PIR IN DISTRIBUTED STORAGE SYSTEMS: MY RECENT RESULTS

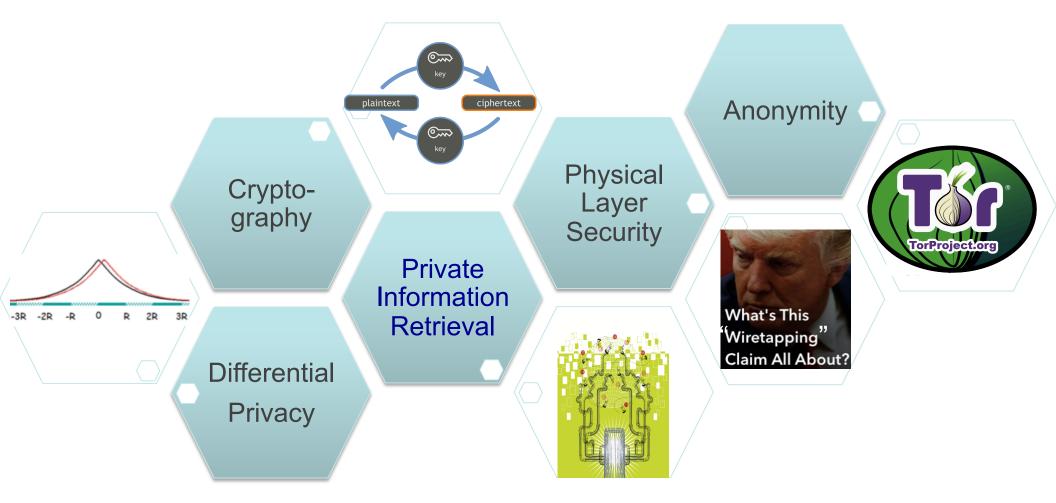
SALIM EL ROUAYHEB

ECE Department Illinois Institute of Technology

Google Maps is so concerned about privacy that it accidentally blurred out a cow's face

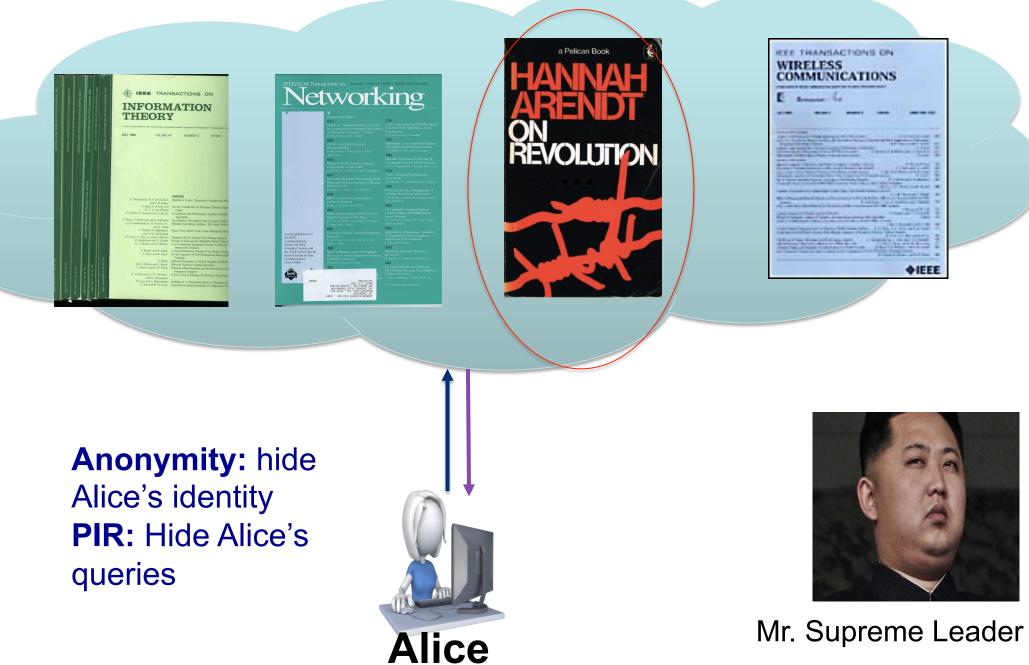
Jacob Shamsian, INSIDER () Sep. 17, 2016, 1:11 PM 6 4,755

THE MANY FACETS OF PRIVACY



PIR IN DISTRIUTED SOTRAGE SYS.

Cloud



Coding for Reliable Distributed Storage

- Lots of research on codes for reliability in distributed storage systems
 - Regenerating codes, Locally Recoverable codes etc. [Dimakis et al.], [Tamo & Barg], [Yekhanin et al.] etc.
 - Many best paper awards
 - Microsoft says codes saved them millions of dollars

How are theoretical challenges of requiring privacy in PIR sense in addition to reliability in DSS?

Coding for **Privacy** and Reliability

- 2 files A, B Typically, coding different files together is not allowed
- Have to deal with collusions (nodes have to talk to each other for repair etc.)
- Locality, repair BW, etc.
- Many system overhead of PIR:
 - 1. Communication cost
 - 2. Storage cost
 - 3. Computational overhead
 - 4. Latency

