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Abstract— In this paper, we study the data exchange problem,
where a set of users is interested in gaining access to a common
file, but where each has only partial knowledge about it as side-
information. Assuming that the file is broken into packets, the
side-information considered is in the form of linear combinations
of the file packets. Given that the collective information of all
the users is sufficient to allow recovery of the entire file, the goal
is for each user to gain access to the file, while minimizing some
communication cost. We assume that the users can communicate
over a noiseless broadcast channel, and that the communication
cost is a sum of each user’s cost function over the number of
bits it transmits. For instance, the communication cost could
simply be the total number of bits that needs to be transmitted.
In the most general case studied in this paper, each user can have
any arbitrary convex cost function. We provide deterministic,
polynomial-time algorithms (in the number of users and packets),
which find an optimal communication scheme that minimizes
the communication cost. To further lower the complexity, we
also propose a simple randomized algorithm inspired by our
deterministic algorithm, which is based on a random linear
network-coding scheme.

Index Terms— Network coding, packet radio networks,
combinatorial mathematics, optimization.

I. INTRODUCTION

IN RECENT years cellular systems have witnessed signif-
icant improvements in terms of data rates, and are nearly

approaching the theoretical limits in terms of the physical
layer spectral efficiency. At the same time, the rapid growth in
the popularity of data-enabled mobile devices, such as smart
phones and tablets, and the resulting explosion in demand
for more throughput are challenging our abilities to deliver
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Fig. 1. An example of the data exchange problem. A base station has a
file formed of six packets w1, . . . , w6 ∈ Fq and wants to deliver it to three
users over an unreliable wireless channel. The base station stops transmitting
once all users collectively have all the packets, even if individually they
have only subsets of the packets (Stage 1). Users can then cooperate among
themselves to recover their missing packets by broadcasting over a noiseless
public channel (Stage 2). It can be shown that the minimum number of
symbols in Fq needed for the file recovery at all users is 5. A communication
scheme that achieves this minimum is: user 1 transmits w1, user 2 transmits
w2 +w4, while user 3 transmits w3, w5, w6. Now, if the goal is to allocate
these 5 transmissions to the users as uniformly as possible, user 1 trans-
mits w1, user 2 transmits w2 + w4, w5, and user 3 transmits w3, w6.

data, even with the current highly efficient cellular systems.
One of the major bottlenecks in scaling the throughput with
the increasing number of mobile devices is the “last mile”
wireless link between the base station and the mobile devices -
a resource that is shared among many users served within the
cell. This motivates the study of paradigms where cell phone
devices can cooperate among themselves to get the desired
data in a peer-to-peer fashion without solely relying on the
base station.

An example of such a setting is shown in Figure 1, where
a base station wants to deliver the same file to multiple
geographically-close users over an unreliable wireless down-
link. In the example of Figure 1, we assume that the file
consists of six equally sized packets w1, w2, w3, w4, w5 and
w6 belonging to some finite field Fq . Suppose that after a
few initial transmission attempts by the base station, the three
users individually receive only parts of the file (see Figure 1),
but collectively have the entire file. Now, if all users are in
close vicinity and can communicate with each other, then, it is
much more desirable and efficient, in terms of resource usage,
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to reconcile the file among users by letting all of them “talk” to
each other without involving the base station. The cooperation
among the users has the following advantages:

• Local communication among users has a smaller footprint
in terms of interference, thus allowing one to use the
shared resources (code, time or frequency) freely with-
out penalizing the base station’s resources, i.e., higher
resource reuse factor.

• Transmissions within the close group of users is much
more reliable than from the base station to any terminal
due to geographical proximity of terminals.

• This cooperation allows file recovery even when the
connection to the base station is either unavailable after
the initial phase of transmission, or it is too weak to meet
the delay requirement.

Let us consider the example in Figure 1, and let user 1,
user 2 and user 3 transmit R1, R2 and R3 symbols in Fq ,
respectively. It can be shown that the minimum total number
of symbols in Fq needed to recover the file is 5. One possible
communication scheme that achieves it is: user 1 transmits w1,
user 2 transmits w2 +w4, while user 3 transmits w3, w5, w6.
Note that the load of the communication of the system is
unevenly distributed among the users, i.e., user 3 transmits 3
out of 5 symbols in Fq . The next question we ask here
is out of all communication schemes that deliver the entire
file to the users in the minimum number of transmissions,
which one distributes the load of communication to the users
as fairly as possible. For instance, for the same minimum
number of transmissions, we can have the following scheme:
user 1 transmits w1, user 2 transmits w2 +w4, w5, and user 3
transmits w3, w6. Intuitively, this scheme is more fair1 than the
previous one since it spreads the transmissions more uniformly
among the users. And, it can be shown that such scheme
minimizes a convex fairness cost.

