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Big Data vs. Wireless 
Exabytes per 

month 

[Cisco] 



Meanwhile, Storage is Getting Cheaper 

Storage cost per GB (USD) 

http://www.mkomo.com/cost-per-gigabyte-update 



Storage = Caching 

Content is cached (stored) on mobile devices 
during off-peak hours 

•  Index coding: [Birk & Kol ’98] + …


•  Coded Caching: [Maddah-Ali & 
Niesen ’13] + …


•  Femto-caching: [Golrezai et al. ’12]....


•  ….




Distributed Storage Index Coding Example 

Birk & Kol, “Informed-source coding-on-demand (ISCOD) over broadcast 
channels,” INFOCOM’98  

Trans-
mission # 

Index 
code 1 

Index  
code2 

1 X1 X1+X2 

2 X2 X3 

3 X3 X4 

4 X4 

Min transmission rate? "
Optimal schemes?"

X1 X2 X3 X4 

Wants: X1 
Has: X2 X3 

Wants: X3 
Has: X2 X4 

Wants: X2 
Has: X1 X3 

Wants: X4 
Has: X1  

t1 

t2 

t3 

t4 

L=4" L=3"

•  Cached data independent of a user’s preferences still help 
•  Content of the cache is given 
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Index Coding & Coloring 
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Independ
ence nbr ↵(G)  c(G)  L⇤

min  �f (Ḡ)  �(Ḡ)d d

•  L*min min length of linear index code 
•  Finding L*min is NP hard by [R., Sprintson, Chaudhry ITW’07] 

Index Coding & Graph Coloring 
1 

4 

2 1 

4 3 

2 

Side info graph Gd 
Clique cover of G= 

X1+X2 

X3 X4 

            
Chromatic nbr of  Ḡ

3 

Fractional Chromatic  nbr  
[Blasiak, Kleinberg, Lubetzky ‘11 ] 

Shannon capacity 
[Haemers  ‘79 ] 

•  More bounds [Dimakis et al.] [Arbobjalfoei & Kim], [Mazumdar 
et al.] etc… 

user 1 
caches X3 



Index Coding on Erdős-Rényi Graphs  

↵(G)  L⇤
min  �(Ḡ)

G(n,p) 

•  When            , we have with prob 1
n ! 1

log n  L⇤
min  n

log n
•  Can improve the lower bound [Haviv & Langberg  “Index Coding 

on random graphs”, ISIT‘12 ]

c
p
n  L⇤

min  n

log n

Chromatic nbr Independence nbr 

•  Recent results closes the gap




L⇤
min = ⇥(n/ log n)

 [Golovnev, Regev & Weinstein, “The Min Rank of 
Random graphs,  Arxiv ‘16 ] 
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Index Coding & Rank Minimization 
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•  Linear case:                                       [Bar-Yossef et al. '06] 
L⇤
min = min rk(M)

X1 
 
X2 
 
X3 
 
X4 

X1+X2 
 
X3 
 
X4 

•  Min rank introduced by Haemers in 79 to upper  bound the 
Shannon graph capacity


•  Min rank  can be a tighter bound on Shannon capacity then 
Lovász Theta function.




C 
D 

Use Matrix Completion Methods to Construct Index 
Codes 

•  Minimizing nuclear norm [Recht & Candes ‘09] does not work 
here because the index coding matrices have a special structure. 

•  Try other rank minimization methods [Fazel et al. ‘04] 

Theorem: [Alternating Projections (AP)] 

 If C and D are convex, then an alternating projection sequence 
between these 2 regions converges to a point in their intersection.




Two problems: 
1)  Regions not 

convex  
2)  Optimization 

over the reals 

Index coding via AP 



Alternating Projection on Random Undirected Graphs 

Caching prob. p 

•  Up to 13% savings over Greedy coloring. No theoretical guarantees. 
•  Recent work on min rank over finite field [Sauderson, Fazel, Hassibi 

ISIT’16] 
•  Index coding via LP [Blasiak et al. ‘10], via SDP [Chlamtac et al ’14]… 

[Huang & R. “Index Coding via 
Rank minimization” ITW’15]  



Performance with Increasing Number of Users 
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Equivalence to Network Coding 

An index code of length L 
that satisfies all the users 

A network code that 
satisfies all the terminals 

Terminals:     t4        t1           t2         t3 
     Wants:     X4      X1          X2        X3 

L



•  Index coding is equivalent to the general network coding.