A+B

A+2B

 $A_1 + A_2 + A_1 + 2A_2$

 $B_1 + B_2 \quad B_1 + 2B_2$

B

 A_2

 B_2

А

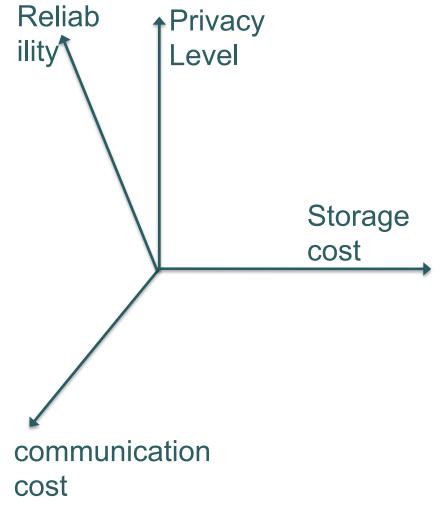
 A_1

B₁

Coding for **Privacy** and Reliability

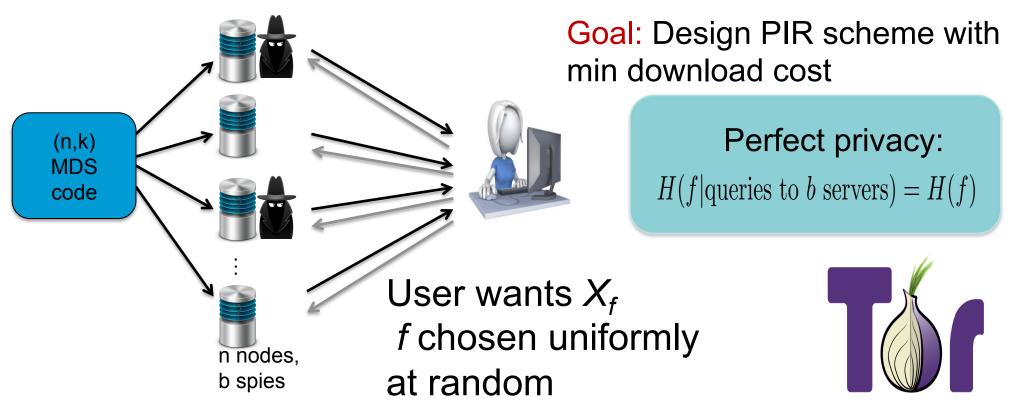
 What are the fundamental limits on the possible tradeoffs in this multidimensional space ?

 How to construct codes that achieve these fundamental limits?



SYSTEM MODEL: SEPARATION APPROACH

- A distributed system with n servers storing files X₁, ..., X_m
- b passive spy nodes
- Use "best" codes that minimize storage overhead for reliability, then optimize for privacy
- (n,k) MDS code is given and not design parameter.



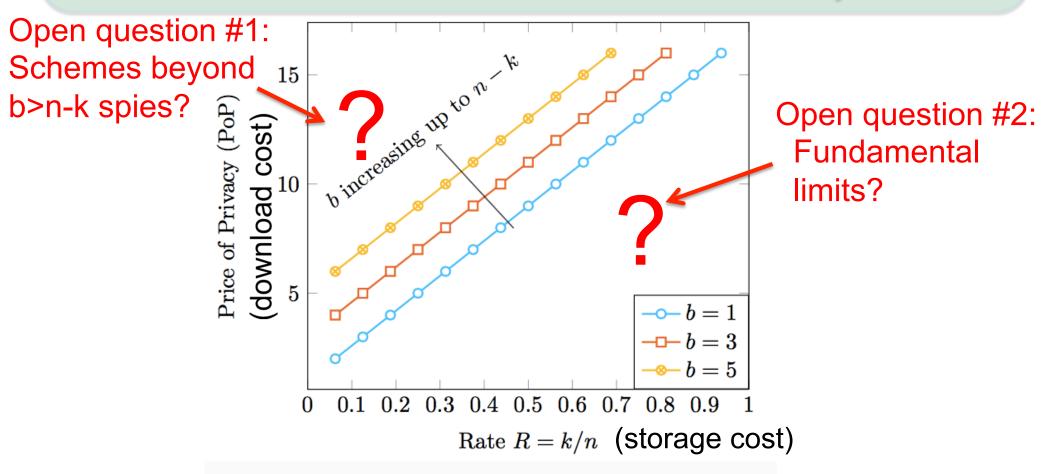
R. Tajeddine, S.E.R., "Private Information Retrieval from MDS Coded Data", ISIT 2016

OUR RESULTS: PIR ON CODED DATA

Theorem 1:[Tajeddine & S.E.R. ISIT'16] Consider a DSS using an

(*n*,*k*) MDS code with $b \le n - k$ spy nodes. Then, there exist an explicit

linear PIR scheme with communication Price of Privacy PoP=b+k

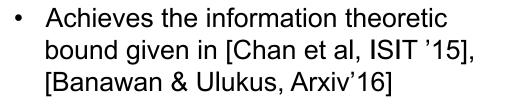


R. Tajeddine, S. E. R., "Private Information Retrieval from MDS Coded Data", ISIT 2016

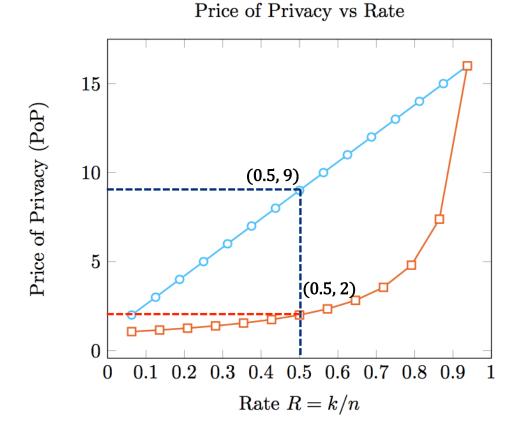
IMPROVED PIR FOR SINGLE SPY

Theorem 2:[Tajeddine & S.E.R. ISIT'16] Consider a DSS using an *(n,k)* MDS code with *b*=1 spy node. Then, there exist an explicit linear PIR scheme with communication Price of Privacy