In the example from Figure 1, we considered only a
simple form of side-information, where different users observe
uncoded “raw” packets of the original file. Content distribution
networks [17]–[19] are increasingly using codes, such as linear
network codes or Fountain codes [20], to improve the system
efficiency. In such scenarios, the side-information representing
the partial knowledge gained by the users would be coded and
in the form of linear combinations of the original file packets,
rather than the raw packets themselves. We refer to this model
of side-information as a linear packet model.

Contributions

In this paper, we study the data exchange problem under the
linear packet model and the separable convex communication
cost. Such cost captures all the communication objectives
discussed earlier: 1. Minimization of the (weighted) sum of
bits users need to exchange, 2. Fairness. Our contributions
can be summarized as follows:

1) We propose a deterministic polynomial time algorithm
for finding an optimal communication scheme w.r.t. the

1To be precise, the fairness cost that we consider belongs to the broader
class of separable convex costs that is studied in this work.

communication cost. An important step of this algo-
rithm is to iteratively determine how much should each
user transmit in an optimal scheme. We provide two
methods to solve this problem. The first one is based
on minimizing a submodular function, in which case
the total complexity of the algorithm, in case of linear
objective, is O((m6 N3 + m7) log N), where m is the
total number of users, and N is the number of packets
in the file. In case of the fairness objective, the complex-
ity is O((m6 N3 + m7)N log N). The second technique
is based on subgradient methods, in which case the
total complexity of the algorithm can be bounded by
O((m4 log m + N3m4)N2 log N) for linear cost, and
O((m4 log m + N3m4)N3 log N) for the fairness cost,
given that we use constant step size in the subgradient
algorithm.

2) We devise a randomized algorithm inspired by
the deterministic scheme that reduces complexity to
O(m N4 log N). The randomized algorithm is based
on a random linear network coding scheme, and it
achieves the optimal number of transmissions with high
probability. To be more precise, the probability of not
achieving the optimum is inversely proportional to the
underlying field size |Fq |. Our randomized algorithm
can be regarded as a generalization of the algorithm
proposed in [6], where the authors considered linear
communication cost.

3) For the data exchange problem with additional capacity
constraints on each user, we provide both deterministic
and randomized algorithm of the same complexity as
in 1. and 2.

The challenging part of the deterministic algorithm is that the
underlying optimization problem has exponential number of
constraints coming from the cut-set bound region. By using
combinatorial optimization techniques such as Dilworth trun-
cation and Edmonds’ algorithm, we devise an efficient, poly-
nomial time solution.

Literature Overview

The problem of reconciling a file among multiple wireless
users having parts of it while minimizing the cost in terms
of the total number of bits exchanged is known in the
literature as the data exchange problem and was introduced by
El Rouayheb et al. in [4]. A closely related problem
was also studied by Csiszár and Narayan in [12] and
Chan in [13] and [14], where all users want to agree on a
secret key in the presence of an eavesdropper who observes the
entire communication. In [12] each user observes realizations
of a discrete memoryless multiple source process with an
arbitrary joint distribution, whereas in [13] and [14], the author
considered a finite linear source model which is essentially
an asymptotic version of the file packet model considered in
this paper. It was shown that the maximum secret key can be
achieved by applying a communication scheme that renders
the file to all users in minimum number of bits transmitted
over the broadcast network.

A randomized algorithm for the data exchange problem was
proposed by Sprintson et al. in [5]. Tajbakhsh et al. [11]
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formulated this problem as a linear program (LP) and gave
an approximate solution.

The linear cost data exchange problem was studied by
Ozgul and Sprintson [6], where the authors proposed a ran-
domized algorithm. A deterministic polynomial time algorithm
was proposed by Courtade and Wesel in [9] concurrently to
the authors’ work [2]. The minimum linear communication
cost problem was also studied in the network coding literature.
Lun et al. [21] proposed a polynomial time algorithm for the
single source multicast problem over a directed acyclic graph.