•  If you can solve index coding efficiently you can solve 

any general network coding problem efficiently.


From Network to Index Coding 

Theorem: [R,Sprintson, Georghiades’08] 

 For any network coding problem, one can construct an index 
coding problem and an integer L such that given any linear network 
code, one can efficiently construct a linear index code of length L, 
and vice versa. (same block length, same error probability).




… 

X1, X2,…, Xr 

[Effros,R,Langberg ISIT’13] 

How many? Rates? 

Wants:  ?       ?              ? 
    Has:  ?       ?              ?  

How to map 
the codes? 



Network Code è Index Code 
The linear case first 

Butterfly network 
Equivalent index code 

Ye1+X1 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+X1+X2 
Ye6+X1+X2 
Ye7+X1+X2 

•  All terminals in the index coding problem can decode

•  Any linear network code gives an index code of length L=7


X1, X2 
Ye1, Ye2, …, Ye7

  H(Yei)=c(ei)=1 

X1 X2 

X1 

X1 X2 

X1+X2 

X1+X2 

X2 

X1+X2 



Implications on Index Coding 
Linear index codes are not 

optimal


No linear network code but a non-
linear code over alphabet of size 4 
[zeger et al. ’06]  

Only vector linear codes exist when 
block length is even. 

Vector linear codes 
outperform scalar linear




Connections to many problems 

•  Interference management: [Jafar et al. ‘12]

•  Distributed storage & caching: [Mazumdar ’14], 

[Shanmugam et al. ’14

•  Matroid representations: [Rouayheb et al. ’09]

•  Graph coloring: [Fragouli, Soljanin, Shokrollahi 

‘04] [Alon et al. ‘08], [Shanmugam & Dimakis 
’13]


•  LP bounds: [Blasiak, Kleinberg, Lubetzky ‘11 ] 
•  Coded caching [Maddah-Ali & Niesen ’13] +…




Variations on Index Coding 
File:	
  

User 1 

User 2 

User 3 

ba

1.  Data Exchange Problem

[R., Sprintson, Sadeghi ITW’10]

[Milosavlevijc, Pawar, R., Ramchandran, ‘13]

[Courtade et al. ’13]…

•  No Base station (D2D). 

•  Users wants missed parts





 2. Pliable index coding [Fragouli et al ‘15]

•  Like index coding but users want anything they don’t 

have






3. Coded Caching [Maddah-Ali & Niesen  ‘14]

•  Cached content is not fixed and can be designed

•  Best paper, lots of follow up work…
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Distributed Storage Caching for Private Information 
Retrieval (PIR) 

X1 X2… XM  

Wants: X1 

•  PIR: user wants to hide which file it wants [chor et al’95]

•  One server:  User need to download all the data

•  “Classical” PIR: data replicated on many servers 

•  Recent work: coded PIR [Jafar et al.], [Vardy et al.], 

[Rouayheb et al.], [Ulukus et al], [Hollanti et al.]…

•  Caching for PIR: user does not reveal cached data


user 

Server 

Kadhe, Garcia, Heidarzadeh, R., Sprintson, “PIR with 
Side Information”,  Allerton ’17  



SECURE COOPERATIVE COMPUTING IN IOT 

Collaboration with  
Hulya Seferoglu  

UIC 

Bitar, R., “Staircase Codes for Secret Sharing with Optimal Communication 
Overhead,” Trans. on info th., 2017. 
R. Bitar P. Parag, R., “Minimizing Latency for Secure Distributed Computing”, 
submitted to ISIT’17 

•  Local computations on untrusted workers

•  Homomorphic Encryption very costly

•  New codes for security
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QUESTIONS? 



Network Code è Index Code 
The linear case first 

Butterfly network 
Equivalent index code 

Ye1+X1 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+X1+X2 
Ye6+X1+X2 
Ye7+X1+X2 

•  All terminals in the index coding problem can decode

•  Any linear network code gives an index code of length L=7


X1, X2 
Ye1, Ye2, …, Ye7

  H(Yei)=c(ei)=1 

X1 X2 

X1 

X1 X2 

X1+X2 

X1+X2 

X2 

X1+X2 



Index Code è Network Code 

Butterfly network 

Ye1+X1 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+X1+X2 
Ye6+X1+X2 
Ye7+X1+X2 