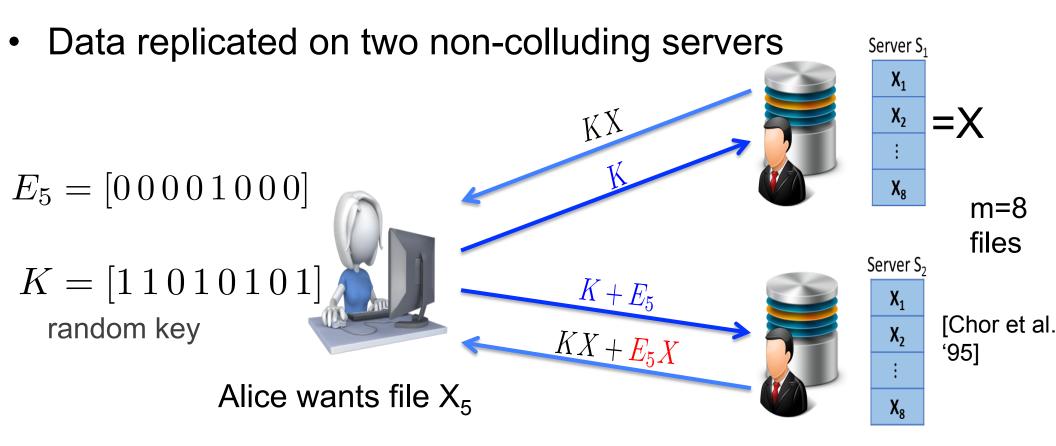
$$PoP = \frac{n}{n-k} = \frac{1}{1-R}.$$



- Achieve the bound given in [Sun et. al, ISIT '16] when applying replication.*
- The PIR scheme is universal, i.e. does not depend on the MDS code.



EFFICIENT PIR: TOY EXAMPLE



- Downloads twice the file size. Price of Privacy PoP=2
- Perfect privacy in information theoretic sense
- How about total upload + download cost? 2m+2*FileSize

"CLASSICAL" REPLICATION-BASED PIR

- Focus has been on upload+download communication cost
- Early results, O(m^{1/2n-1}), m files replicated on n servers
 [chor et al. '95], [Ambainis, '97],...
- Holy grail: subpolynomial com.cost. [Yekhanin '08], [Efremenko '12], [Beimel et al. '06]
- $m^{O(\sqrt{\log \log m / \log m})}$ [Dvir and Gopi '14]

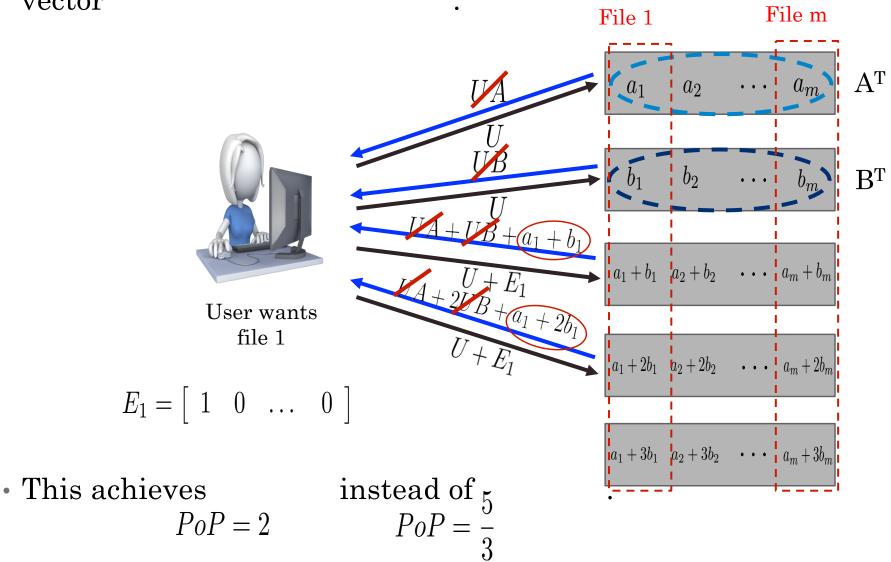
Requires replication -> high storage cost

Computational PIR

- No replication. Single server.
- [Kushilevitz and Ostrovsky, '97], [Chor and Gilboa, '97], [Cachin, Micali, and Stadler, '99], ...
- High computational complexity [Sion and Carbunar, '07]

Theorem 2: b=1 spy, optimal scheme

• Generate an iid random $U = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}$ vector



Theorem 2: b=1 spy, optimal scheme

- Divide each part into 3,
 a₁₁ a₁₃ a₁₃
- 2 subqueries.
- 2 random vectors U and V

$$Q_{1} = \begin{bmatrix} u_{1} + 1 & u_{2} & u_{3} & \dots \\ v_{1} & v_{2} & v_{3} & \dots \end{bmatrix}$$
$$Q_{2} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & \dots \\ v_{1} + 1 & v_{2} & v_{3} & \dots \end{bmatrix}$$
$$Q_{3} = Q_{4} = \begin{bmatrix} u_{1} & u_{2} + 1 & u_{3} \\ v_{1} & v_{2} & v_{3} + 1 \end{bmatrix}$$
$$Q_{5} = \begin{bmatrix} u_{1} & u_{2} & u_{3} & \dots \\ v_{1} & v_{2} & v_{3} & \dots \end{bmatrix}$$

. . .

• • •

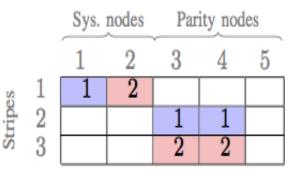
 $\begin{array}{c} a_{11} & a_{12} & a_{13} & \cdots \\ & & & \\ U.A + U.BQ3a_{12} + b_{12} \\ & & \\ U.A + U.BQ3a_{12} + b_{12} \\ & &$

File 1

Remark for later: Alice needs the responses of all the servers.