The general broadcast version of the data exchange problem
where users can broadcast messages to their immediate neigh-
bors was studied by Courtade et al. in [7], [8], and [10] and by
Gonen and Langberg in [22]. In [7] and [8], it is shown that the
problem can be solved in the general case by re-casting it as a
single-source network coding problem. For the special case of
broadcast networks considered in this paper, it is shown that
a polynomial solution can be constructed if the file packets
are allowed to be split into smaller chunks. For the most
general case of broadcast networks, an approximate solution
was provided in [22]. In [23], Lucani et al. considered the
problem of data exchange when the channel between different
users can have erasures.

The rest of the paper is organized as follows. In Section II,
we describe the model and formulate the optimization prob-
lem. In Section III, we provide a polynomial time algorithm
that solves for how many symbols in Fq should each user
transmit. We start Section III by analyzing a linear cost
function, and then we extend our solution to any separable
convex cost. In Section IV, we propose a polynomial time code
construction. In Section V, we describe an algorithm based
on random linear network coding approach, that achieves the
optimal communication cost. In Section VI, we present a
polynomial time solution to the problem where each user
additionally has capacity constraints, i.e., user i is not allowed
to transmit more than ci symbols in Fq . We conclude our work
in Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

In this paper, we consider a setup with m users that are
interested in gaining access to a file. The file is broken into N
linearly independent packets w1, . . . , wN each belonging to a
field Fq , where q is a power of some prime number. Each user
i ∈ M � {1, 2, . . . ,m} observes some collection of the linear
combinations of the file packets as shown below.

xi = Ai w, i ∈ M, (1)

where Ai ∈ F
�i×N
q is a given matrix, and w =[

w1 w2 . . . wN
]T is a vector of the file packets. In the further

text, we refer to (1) as a linear packet model. We assume
that matrices Ai , ∀i ∈ M, are known to each user. That
way, they can locally compute the optimal communication
strategy and apply it. Alternatively, there can be a central
authority that the users report to their side information and can
compute the optimal communication strategy and distributes
it to everybody.

Let us denote by vi , a transmission of user i ∈ M. In order
for each user to recover the file, interaction among them is

not needed. This follows from the fact that any interactive
linear solution can be transformed into an non-interactive one
due to linearity of users’ observations and noiseless broadcast
nature of communication as noticed in [14]. Hence, without
loss of generality, we can assume that vi is a function of
user i ’s initial observation. We define

Ri � |vi |q (2)

to be the size of user i ’s transmission represented in number of
symbols in Fq . To decode the file, user i collects transmissions
of all the users and creates a decoding function

ψi : F
�i
q × F

R1
q × · · · × F

Rm
q → F

N
q , (3)

that reconstructs the file, i.e.,

ψi (xi , v1, . . . , vm) = w. (4)

Definition 1: A rate vector R = (R1, R2, . . . , Rm) is
an achievable data exchange (DE) rate vector if there
exists a communication scheme with transmitted messages
(v1, v2, . . . , vm) that satisfies (4) for all i = 1, . . . ,m.

Remark 1: Using cut-set bounds, it follows that all the
achievable DE-rate vectors necessarily belong to the following
region

R � {R ∈ R
m : R(S)

≥ N − rank(AM\S), ∀S ⊂ M}, (5)

where

R(S) �
∑

i∈S
Ri ,

and where for any S = {i1, i2, ..., i|S|} ⊆ M we define AS as
follows:

AS �

⎡

⎢
⎢
⎢
⎣

Ai1
Ai2
...

Ai|S|

⎤

⎥
⎥
⎥
⎦
. (6)

Theorem 1: For a sufficiently large field size |Fq |, any
integer DE-rate vector R ∈ Z

m that belongs to the cut-set
region R, can be achieved via linear network coding, i.e., it
is sufficient for each user i ∈ M to transmit Ri properly
chosen linear combinations of the data packets it observes.

The proof of Theorem 1 can be found in Appendix A.
In [14] and the followup work [15], the author considered an
asymptotic linear packet model that allows packet splitting.
Theorem 1 generalizes [14, Th. 1] to the non-asymptotic case.
In [7], the authors considered the data exchange problem
with an arbitrary broadcast communication scheme that can be
represented by an undirected network graph, where each user
observes some set of raw file packets. For the fully connected
network graph, Theorem 1 generalizes [7, Th. 1] to the linear
packet model. In [7], the authors converted the problem to a
multicast network, which has a linear network solution. This
method cannot be directly applied to the general linear packet
model (1), which we briefly argue in Section IV.

From the network code construction argument [16], it
follows that any field size |Fq | larger than the number of
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users is sufficient to guarantee the existence of such solution.
In general, finding the minimum field size can be a hard
problem. More details on code construction for the data
exchange problem can be found in Section IV.

