Chapter 2: Random Variables

Example 1. Tossing a fair coin twice:

\[\Omega = \{HH, HT, TH, TT\} \]

Define for any \(\omega \in \Omega \), \(X(\omega) \) = number of heads in \(\omega \). \(X(\omega) \) is a random variable.

Definition 1. A random variable (RV) is a function \(X: \Omega \rightarrow \mathbb{R} \).

Example 2. Let \(w \) be the temperature in °F at 3:00 pm on Thursday afternoon. Let \(X \) be the r.v. which the temperature in °C. Then

\[X = \frac{5}{9} (w - 32) \]

Definition 2 (Cumulative distribution function (CDF)).

\[F(x) = P(X \leq x). \] \hspace{1cm} (1)

Example 3. The cumulative distribution function of \(x \) is as (Figure 1)

\[F_X(x) = \begin{cases}
0 & x < 0, \\
\frac{1}{4} & 0 \leq x < 1, \\
\frac{3}{4} & 1 \leq x < 2, \\
1 & x \geq 2.
\end{cases} \]
Lemma 1. Properties of CDF

(1)
\[
\lim_{x \to -\infty} F_X(x) = 0 \\
\lim_{x \to +\infty} F_X(x) = 1,
\]

(2) $F_X(x)$ is non-decreasing:

\[x_1 \leq x_2 \implies F_X(x_1) \leq F_X(x_2) \]

(3) $F_X(x)$ is continuous from the right

\[
\lim_{\epsilon \to 0} F_X(x + \epsilon) = F_X(x), \epsilon > 0
\]

(4)
\[
P(a \leq X \leq b) = P(X \leq b) - P(X \leq a) + P(X = a)
\]

\[
= F_X(b) - F_X(a) + P(X = a)
\]

(5)
\[
P(X = a) = \lim_{\epsilon \to 0} F_X(a) - F_X(a - \epsilon), \epsilon > 0
\]

Definition 3. If random variable X has finite or countable number of values, X is called discrete. If it is uncountable, then it is continuous.

Remark 1. A set S is countable if its elements can be indexed, i.e., we can find a injective function from S to the natural numbers

Example 4. Non-countable example: \mathbb{R}.

Example 5. Countable example: The number of tosses we need till get a Head

Lemma 2. If X is continuous, then $F_X(x)$ is continuous.

Definition 4 (Probability density function(pdf)).

\[
f_X(x) = \frac{dF_X(x)}{dx} \quad (X \text{ is continuous}).
\]

By definition,
\[
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

Therefore,
\[
F_X(a) = P(x \leq a) = \int_{-\infty}^{a} f_X(x)dx,
\]

\[
= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{a} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx.
\]
We should always have:

\[\int_{-\infty}^{+\infty} f_X(x)dx = 1. \]

Definition 5 (mean, variance of a RV X). For the continuous case:

\[
E(X) = \mu = \int_{-\infty}^{+\infty} x f_X(x)dx,
\]

\[
V(X) = \sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f_X(x)dx.
\]

For the discrete case:

\[
E(X) = \mu = \sum_{i=-\infty}^{+\infty} x_i P(X = x_i),
\]

\[
V(X) = \sigma^2 = \sum_{i=-\infty}^{+\infty} (x_i - \mu)^2 P(X = x_i).
\]

Example 7. X is uniformly distributed in [0, 1].

\[
F_X(x) = \begin{cases}
0 & x < 0, \\
\int_{0}^{x} 1dx = x & 0 \leq x < 1, \\
1 & x \geq 1.
\end{cases}
\]

\[
E(X) = \int_{0}^{1} x \times 1dx = \frac{1}{2},
\]

\[
V(X) = \int_{0}^{1} (x - \frac{1}{2})^2 \times 1dx = \frac{1}{12}.
\]

Lemma 3 (Probability Density Functions).
(1) Uniform X uniform over $[a, b]$:

$$f_X(x) = \begin{cases}
\frac{1}{b-a} & \text{if } a \leq x \leq b \\
0 & \text{otherwise}
\end{cases}$$

(10)

(2) Gaussian distribution:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

(11)

(3) Exponential distribution: It is the probability distribution of the waiting time between events in a Poisson process in which events occur continuously and independently at a constant average

\[1\text{Figure from Wikipedia: } \text{https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)}\]

\[2\text{Figure from Wikipedia: } \text{https://en.wikipedia.org/wiki/Normal_distribution}\]
rate (check Poisson process in later lectures)

\[f_X(x) = \begin{cases}
\lambda e^{-\lambda} & \text{if } x \geq 0 \\
0 & \text{if } x < 0
\end{cases} \quad (12) \]