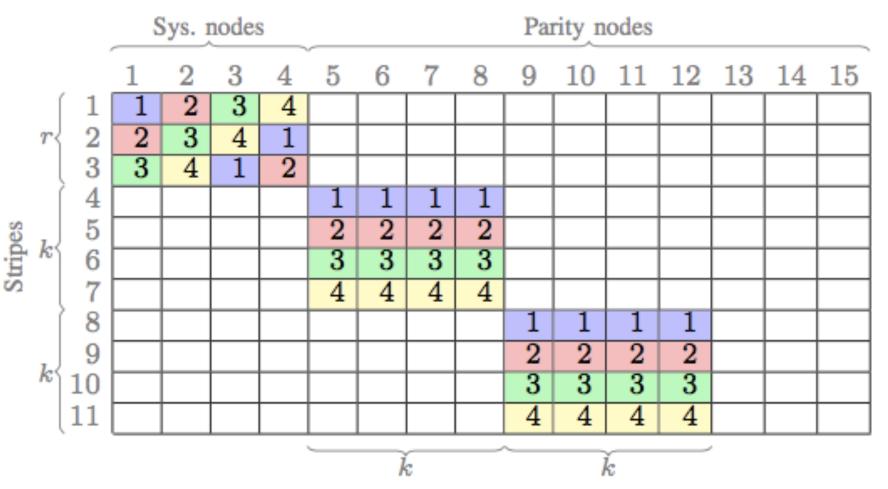
Proof of Theorem 1

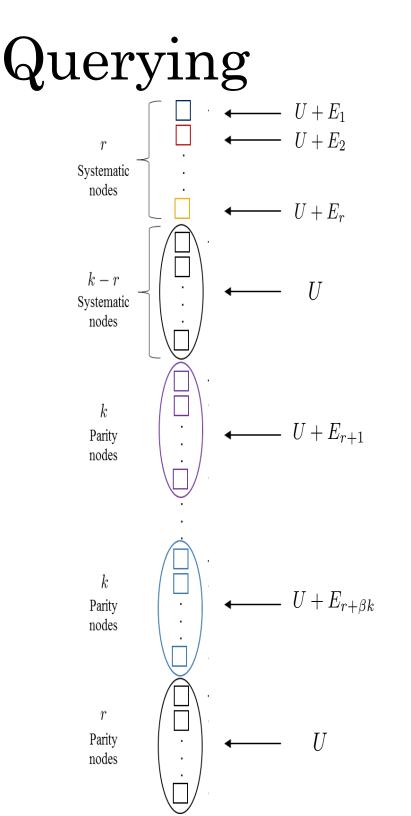
- Scheme:
 - We divide each file into n k stripes.
 - k sub-queries are made to each node (dimension of code is d).
 - We write $n-k = \beta k + r$ ·
- Conditions:
 - Decode n-k parts in each sub-query.
 - Parts not on same node.
 - Different parts in each sub-query



Retrieval pattern

Retrieval pattern for (15,4) MDS





Where the E_i s are matrices with 1s at the positions we want to decode.

- *k* equations to decode interference.
- *r* equations from systematic nodes to decode parts of the first r stripes.
- βk equations from βk parity nodes to decode complete stripes.
- In total, $\beta k + r$ parts decoded.

Properties of the No-Collusion Scheme

- Universal: Does not depend on the MDS code
- Random vector can be just 0/1,i.e., projections are just XORS
- Instantaneous decoding in each sub-query
- Partial PIR of parts of the file
- Does not depend on number of files m
- Can be made Robust to non-responsive nodes (Reliability & Privacy) [Tajeddine & E.R. ISIT'17]

Theorem 1: Consider a DSS with n non-colluding nodes and using an (n, k) MDS code over GF(q). Then, the linear PIR scheme over GF(q) described in Section III is a universal ν -robust PIR scheme, i.e., it achieves perfect privacy and and has optimal $cPoP = \frac{n_i}{n_i - k}$, where $n_i = n - i$, for all number of unresponsive nodes $i, 0 \le i \le \nu$.

Example on Robust PIR scheme

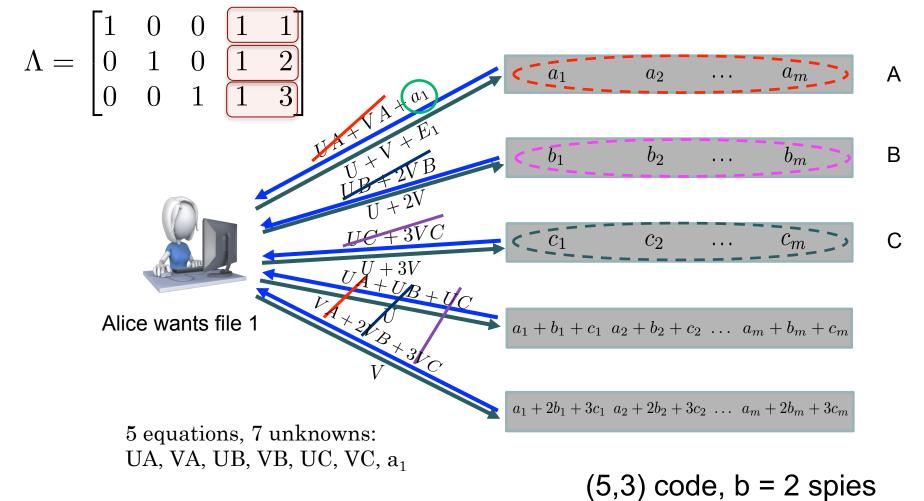
	Layer 1	Layer 2			
			Node 2 is unresponsive		Node 4 is unresponsive
Node 1	u	Ø	V	$\mathbf{v} + \mathbf{e}_f$	$\mathbf{v} + \mathbf{e}_{f}$
Node 2	u	V	Ø	V	V
Node 3	$\mathbf{u} + \mathbf{e}_f$	$\mathbf{v} + \mathbf{u}$	$\mathbf{v} + \mathbf{u}$	Ø	\mathbf{v}
Node 4	$\mathbf{u}+\mathbf{e}_{f}^{'}$	v	\mathbb{V}	V	Ø

TABLE I: An example of our proposed 1-universal and adaptive robust PIR scheme. The scheme has two layers, with \emptyset indicating the unresponsive node.