In order for each user to recover the entire file, it is
necessary to receive a sufficient number of linear combinations
of the other users’ observations. Hence, vi , i ∈ M, defined
above is a vector of Ri symbols in Fq . Therefore, vi can be
written as follows

vi = Bi xi = Bi Ai w = Ui w, (7)

where Bi is an Ri × �i transmission matrix with elements
belonging to Fq . In order for each user to recover the file, the
transmission matrices Bi , i ∈ M should satisfy,

rank

([
Ai

U

])
= N, ∀i ∈ M, (8)

where U �
⋃m

i=1 Ui . Hence, the decoding function ψi of
user i ∈ M involves inverting the matrix given in (8) in order
to obtain w.

In this work, we design a polynomial complexity scheme
that achieves the file exchange among all the users while
simultaneously minimizing a separable convex cost function∑m

i=1 ϕi (Ri ), where ϕi , i ∈ M is a non-decreasing convex
function. Such assumption on monotonicity of function ϕi is
consistent with the nature of the problem at hand; sending
more bits is always more expensive than sending fewer.
From (5) and the above mentioned cost function, the problem
considered in this work can be formulated as the following
optimization problem:

min
R∈Zm

m∑

i=1

ϕi (Ri ), (9)

s.t. R(S) ≥ N − rank(AM\S), ∀S ⊂ M.

Optimization problem (9) is a convex integer problem with
2m − 2 constraints. It was shown in [13] that only n of these
constraints are active but the challenge is how to determine
which of them are. Solving the optimization problem (9)
answers the question of how many symbols in Fq each user
has to transmit in an optimal scheme. In this paper we provide
a polynomial time algorithm that solves problem (9). Once
we obtain an optimal rate allocation, the actual transmissions
of each user can be solved in polynomial time by using
the algebraic network coding framework [24], [25]. This is
explained in Section IV.

III. DETERMINISTIC ALGORITHM

Our goal is to solve problem (9) efficiently. To do so, we
will split it into two subproblems:

1) Given a total budget constraint β, i.e., R(M) = R1 +
R2+· · · Rm = β, determine whether β is feasible or not.
If β is feasible, find the feasible rate split among the
users that will achieve the total budget β and minimize
the cost

∑m
i=1 ϕi (Ri ).

2) Find β that minimizes the objective function.
The bottleneck here is how to solve Problem 1 efficiently.
The optimal value of β can then be found using binary search

(see Algorithm 3) since the objective function is w.r.t. β. First,
let us identify these two problems by rewriting problem (9)
as follows

min
β∈Z+

h(β), (10)

where

h(β) � min
R∈Zm

m∑

i=1

ϕi (Ri ),

s.t. R(M) = β, R(S) ≥ N − rank(AM\S),
∀S ⊂ M. (11)

Note that the optimizations (10) and (11) are associated with
Problem 2 and Problem 1 defined above, respectively. Next
we will explain our approach to solving these two problems.

A. Optimization With a Given Sum-Rate Budget β

Now, let us focus on the set of constraints of optimization
problem (11). By substituting S with M \ S, we obtain

R(M) = β,

R(M \ S) = R(M)− R(S) = β − R(S)
≥ N − rank(AS ), ∀S ⊂ M, S �= ∅. (12)

Therefore, optimization problem (11) can be equivalently
represented as follows

h(β) = min
R∈Zm

m∑

i=1

ϕi (Ri ),

s.t. R(M) = β,

R(S) ≤ β − N + rank(AS ), ∀S ⊂ M, S �= ∅. (13)

Before we go any further, let us introduce some concepts
from combinatorial optimization theory.

Definition 2 (Polyhedron): Let fβ be a set function defined
over set M = {1, 2, . . . ,m}, i.e., fβ : 2M → Z, where 2M

is the power set of M. Then the polyhedron P( fβ) and the
base polyhedron B( fβ) of fβ are defined as follows

P( fβ) � {R ∈ Z
m |R(S) ≤ fβ(S), ∀S ⊆ M}, (14)

B( fβ) � {R ∈ P( fβ )|R(M) = fβ(M)}. (15)

Note that the set of constraints of problem (13), for any
fixed β ∈ Z+, constitutes the base polyhedron B( fβ) of the
set function

fβ(S) =

⎧
⎪⎨

⎪⎩

β − N + rank(AS ) if S ⊂ M, S �= ∅
β if S = M,

0 if S = ∅.
(16)