The mean:

\[
\mathbb{E}[X] = \int_{x=0}^{\infty} x f(x) \, dx
\]

\[
= \int_{x=0}^{\infty} x \lambda \exp(-\lambda x) \, dx
\]

\[
= \lambda \int_{x=0}^{\infty} x \exp(-\lambda x) \, dx
\]

\[
= \lambda \left(\left[-\frac{1}{\lambda} x \exp(-\lambda x) \right]_{x=\infty}^{x=0} + \int_{x=0}^{\infty} \frac{1}{\lambda} \exp(-\lambda x) \, dx \right)
\]

\[
= \lambda \left(0 + \frac{1}{\lambda^2} \right)
\]

\[
= \frac{1}{\lambda}
\]

Homework: Find the variance of the exponential distribution.

Answer:

\[
\mathbb{E}[X^2] = \int_{x=0}^{\infty} x^2 f(x) \, dx
\]

\[
= \int_{x=0}^{\infty} x^2 \lambda \exp(-\lambda x) \, dx
\]

\[
= \lambda \int_{x=0}^{\infty} x^2 \exp(-\lambda x) \, dx
\]

\[
= \lambda \left(\left[-\frac{1}{\lambda^2} x^2 \exp(-\lambda x) \right]_{x=\infty}^{x=0} + \int_{x=0}^{\infty} \frac{1}{\lambda} x \exp(-\lambda x) \, dx \right)
\]

\[
= \lambda \left(0 + \frac{1}{\lambda} \left(\frac{1}{\lambda} \mathbb{E}[X] \right) \right)
\]

\[
= \lambda \left(\frac{1}{\lambda^3} \right)
\]

\[
= \frac{1}{\lambda^2}
\]
(4) Rayleigh Distribution:

\[f_X(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, x \geq 0, \]

(13)

\[f_X(x) = \frac{1}{\sqrt{2\sigma}} e^{-\frac{\sqrt{2|\sigma|}}{x}}, \]

(14)

\[^3\text{Figure from Wikipedia:}\ https://en.wikipedia.org/wiki/Exponential_distribution}\n\[^4\text{Figure from Wikipedia:}\ https://en.wikipedia.org/wiki/Rayleigh_distribution\]
1 Example of Discrete Random Variable

1.1 Bernoulli RV

flipping a coin, \(P(H) = p, \ P(T) = 1 - p \), if head occurs \(X = 1 \), if tail occurs \(X = 0 \), \(P(X = 0) = 1 - p \), \(P(X = 1) = p \). The CDF of a bernoulli RV is as Figure 8.

\[F(x) \]

\[\begin{align*}
F(x) & = 1 - p \\
F(x) & = 1 \\
\end{align*} \]

Figure 8: Cumulative distribution function of Bernoulli Random Variable

5Figure from Wikipedia: https://en.wikipedia.org/wiki/Laplace_distribution
1.2 Binomial distribution

Tossing a coin n times, \(P(H) = p, P(T) = 1 - p \). X is number of heads, \(x \in \{0, 1, \ldots, n\} \).

\[
P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.
\]

Remark 2. Let \(Y_i \in \{0, 1\} \) denote the outcome of tossing the coin the ith time

\[
X = Y_1 + Y_2 + \cdots + Y_n.
\]

i.e., a Binomial RV can be thought of as the sum of n independent Bernoulli RV.

Example 8 (Random graph). Each edge exists with probability p, X is the number of neighbor of node 1(Figure 9).

\[
Y_i = \begin{cases}
1, & \text{if node 1 is connected to } i+1, \\
0, & \text{otherwise.}
\end{cases}
\]

\[
X = Y_1 + Y_2 + \cdots + Y_{n-1}.
\]

So X follows the Binomial distribution.

