

SECRET SHARING

Secret sharing [?] consists of a dealer randomly encoding a secret s into *n* shares and distributing them to *n* parties. Such that, a legitimate user downloading any set of at least t, t < n, shares can decode the secret and any set of at most z, z < t, parties cannot obtain any information about the secret.

Secret sharing is a building block of many cryptographic and distributed computing protocols. Its applications include access control, generalized oblivious transfer and secure multiparty computation.

COMMUNICATION EFFICIENT SECRET SHARING

An (n, k, z, d) CESS storing a secret **s** of k symbols in \mathbb{F}_q^{α} n: total # of parties z: # of colluding parties t = k + z: min # of parties to reconstruct s d: # of contacted parties α : # of symbols per share σ : bandwidth per party

A communication efficient secret sharing (CESS) [?] is a secret sharing with the additional property that a user contacting more than *t* parties can download less than *t* shares and decode the secret.

The extra amount of information (beyond the secret size) read and communicated to the user is termed as read overhead (RO) and communication overhead (CO).

A CESS code must satisfy: shares can decode the secret.

where

CO

z = t - 1 and optimal for all d [?, ?] or z < t and optimal for d = n [?].

STAIRCASE CODES FOR COMMUNICATION EFFICIENT SECRET SHARING

RAWAD BITAR AND SALIM EL ROUAYHEB

Figure 1: An n = 4, t = 2 and z = 1 secret sharing.

MDS property: A user downloading any t = k + z

Perfect secrecy constraint: Any set of at most *z* parties cannot obtain any information about the secret.

Minimum CO and RO: [?] A user contacting any d parties, $t \leq d \leq n$, is able to decode the secret by reading and downloading exactly k + CO(d) units of information in total from all the contacted shares,

$$(d) = \frac{kz}{d-z}$$
 and $\operatorname{RO}(d) = \operatorname{CO}(d)$.

RESULTS

EXAMPLE

To construct the (n, k, z) = (4, 1, 1) universal Staircase CESS code, divide the secret s into 6 symbols over GF(5). Choose 6 independent random symbols k_1, \ldots, k_6 uniformly at random over GF(5) and indepen-

dently of s. Arrange the secret in a matrix $S = \begin{bmatrix} s_1 & s_2 & s_3 \\ s_4 & s_5 & s_6 \end{bmatrix}^t$. Arrange the random symbols in three matrices as follows, $\mathcal{K}_1 = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$, $\mathcal{K}_2 = \begin{bmatrix} k_3 \end{bmatrix}$ and $\mathcal{K}_3 = \begin{bmatrix} k_4 & k_5 & k_6 \end{bmatrix}$. Let \mathcal{D}_1 be the transpose of the last row of $M_1 \triangleq \begin{bmatrix} \mathcal{S} & \mathcal{K}_1 \end{bmatrix}^t$ and \mathcal{D}_2 be the second to last row of $\begin{bmatrix} M_1 & M_2 \end{bmatrix}$. Let V be an 4×4 Vandermonde matrix over GF(5). Then, M and V can be expressed as

REFERENCES

- pp. 473–480, Jan 2008.
- *Science*, vol. 418, pp. 106–115, 2012.

Theorem 1 [?] The (n, k, z, d) Staircase CESS code defined as the product of an $n \times d$ Vandermonde matrix by the matrix M defined below ($\alpha = d - z$) over GF(q), q > n, satisfies the required MDS and perfect secrecy constraints, and achieves optimal communication and read overheads CO(d) and RO(d) for any given $d, d \in \{k + z, ..., n\}$.

Theorem 2 [?] The (n, k, z) universal Staircase CESS code defined as the product of an $n \times n$ Vandermonde matrix by the matrix M defined below over GF(q), q > n, satisfies the required MDS and perfect secrecy constraints, and achieves optimal communication and read overheads CO(d) and RO(d) simultaneously for all $d, k + z \le d \le n$.

$$M = \begin{bmatrix} s_1 & s_4 & k_1 & s_3 & s_6 & k_3 \\ s_2 & s_5 & k_2 & k_4 & k_5 & k_6 \\ s_3 & s_6 & k_3 & 0 & 0 & 0 \\ k_1 & k_2 & 0 & 0 & 0 & 0 \\ \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 \\ 1 & 3 & 4 & 2 \\ 1 & 4 & 1 & 4 \end{bmatrix}.$$
$$M_1 \quad M_2 \qquad M_3$$

The encoding is given by C = VM, where the i^{th} row of C is given as a share to party i, i = 1, ..., 4.

[1] A. Shamir, "How to share a secret," *Communications of the ACM*, vol. 22, no. 11, pp. 612–613, 1979.

[2] H. Wang and D. S. Wong, "On secret reconstruction in secret sharing schemes," IEEE Transactions on Information Theory, vol. 54,

[3] Z. Zhang, Y. M. Chee, S. Ling, M. Liu, and H. Wang, "Threshold changeable secret sharing schemes revisited," Theoretical Computer

[4] W. Huang, M. Langberg, J. Kliewer, and J. Bruck, "Communication efficient secret sharing," arXiv preprint arXiv:1602.04496, 2015. [5] R. Bitar and S. El Rouayheb, "Staircase codes for secret sharing with optimal communication and read overheads," IEEE International *Symposium on Information Theory (ISIT),* Barcelona, July 2016.

