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Private Information Retrieval (PIR)
• User wants to retrieve a file from a database without revealing the identity of this file.

• This problem was first introduced by Chor et. al in 1995. [Chor, Goldreich, Kuchilevitz
and Sudan ‘95].
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Toy Example
• Database replicated on two non colluding servers.

User wants file X5

[Chor et al. ‘1995]
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E5 =
⇥
0 0 0 0 1 0 0 0

⇤

K

K + E5

KX + E5X

KX + E5X =X



Computational vs. Info Theoretic 
Privacy
• Relaxation: Computational PIR

• Can achieve privacy on one server without downloading 
whole database. [Kushilevitz and Ostrovsky, ’97], [Chor and 
Gilboa, ‘97], [Cachin, Micali, and Stadler, ‘99], …

• High computational complexity. [Sion and Carbunar, ‘07]
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Model
• A distributed storage system with n nodes storing files X1, …, Xm

• (n,k) MDS code is given and not design parameter.
• b passive spy nodes

…

n nodes,
b spies

(n,k) MDS 
code

User wants 
Xf chosen 
uniformly at 
random

Perfect privacy:
H(f |queries to b servers) = H(f),

where H(.) is the entropy function.
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Goal: Design PIR scheme 
with min download cost



Related work: Replicated Data
� PIR scheme on replicated non-colluding nodes with total, upload and 

download, communication cost of                                 and                 for the 
case when n=2 [Chor, Goldreich, Kuchilevitz and Sudan ’95]

O((n2
log n)m1/n

) O(m1/3)

� PIR scheme on replicated non-colluding nodes with communication cost
[Ambainis, ’97] and                         [Beimel et al, ‘02]

� PIR protocols with total communication cost that is subpolynomial in the 
size of the database [Yekhanin ’08], [Efremenko ‘12] and [Dvir and Gopi
’15]

O(m1/(2n�1)) O(m
c log log n
n log n )

� Fundamental limits and achievable schemes on download cost for 
replication. [Sun and Jafar ‘16]



Related Work on Coded PIR
�Batch codes [Ishai et al. ‘04] 
�One extra bit of download is sufficient to achieve PIR. 
[Shah, Rashmi, and Ramchandran, ISIT ’14]

�Methods for transforming a replication-based PIR 
scheme into a coded-based PIR scheme with the same 
communication cost [Fazeli, Vardy, and Yaakobi, ISIT 
‘15]

�Bounds on the the tradeoff between storage and 
download communication cost. [Chan, Ho, and 
Yamamoto, ISIT ‘15]

�PIR array codes [Blackburn & Etzion ‘16]
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Our Results: Single Spy
Theorem 1: Consider a DSS using an           MDS code over            , with

spy node. Then, there is an explicit linear PIR scheme for any number 

of files m over  with download communication cost (price of privacy):
b = 1

• Achieves the information theoretic 
optimum given in [Chan et al, ISIT 
‘15] for linear PIR scheme. 

• Achieve the bound given in [Sun et. 
al, ISIT ’16] when applying 
replication.*

• The PIR scheme is universal, i.e. 
does not depend on the MDS code. 10

(0.5,	2)
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Our Results: Multiple Spies
Theorem 2: Consider a DSS using an           MDS code over            , with 

spy nodes. Then, there is an explicit linear PIR scheme over             
with download communication cost, 
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Impossible



Example on Theorem 1
• Consider a (5,2) MDS code with  spy node.

• Goal is to achieve                             .
Server 1

Server 2

Server 3

Server 4

Server 5

a1 a2

b1 b2

a1 + 3b1 a2 + 3b2

File1 File2 …     File m

. . .

. . .

a1 + b1 a2 + b2 a3 + b3 . . . am + bm. . .

. . .a1 + 2b1 a2 + 2b2 a3 + 2b3 . . . am + 2bm

. . .

am + bm

am + 2bm

am + 3bm

am + bm

am + bm
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PoP =
n

n� k

=
5

3
= 1.66

b = 1



First Attempt
• Generate an iid random vector                                          .

• This achieves               instead of               .

User wants 
file 1

a1 a2

b1 b2

a1 + 3b1 a2 + 3b2

. . .

. . .

a1 + b1 a2 + b2 a3 + b3 . . . am + bm. . .