- The scheme is adaptive and universally optimal (achieves min PoP)
- Open problem: non-adaptive robust PIR for coded data?
- Later: non-adaptive robust PIR for uncoded data?

PIR SCHEME FOR MORE THAN 1 SPY

• User generates 2 iid random vectors U and V of length m (m number of files)



- b=2 spy nodes
- Theorem 1 → PoP= b+k=5

Taste of the Proof Theorem 1

Theorem 1:[Tajeddine & E.R. ISIT'16] *b*≤*n*-*k* spies → PoP=b+k

• Generator matrix of the (n,k) MDS code •

$$\Lambda = \left[egin{array}{cccc} I_{k imes k} & \lambda_{1,k+1} & \cdots & \lambda_{1,n} \ dots & dots & dots & dots \ dots & dots & dots & dots \ \lambda_{k,k+1} & \cdots & \lambda_{k,n} \end{array}
ight]$$

- Parity check matrix generates the null space of the code $H = \left(\begin{array}{c|c} P^T & I \end{array} \right) \text{ with } \Lambda H = \mathbf{0}$
- Step 1: Generate the random matrix

$$U = \begin{pmatrix} | & | & | & | \\ U_1 & U_2 & \dots & U_b \\ | & | & | & | \end{pmatrix}$$

 Proof is in an extended version (with O. Gnilke) available on Arxiv
 Generalized constructions by [Freij-Hollanti et al. '16]

- More in Dave's talk
- Open problems:
 Fundamental
 bounds for coded
 & collusion?
- PIR schemes ind. of the code?

Taste of the Proof Theorem 1

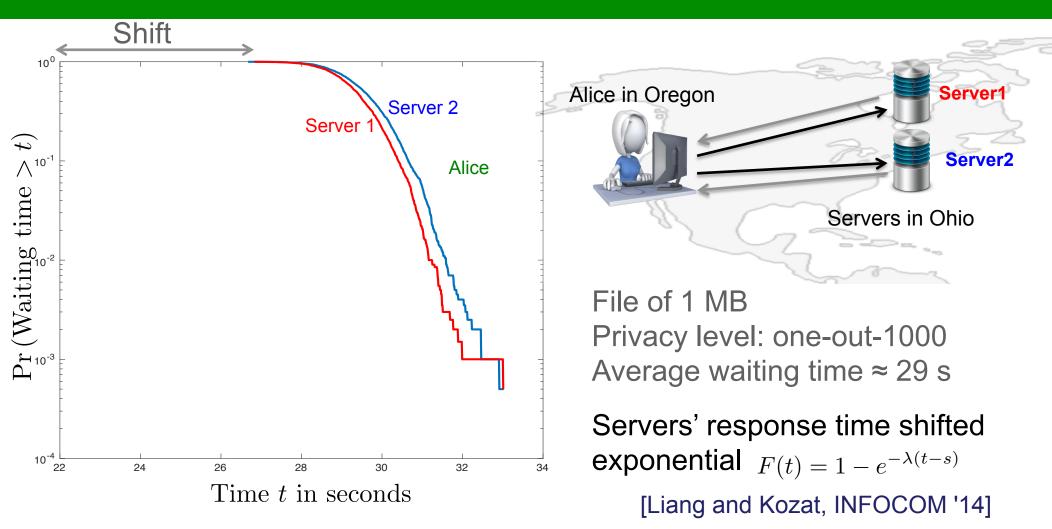
• Step 2: Query phase

---- Query to server 1-----
:
=
$$Q = UH + E_f$$
 what Alice
wants
---- Query to server n-----

- Step 3: Response phase
- Each servers projects the query vector on its data and sends the result back to Alice
- Thus the response of all the nodes is:

$$R = UH\Lambda \overset{=0}{\mathcal{X}} + E_f\Lambda \quad \mathcal{X}$$
$$= E_f\Lambda \quad \mathcal{X}$$