![Figure 9: Random Graphs](image)

Example 9 (BSC). Suppose we are transmitting a file of length n. Consider a BSC where the probability of error is p and the probability of receiving the correct bit is 1-p. (Figure 10) What is the probability that we have k errors?

\[
P(k \text{ errors}) = \binom{n}{k} p^k (1 - p)^{n-k}
\]
Let X represent the number of errors, what is $E(X)$

$$E(X) = \sum_{k=0}^{n} kP(X = k),$$
$$= \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k},$$
$$= np \sum_{k=1}^{n} \binom{n-1}{k-1} p^{k-1} (1-p)^{n-k},$$
$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-k+1},$$
$$= np.$$

Binomial theorem:

$$(x + y)^n = \sum_{k=1}^{n} \binom{n}{k} x^k y^{n-k},$$
$$(p + 1-p)^{n-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{n-k+1},$$
$$= 1.$$

Theorem 1. For any two RVs X_1 and X_2, $Y = X_1 + X_2$,

$$E(Y) = E(X_1) + E(X_2).$$ \hspace{1cm} (15)

It does not matter whether X_1 and X_2 are independent or not.

1.3 Geometric distribution

You keep tossing a coin until you observe a Head. X is the number of times you have to toss the coin.

$$X \in \{1, 2, \ldots \},$$
$$P(X = K) = (1-p)^{K-1}p.$$
Example 10 (Binary erasure channel). Suppose you have a BEC channel with feedback. When you get a erasure, you ask the sender to retransmit. (Figure 11) Suppose you pay one dollar for each retransmission. Let X be the amount of money you pay per transmission.

$$E(X) = \frac{1}{1 - p},$$

$$= \frac{1}{0.9} \approx 1.11 \$. $$

For geometric distribution,

$$P(H) \approx \frac{1}{E(X)},$$

which $E(X)$ is the number of coin flips on average.

Intuition: You have to make $E(X)$ trials, and in these $E(X)$ trials, the success happens once at the last trial.

Proof.

$$E(X) = \sum_{k=1}^{\infty} kP(X = k), \quad (16)$$

$$= \sum_{k=1}^{\infty} k(1 - p)^{k-1}p, \quad (17)$$

$$= p \sum_{k=1}^{\infty} k(1 - p)^{k-1}. \quad (18)$$

Recall that for $|x| < 1$,

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1 - x}, \quad (19)$$

$$\frac{d}{dk} \sum_{k=1}^{\infty} kx^{k-1} = \frac{1}{(1 - x)^2}, \quad (20)$$

$$\sum_{k=1}^{\infty} k(1 - p)^k = \frac{1}{p^2}. \quad (21)$$
So,

\[
E(X) = \frac{1}{p^2},
\]

\[
= \frac{1}{p}. \tag{23}
\]

\[
(\text{22})
\]

\section*{1.4 Poisson distribution}

Suppose a server receives \(\lambda \) searches per second on average. The probability that the server receives \(k \) searches for this second is

\[
P(X = k) = C \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \ldots, \infty. \tag{24}
\]

To find \(C \):

\[
\sum_{k=0}^{\infty} P(X = k) = 1
\]

\[
C \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = 1
\]

\[
C = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}
\]

\[
C = e^{-\lambda}.
\]

Then the pdf of the poisson distribution for an average of \(\lambda \) arrivals per time unit is:

\[
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k = 0, 1, 2, \ldots, \infty. \tag{25}
\]

The mean is:

\[
E(X) = \lambda.
\]

\textbf{Example 11} (Interpretation of poisson distribution as an arrival experiment). \newline
Suppose average of arrival customers per second is \(\lambda \). Suppose server goes down if \(X \geq 100 \). We want to find the probability of \(P(X = k) \).

\[
P(\text{server going down}) = P(X \geq 100).
\]

We divide the one second to \(n \) intervals, each length of the interval is \(\frac{1}{n} \) second. The probability \(p \) of getting requests in small interval is \(\frac{\lambda}{n} \).
Figure 12: one second divided into n intervals.

Now we can consider it to be Bernoulli distribution with \(p \).

\[
P(X = k) = \binom{n}{k} p^k (1-p)^{n-k},
\]

or

\[
P(X = k) = \left(\frac{n}{k} \right) \left(\frac{\lambda}{n} \right)^k \left(\frac{1}{n} \right)^{n-k},
\]

\[
\approx \frac{n^k}{k!} \left(\frac{p}{1-p} \right)^k (1-p)^n,
\]

or

\[
P(X = k) = \frac{1}{k!} (np)^k e^{-np},
\]

\[
= \frac{1}{k!} \lambda^k e^{-\lambda},
\]

\[
= \frac{\lambda^k}{k!} e^{-\lambda}.
\]

We get (28) because of

\[
\binom{n}{k} = \frac{1}{k!} n(n-1) \ldots (n-k+1),
\]

or

\[
\approx \frac{n^k}{k!}, \text{ (k is a constant and n goes to infinity).}
\]

This means we can approximate Binomial(n,p) by Poisson with \(\lambda = np \) (if \(n \) is very large).