. . .a1 + 2b1 a2 + 2b2 a3 + 2b3 . . . am + 2bm

. . .

am + bm

am + 2bm

am + 3bm

am + bm

am + bmAT

BT

U =
⇥
u1 u2 . . . um

⇤

E1 =
⇥
1 0 . . . 0

⇤

cPoP = 2
cPoP =

5
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Subdivision
• Divide each part into 3,

• 2 subqueries.
• 2 random vectors U and V

a1a11 a13a12
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U.A+ U.B + a12 + b12

U.A+ 2U.B + a12 + 2b12

U.A
+ a11

U.B

U.A+ 3U.B

a11 + b11 a12 + b12 a13 + b13 . . .

a11 + 2b11 a12 + 2b12 a13 + 2b13 . . .

a11 + 3b11 a12 + 3b12 a13 + 3b13 . . .

a11

b11 b12 b13

a13a12

. . .

. . .

File 1

Q1

Q2

Q3

Q4

Q5

Q5 =


u1 u2 u3 . . .
v1 v2 v3 . . .

�
Q3 = Q4 =


u1 u2 + 1 u3 . . .
v1 v2 v3 + 1 . . .

�
Q2 =


u1 u2 u3 . . .

v1 + 1 v2 v3 . . .

�

Q1 =


u1 + 1 u2 u3 . . .
v1 v2 v3 . . .

�



Proof of Theorem 1
• Scheme:

� We divide each file into          stripes. 

� k sub-queries are made to each node (dimension of code is d).

� We write                          .

• Conditions:
� Decode           parts in each sub-query.

� Parts not on same node.

� Different parts in each sub-query

↵ = n� k

n� k = �k + r
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↵ = n� k

Retrieval pattern



Retrieval pattern for (15,4) MDS



Querying

Where the     s are matrices 
with 1s at the positions we 
want to decode.

Ei
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U + E1

U + E2

U + Er

U

U

U + Er+1

U + Er+�k

• equations to decode 
interference.

• equations from systematic 
nodes to decode parts of the 
first r stripes.

• equations from parity 
nodes to decode      complete 
stripes.

• In total,             parts decoded.

�k
�k

�k + r

�k + r

�k + r



Querying
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Response and Decoding 
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Decoding

20



Part 3 – Privacy
• Privacy:

� Since b = 1, the only way a node l can learn information about f is from its own 
query matrix Qi. By, construction Qi is statistically independent of f and this scheme 
achieves perfect privacy.

• cPoP: 
� Every node responds with d = k symbols. Therefore, the total number of symbols 

downloaded by the user is kn. Therefore, 

cPoP =
kn

k(n� k)
=

1

1�R



Example on Theorem 2
• Assume a (5,3) MDS code.

• Consider b = 2 colluding nodes.

• W.L.O.G. user wants file 1. a1 a2 am + bm

b1 b2 . . .am + bm

c1 cm

a1 + b1 + c1 a2 + b2 + c2 . . . am + bm + cm

. . .

. . .

a1 + 2b1 + 3c1 a2 + 2b2 + 3c2 . . . am + 2bm + 3cm

c2

File 1 File 2 …     File m
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Example on Theorem 2
• User generates 2 random vectors    and   . 

User wants X1

a1 a2 am + bm

b1 b2 . . .am + bm

c1 cm

a1 + b1 + c1 a2 + b2 + c2 . . . am + bm + cm

. . .

. . .

a1 + 2b1 + 3c1 a2 + 2b2 + 3c2 . . . am + 2bm + 3cm

c2

U

V

U + 2V

U + 3V

AT

BT

CT

U + V + E1

UA
+ V A

+ a1

UB + 2V B

UC + 3V C

5 equations, 7 unknowns:
UA, VA, UB, VB, UC, VC, a1

UA+ UB + UCV A+ 2V B + 3V C

U =
⇥
u1 u2 u3

⇤
V =

⇥
v1 v2 v3

⇤
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Proof of Theorem 2
Theorem 2: Consider a DSS using an          MDS code over            , with 

spy nodes. Then, there is an explicit linear PIR scheme over             
with download communication cost, 

• Consider an (n,k) MDS code with the following generator matrix:
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Decodability

⇤1 ⇤n

U1, . . . , Ub : b random vectors
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Open Problems
• Fundamental information theoretical bounds of the communication cost 

(cPoP).
• Is joint design of MDS code and PIR scheme necessary to achieve 

fundamental  bounds?
• Partial retrieval of parts of the file.
• Beyond MDS codes, general linear codes, regenerating codes, Locally 

Recoverable codes, etc.
• General collusion patterns
• Malicious nodes etc…
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