IMPLEMENTATION ON AMAZON CLOUD

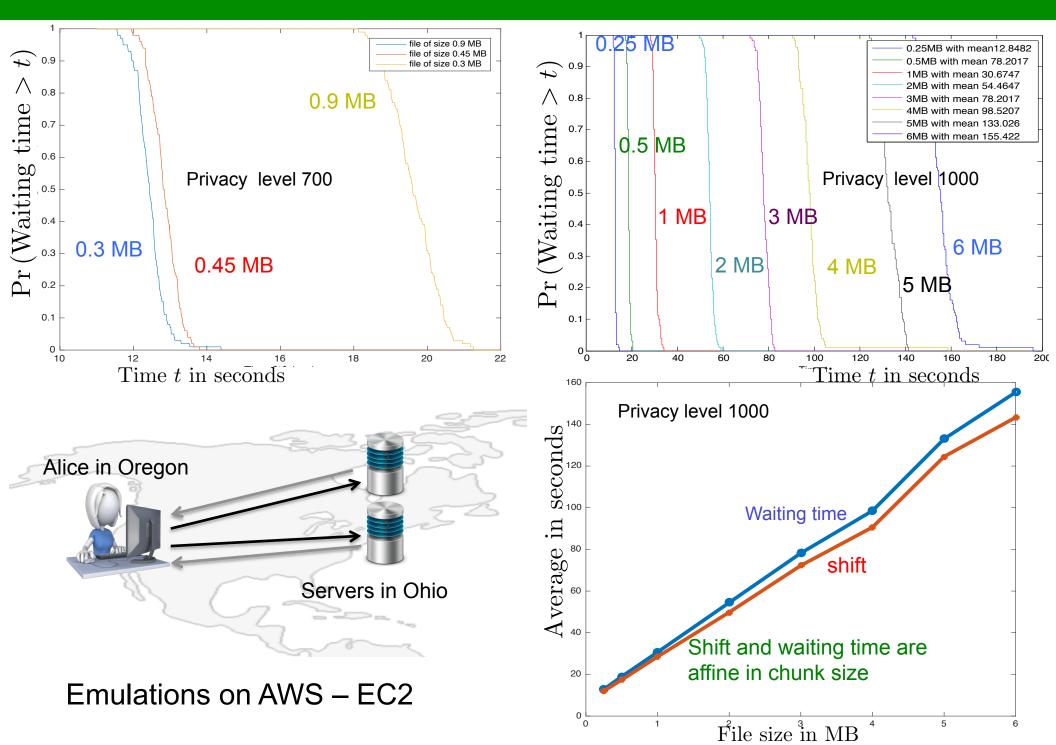


Two challenges:

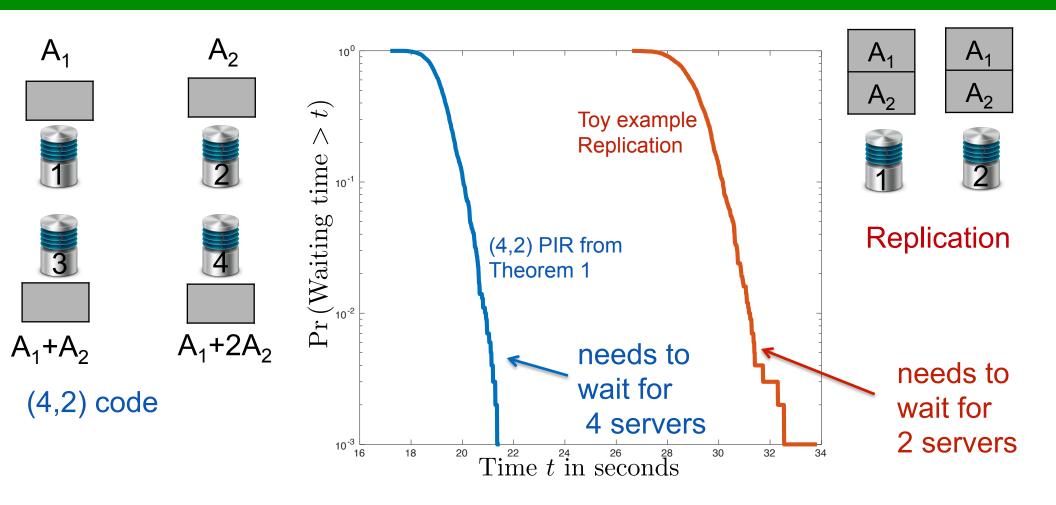
- 1. Straggler problem: Even one slow (straggler) server will delay Alice
 - The tail at scale effect [Dean and Barroso, ACM '13].
- 2. Computation overhead of PIR

Precomputations [Beimel et al. '00], Batch codes [Ishai et al, '04]