Example 1: Let us consider the source model from
Figure 1, where the three users observe the following parts
of the file w = [

w1 w2 w3 w4 w5 w6
]T :

x1 = [
w1 w2

]T
,

x2 = [
w2 w4 w5 w6

]T
,

x3 = [
w3 w4 w5 w6

]T
. (17)
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For β = 4, the base polyhedron P( f4) is defined by the
following set of inequalities:

R1 ≤ f4({1}) = 0, R2 ≤ f4({2}) = 2,

R3 ≤ f4({3}) = 2,

R1 + R2 ≤ f4({1, 2}) = 3, R1 + R3 ≤ f4({1, 3}) = 4,

R2 + R3 ≤ f4({2, 3}) = 3,

R1 + R2 + R3 ≤ f4({1, 2, 3}) = 4. (18)

It can be verified that no rate vector (R1, R2, R3) ∈ P( f4)
exists such that R1 + R2 + R3 = 4. Therefore, B( f4) = ∅.
On the other hand, for β = 5, the polyhedron P( f5) is defined
as follows

R1 ≤ f5({1}) = 1, R2 ≤ f5({2}) = 3,

R3 ≤ f5({3}) = 3,

R1 + R2 ≤ f5({1, 2}) = 4, R1 + R3 ≤ f5({1, 3}) = 5,

R2 + R3 ≤ f5({2, 3}) = 4,

R1 + R2 + R3 ≤ f5({1, 2, 3}) = 5. (19)

It can be easily verified that the rate vector R1 = 1, R2 = 3,
R3 = 1 belongs to the polyhedron P( f5). Therefore,
B( f5) �= ∅.

Summarizing the discussion so far, the optimization
problem (13) is equivalent to

min
R∈Zm

m∑

i=1

ϕi (Ri ), s.t. R ∈ B( fβ), (20)

where fβ is defined in (16). For now, let us assume that
parameter β is chosen such that the optimization problem (20)
is feasible, i.e., B( fβ) �= ∅. We will explain later how the
condition B( fβ) �= ∅ can be efficiently verified.

The main idea behind solving the optimization problem
in (20) efficiently, is to utilize the combinatorial properties
of the set function fβ .

Definition 3: We say that a set function f : 2M → Z is
intersecting submodular if

f (S)+ f (T ) ≥ f (S ∪ T )+ f (S ∩ T ),
∀S,T ⊆ M s.t. S ∩ T �= ∅. (21)

When the inequality conditions in (21) are satisfied for all
sets S,T ⊆ M, the function f is fully submodular.

Lemma 1: The function fβ is intersecting submodular for
any β. When β ≥ N, fβ is fully submodular.
The proof of Lemma 1 is provided in Appendix C.

Theorem 2 (Dilworth Truncation [27]): For every inter-
secting submodular function fβ there exists a fully submodular
function gβ such that both functions have the same polyhedron,
i.e., P(gβ) = P( fβ), and gβ can be expressed as

gβ(S) = min
P∈P(S)

∑

V∈P
fβ(V), (22)

where P(S) is the set of all partitions of the set S. The
function gβ is called the Dilworth truncation of fβ .

The base polyhedron of any fully submodular function
always exists, i.e., there exists a rate vector R such that
R(M) = gβ(M). Since, P(gβ) = P( fβ), it follows

that B(gβ) = B( fβ) whenever gβ(M) = fβ(M) = β,
i.e., when B( fβ) �= ∅ which implies feasibility of the opti-
mization problem (20).

Continuing with Example 1, the Dilworth truncation of the
set function f4 is given by

g4({1}) = 0, g4({2}) = 2, g4({3}) = 2,

g4({1, 2}) = 2, g4({1, 3}) = 2, g4({2, 3}) = 3,

g4({1, 2, 3}) = 3. (23)

Note that f4({1, 2, 3}) �= g4({1, 2, 3}), and hence, β = 4 is not
a feasible sum-rate for the problem (20). On the other hand,
for β = 5, Dilworth truncation of a set function f5 is given by

g5({1}) = 1, g5({2}) = 3, g5({3}) = 3,

g5({1, 2}) = 4, g5({1, 3}) = 4, g5({2, 3}) = 4,

g5({1, 2, 3}) = 5. (24)

Now, f5({1, 2, 3} = g5({1, 2, 3}) = β = 5 which indicates that
β = 5 is a feasible sum-rate for the problem (20). Hence, the
optimization problem (20) can be written as

min
R∈Zm

m∑

i=1

ϕi (Ri ), s.t., R ∈ B(gβ) (25)

provided that gβ(M) = β.
Remark 2: Parameter β is feasible w.r.t. the problem (20)

if gβ(M) = β. Otherwise, gβ(M) < β. This is the direct
consequence of the Dilworth truncation (22).