Given a linear 
index code


Ye1+Ye2 
Ye2+X1 
Ye3+X2 
Ye4+X2 
Ye5+Ye4+X1 
Ye6+X1+X2 
Ye6+Ye7 

Can always 
diagonalize 

•  Any linear index code of length L=7 can be mapped to a 
linear network code


•  Works for scalar linear and vector linear 




Non-Linear Network Code è Index Code 

Butterfly network Equivalent index code 

fei(X1, X2) : message on edge ei 

Ye1 + fe1(X1, X2)

Ye2 + fe2(X1, X2)

Ye3 + fe3(X1, X2)

Ye4 + fe4(X1, X2)

Ye5 + fe5(X1, X2)

Ye6 + fe6(X1, X2)

Ye7 + fe7(X1, X2)



“Diagonalization” May Not Work for Non-Linear 

Butterfly network 

Given a non-
linear index code


If we can we 
diagonalize  

   ? 

B1 = g1(Ȳe, X̄)

B2 = g2(Ȳe, X̄)

B3 = g3(Ȳe, X̄)

B4 = g4(Ȳe, X̄)

B5 = g5(Ȳe, X̄)

B6 = g6(Ȳe, X̄)

B7 = g7(Ȳe, X̄)

B0
1 = g01(Ye1 , X̄)

B0
2 = g02(Ye2 , X̄)

B0
3 = g03(Ye3 , X̄)

B0
4 = g04(Ye4 , X̄)

B0
5 = g05(Ye5 , X̄)

B0
6 = g06(Ye6 , X̄)

B0
7 = g07(Ye7 , X̄)

0 

0 

0 

0 

0 

0 

0 



Non-linear Index Code è Network Code 

X1 = DUt1(B, Ye4 , Ye7)

Ye4 = DUe4
(B,X2)

Ye7 = DUe7
(B, Ye5)

DUe4
(0, X2)

DUe7
(0, Ye5)

DUe6
(0, Ye5)

DUe5
(0, Ye2 , Ye3)

DUe1
(0, X1)

DUe2
(0, X1)

DUe3
(0, X2)

Broadcast message  Decoding function 

•  Destinations can decode with no errors:

•  Recall that B=f(X1,X2, Ye1,…,Ye7)

•  For a fixed B and given values of X1 and X2, there is a 

unique possible vector (Ye1,…,Ye7)

•  Otherwise, U* cannot decode correctly


Fix a value for B, say B=0 



Dealing with Errors 
•  Consider an index code where decoding errors only 

happen when the broadcast message B=0

•  ε: Prob of error in the index code =1/2c=1/27=0.0078

•  Prob of error in the network code =1 (bad).

Claim: There exists σ, such that for B=σ, in the previous 
construction, the network code will have a prob of error 
at most ε (ε=error prob of the index code).


•  Intuition: if for every value of B, the resulting network 
code will have a prob of error>ε, this implies that the 
prob of error in the index code >ε. A contradiction.


✗: decoding error 
Each ✓ corresponds to a different “good” value of (X,Ye) 

Total # of ✓<(1-ε)|ΣB|.|ΣX| 
But  |ΣB|=|ΣYe| 
èTotal # of “good” values<(1-ε)|ΣYe|.|ΣX| 
 
 
 

contradiction DU⇤(B,X1, X2)

X=(X1,X2) 

B ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ye= 

≠ 
✓ 

|ΣX|=22 

|ΣB| 
=2c 



Capacity Regions 

      :Capacity region 
of a network 

RX1

RX2

RX1

RX2

1 

1 P P’ 

1 

1 

RN

      :Capacity region of the 
equivalent  index code 
RI

H



•  What if a sequence of points (not necessarily in    ) 

converges to P. Does this mean that P is in      ?   
RN

H

•  If true this will solve a long-standing open problem: Is 
zero-error capacity= ε-error capacity of networks? 

•  True for index coding problems [Langberg, Effros ‘11] 

RB

RB = 7

•  If there is a code that achieves P “exactly”, then P’ is 
in                , and vice versa.  RI \H



The Case of Co-located Sources 

      :Capacity region 
of a network 

RX1

RX2

RX2

1 

1 P P’ 

1 

1 

RN

      :Capacity region of the 
equivalent  index code 
RI

H

RB

RB = 7

Theorem: For any network     with co-located sources one 
can efficiently construct an index coding problem    and an 
integer L such that R is in the capacity region of     iff R’ is 
in the capacity region of     with broadcast length L. 

N
I

N
I