EFFECT OF THE FILE SIZE

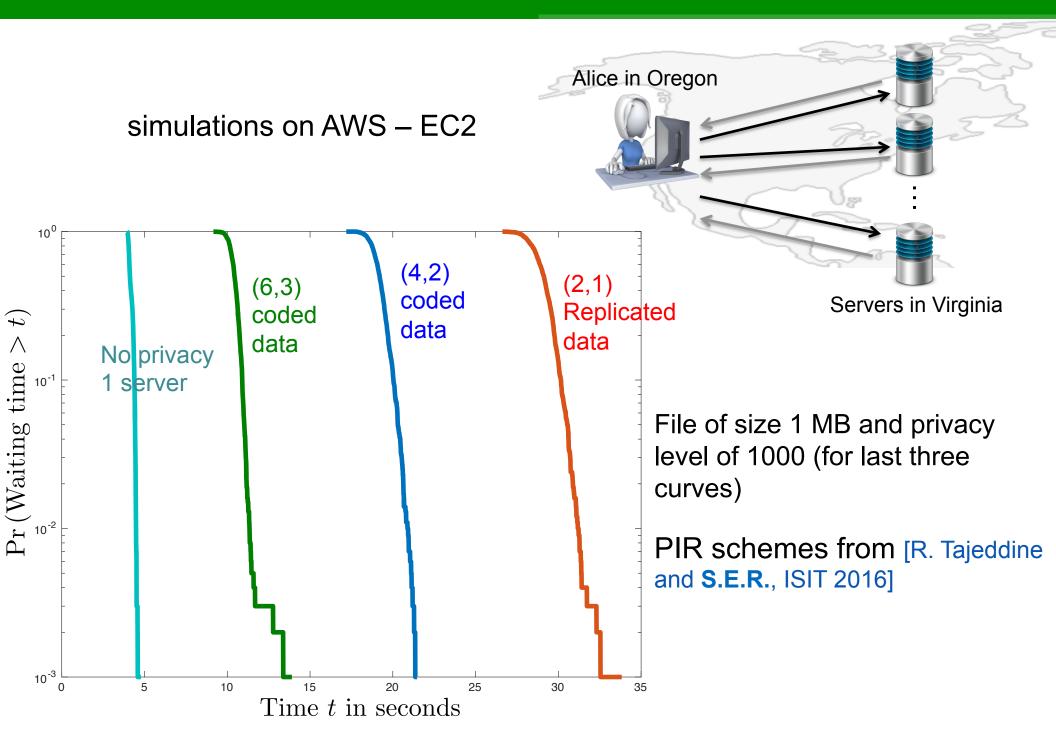


CODES ENABLE PARALLELISM

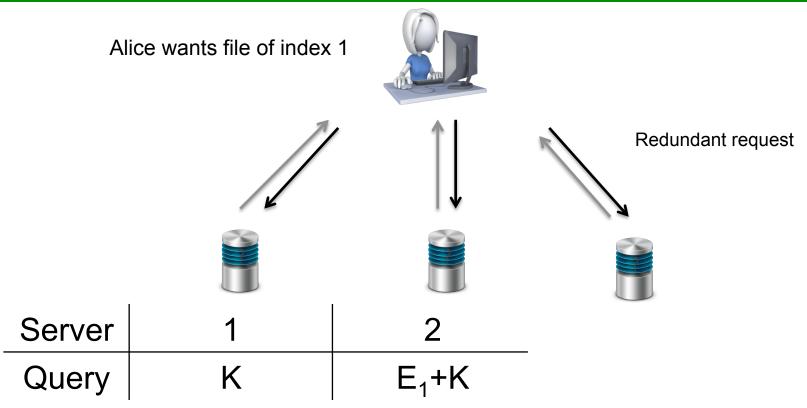


- Codes → chunking → smaller waiting time per server
- But, more servers. Stragglers problem again

CODES ENABLE PARALLELISM

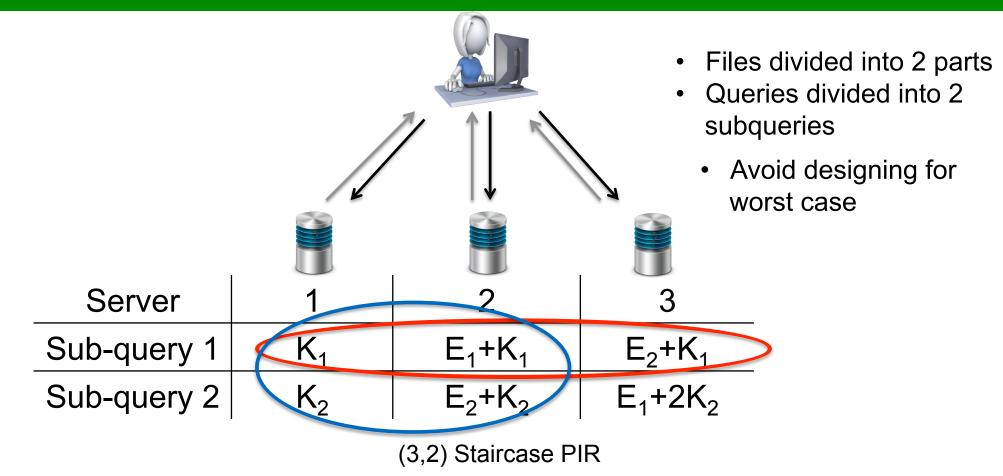


PIR FOR STRAGGLERS



- Add redundancy to fight stragglers
- Idea used in the "non-privacy world" to speed up downloads
- [Joshi, Liu and Soljanin, JASC '14], [Lee, Lam, Pedarsani, Papailiopoulos and Ramchandran '16], [Shah, Lee and Ramchandran, '16], [Joshi, Soljanin and Wornell '15],
- What if no stragglers. We are wasting one server!

UNIVERSAL PIR FOR ANY NUMBER OF STRAGGLERS

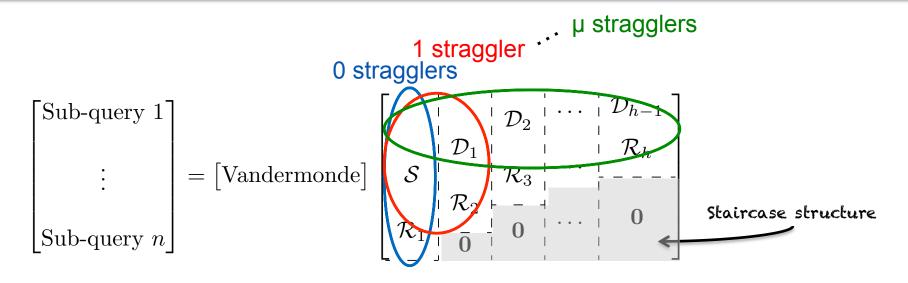


- No straggler: Need responses of subquery 1. Achieves min PoP=3/2
- 1 straggler: Need full responses of any 2 servers. Achieves min PoP=2
- Connection to communication-efficient secret sharing

[R. Bitar and **S.E.R.**, "Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads", ISIT 2016]