2 Two Random Variables

Example 12. Let \(X \) and \(Y \) be Bernoulli Random Variable. If \(Y = 0 \), we know \(X \) must equal to

<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>3/4</td>
<td>1/4</td>
</tr>
<tr>
<td>X=1</td>
<td>0</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Table 1: Joint probability mass function of \(X \) and \(Y \).

0, so \(X \) and \(Y \) are dependent.

\[
P(X = 0) = \frac{3}{4},
\]

\[
P(X = 1) = \frac{1}{4}.
\]

Here is a example which \(X \) and \(Y \) are independent, but they have the same marginal distribution.
<table>
<thead>
<tr>
<th></th>
<th>Y=0</th>
<th>Y=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>X=0</td>
<td>⅓</td>
<td>⅔</td>
</tr>
<tr>
<td>X=1</td>
<td>⅔</td>
<td>⅓</td>
</tr>
</tbody>
</table>

Table 2: Joint probability mass function of X and Y.

2.1 Marginalization

You have the joint distribution $P_{X,Y}(x,y)$.

\[
P_X(x) = \sum_y P_{X,Y}(x_0,y), \tag{34}
\]

\[
P_Y(y) = \sum_x P_{X,Y}(x,y_0). \tag{35}
\]

Definition 6. If X and Y are continuous random variables, then the joint CDF:

\[
F_{X,Y}(x,y) = P(X \leq x, Y \leq y). \tag{36}
\]

Given joint CDF $F_{X,Y}(x,y)$,

\[
F_X(x_0) = F_{X,Y}(x_0, +\infty). \tag{37}
\]

Definition 7. When the CDF is differentiable, the joint pdf is defined as

\[
f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}, \tag{38}
\]

\[
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy, \tag{39}
\]

\[
f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx. \tag{40}
\]

Definition 8. X and Y are independent if and only if

\[
F_{X,Y}(x,y) = F_X(x)F_Y(y), \tag{41}
\]

\[
f_{X,Y}(x,y) = f_X(x)f_Y(y). \tag{42}
\]

Definition 9. Conditional CDF of marginal distribution is

\[
F_{X,Y}(x|y) = P(X \leq x|Y \leq y), \tag{43}
\]

\[
F_{X,Y}(x|Y \leq y) = \frac{F_{X,Y}(X \leq x, Y \leq y)}{P(Y \leq y)}. \tag{44}
\]

Example 13. X and Y are 2 random variables given by the joint pdf

\[
f_{X,Y}(x,y) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}}\exp\left[\frac{-1}{2\sigma^2(1-\rho^2)}(x^2 + y^2 - 2\rho xy)\right].
\]
What is $f_X(x)$?

$$
f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy,
$$

$$
= \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp \left[\frac{-1}{2\sigma^2(1-\rho^2)} \left(x^2 + y^2 - 2\rho xy \right) \right] dy,
$$

$$
= \frac{\exp \left[\frac{-x^2}{2\sigma^2(1-\rho^2)} \right]}{2\pi\sigma^2\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp \left[\frac{-1}{2\sigma^2(1-\rho^2)} \left(y^2 - 2\rho xy + \rho x^2 - \rho^2 x^2 \right) \right] dy,
$$

$$
= \frac{\exp \left[\frac{-x^2 + \rho^2 x^2}{2\sigma^2(1-\rho^2)} \right]}{2\pi\sigma^2\sqrt{\sigma^2 + \rho^2}} \int_{-\infty}^{\infty} e^{\frac{(y-\rho x)^2}{2\sigma^2(1-\rho^2)}} dy,
$$

$$
= \frac{\exp \left[\frac{-(1-\rho^2)x^2}{2\sigma^2(1-\rho^2)} \right]}{\sqrt{2\pi\sigma}} \sqrt{\frac{1-\rho^2}{2\pi\sigma}} \int_{-\infty}^{\infty} e^{\frac{(y-\rho x)^2}{2\sigma^2(1-\rho^2)}} dy.
$$

Because

$$
\frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = 1.
$$

So if $\rho = 0$,

$$
f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}.
$$

Similarly,

$$
f_Y(y) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^2}{2\sigma^2}}.
$$

We can have

$$
f_{X,Y}(x,y) = f_X(x)f_Y(y).
$$

So X and Y are independent. If $\rho \neq 0$, X and Y are not independent.