n,k,z) Staircase code con-
structed as follows mitigates any number of stragglers
n—d, k <d < n,and achieves minimum download cost

given by

dlk — z
download cost = ( )
d— z
for all values of d.
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Example: An (n, k, z) = (4,2, 1) Staircase code con-
structed over GF'(5).

Worker 1
A+ Ay + As + Ry
As + As + Ag + Ro

Worker 2
A1 + 2A2 + 4A3 + 3R,
A4 + 2A5 + 4A6 + 3Rs

Worker 3
Ay +3A5 +4A3 + 2R,
Ay + 3A5 + 446 4+ 2R,

Worker 4
A; +4A + Az + 4R,
A4 —+ 4A5 + A6 + 4R2

Ri1+ Ry + R3 R1 + 2R + 4R3 Ri1+ 3R + 4R3 R +4Rs + R5
As + Ry As + 2Ry Az + 3Ry As + 4Ry
As + Rs Ag + 2R3 Ag + 3R5 Ag + 4R5
R34+ Rg R34+ 2R R34+ 3Rs Rs +4Rg

ONGOING WORK AND FUTURE DIRECTIONS

o Heterogeneous system: Workers have
different properties.
o Malicious workers: Workers might

send wrong results to M. algorithms.

o Beyond linear regression:
straggler mitigation for gradient de-
scent and stochastic gradient descent

Flexible ¢ Dynamic environment: Workers can
join and leave the system at any time.
o Delay analysis: Study the delay

model for small amount of data.
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(a) : (n, k,z) = (4,2,1). (b) : (n,k,z) =(10,5,1). (c¢) : (n,k,z) =(20,10,1).

Figure 2: Empirical complementary CDF of the Master’s waiting time (and its average) observed on Amazon

EC2 clusters for systems with rate k/n =

1/2. The data matrix A is a 378000 x 250 matrix with entries

generated uniformly at random from {1, ...,255}. Staircase codes bring 59% reduction in the mean waiting
time for n = 4. Those numbers were obtained by repeating the multiplication process 1000 times.

SAVINGS IN WAITING TIME AT THE MASTER

Theorem 2 (Lower bound on savings in mean waiting time [4]) The savings on mean waiting time E|Tsc] of an
(n, k, z) system using Staircase codes compared to k-out-of-n classical codes is lower bounded by

Savings > 1 — min {
dedk,...,n}

(k—z2)(Ac+ H,, — Hp_q)

(d—2)(Ae+ H,, — H,_}) } '

(2)

where H,, is the n'" harmonic sum defined as H, il 2?21 %, and Hy £ 0.
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Figure 3: The savings brought by (n,n/2, 1) Staircase
codes on Amazon EC2 instances compared to theo-
retical results for large amounts of data. The data is
a matrix of size 387000 x 250. The savings obtained
on Amazon match the theoretical expectations.
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Figure 4: The savings brought by (4,2, 1) Staircase
codes on Amazon EC2 instances compared to theo-
retical results for small amounts of data. The data is
a matrix of size 42000 x 250. The savings obtained on
Amazon EC2 do not match theoretical expectations.
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