STAIRCASE PIR: GENERAL CONSTRUCTIONS

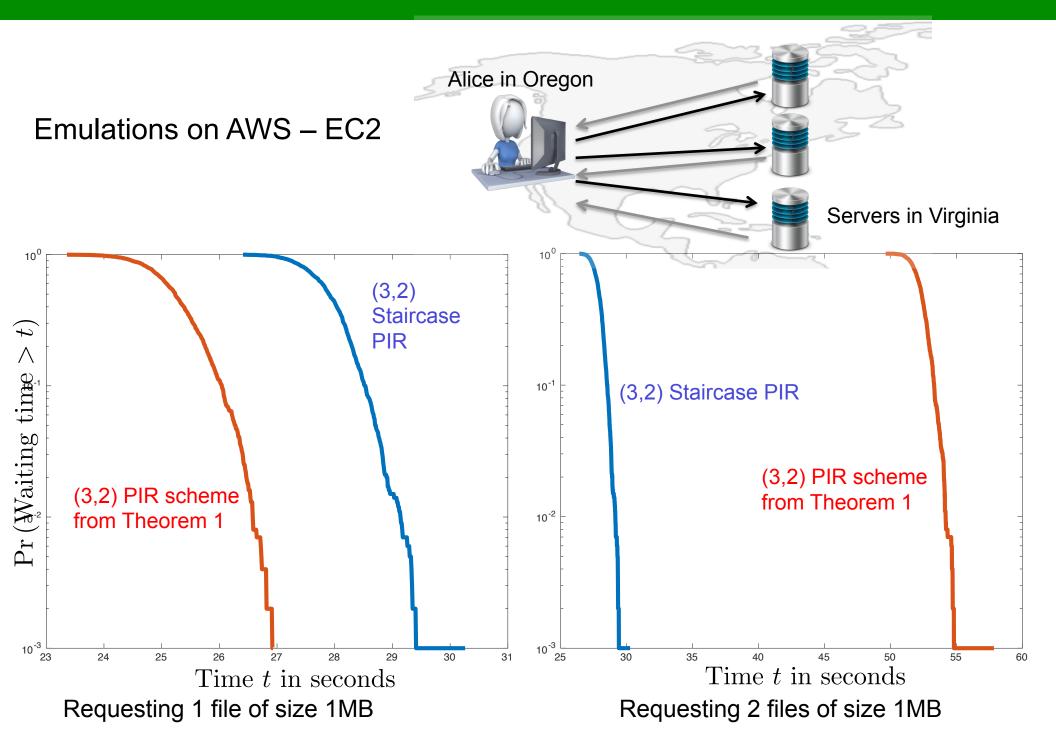
Theorem: [R. Bitar and S.E.R., 2016] The μ -Universal Staircase PIR scheme constructed as follows in GF(q), q≥n, achieves minimum download cost for all number of responsive servers d, n- μ ≤d≤n.



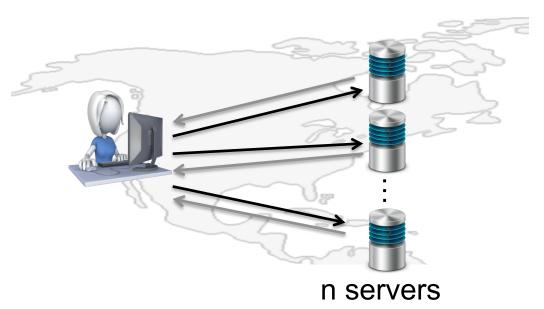
Encoding of the universal staircase code

[R. Bitar and **S. El Rouayheb**, "Staircase Codes for Secret Sharing with Optimal Communication and Read Overheads", ISIT 2016]

LATENCY IMPROVEMENT BY STAIRCASE PIR



DECODING OPTIONS OF STAIRCASE PIR

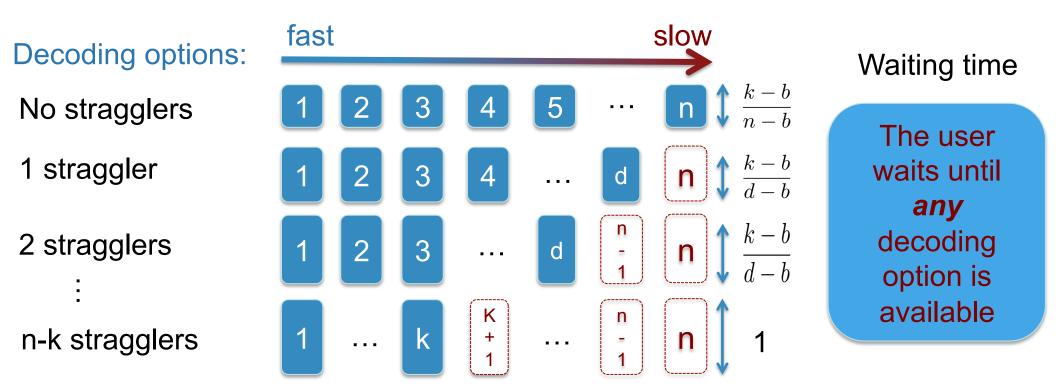


Replicated data on n servers

Coded requests using (n,k) Staircase PIR [R. Bitar and S.E.R., ISIT 2016]

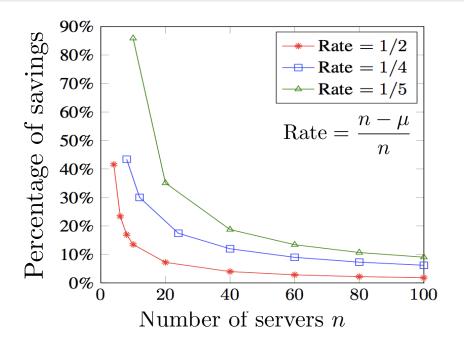
System with b spies

d: number of fast servers



Efficiency of Coded Requests Over Replicated DBs

Theorem: [Bitar, Parag and E.R., ISIT'17] Under an exponential distribution of the serving time assumed equally divided between subtasks, the mean waiting time $\mathbb{E}[T_{SC}]$ of an $(n, n - \mu)$ system using Staircase codes is upper bounded by $\mathbb{E}[T_{SC}] \leq \min_{d \in \{n-\mu,\dots,n\}} \left(\frac{H_n - H_{n-d}}{\lambda(d-1)}\right), \qquad (1)$ where H_n is the n^{th} harmonic sum defined as $H_n \triangleq \sum_{i=1}^n \frac{1}{i}$, and $H_0 \triangleq 0$.
The mean waiting time is lower bounded by $\mathbb{E}[T_{SC}] \geq \max_{d \in \{n-\mu,\dots,n\}} \sum_{i=0}^{n-\mu-1} {n \choose i} \sum_{i=0}^i {i \choose j} \frac{2(-1)^j}{\lambda(n(n-1)+d(d-1)-2(i-j)(d-1))} \qquad (2)$



Open question: Generalize to coded data.

[R. Bitar, P. Parag and **S.E.R.**, "Minimizing Latency for Secure Distributed Computing", ISIT 2017] (arxiv)

QUESTIONS?