Depending upon the cost function
∑m

i=1 ϕ(Ri ), in the
sequel, we provide several algorithms that can efficiently solve
problem (10). First, we analyze a special case when the cost
function is linear,

ϕi (Ri ) = αi Ri , αi > 0, ∀i ∈ M. (26)

The condition αi > 0, i ∈ M ensures that ϕi is a non-
decreasing function.

B. Linear Cost

In this section, we study a linear cost data exchange prob-
lem. This problem was independently solved by the authors
of this paper in [1] and [2], and Courtade et al. in [9]. When
the cost function is linear, the optimization problem (25) has
the following form

min
R∈Zm

m∑

i=1

αi Ri , s.t., R ∈ B(gβ). (27)

Due to the submodularity of function gβ , the optimization
problem (27) can be solved analytically using Edmonds’
greedy algorithm [26] (see Algorithm 1).

The greediness of this algorithm is reflected in the fact that
each update of the rate vector is sum-rate optimal:

R∗
j (1) = gβ({ j (1)})

R∗
j (1) + R∗

j (2) = gβ({ j (1), j (2)})
...

m∑

i=1

R∗
j (i) = gβ({ j (1), . . . , j (m)}). (29)
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Algorithm 1 Edmonds’ Algorithm
1: Set j (1), j (2), . . . , j (m) to be an ordering of {1, 2, . . . ,m}

such that α j (1) ≤ α j (2) ≤ · · · ≤ α j (m).
2: Initialize R∗ = 0.
3: for i = 1 to m do
4: R∗

j (i) = gβ({ j (1), j (2), . . . , j (i)})
− gβ({ j (1), j (2), . . . , j (i − 1)}). (28)

5: end for

Fig. 2. Edmonds’ algorithm applied to the three-user problem described in
Example 2, with the cost function R1 +3R2 +2R3. To minimize the cost, the
order in which we greedily update communication rates should be increasing
w.r.t. the weight vector, i.e., 1 → 3 → 2. The optimal DE-rate vector is
R∗

1 = 1, R∗
2 = 1, R∗

3 = 3.

In other words, at each iteration, the individual user’s rate
update reaches the boundary of polyhedron P(gβ). Optimality
of this approach is the direct consequence of submodularity
of function gβ [26].

Remark 3: The optimal rate vector R∗ belongs to the base
polyhedron B(gβ). In other words,

m∑

i=1

R∗
i = gβ(M). (30)

Remark 4: The complexity of Edmonds’ algorithm
is O(mϑ), where ϑ is the complexity of computing
function gβ(S) for any given set S ⊆ M.

Example 2: Let us consider the same source model as in
Example 1, and let the cost function be R1 + 3R2 + 2R3,
and β = 5. The intersecting submodular function fβ , and its
Dilworth truncation gβ are given in (19) and (24), respectively.
The rate vector is updated in an increasing order w.r.t. the
weight vector. In this case, the order is 1 → 3 → 2
(see Figure 2).

The main problem in executing Edmonds’ algorithm effi-
ciently is that the function gβ is not available analytically.
To compute this function for any given set S ⊆ M we need to
solve minimization problem (22). Such minimization has to be
performed over all partitions of the set S, which annuls the
efficiency of the proposed method.

To overcome this problem note that we have access to the
function fβ (see (16)), and by Theorem 2, we know that

Algorithm 2 Minimizing Linear Cost Under Intersecting
Submodular Constraints
1: Set j (1), j (2), . . . , j (m) to be an ordering of {1, 2, . . . ,m}

such that α j (1) ≤ α j (2) ≤ · · · ≤ α j (m).
2: Initialize R∗ = 0.
3: for i = 1 to m do
4: R∗

j (i) = min
S

{ fβ(S ∪ { j (i)})− R∗(S) :
S ⊆ { j (1), j (2), . . . , j (i − 1)}}. (34)

5: end for

P(gβ) = P( fβ ). As pointed out before, each rate update
reaches the boundary of polyhedron P(gβ) (see (29)). Since
we don’t explicitly have function gβ , this polyhedron bound-
ary can be calculated by applying the Dilworth truncation
formula (22). For the three-user problem in Example 2 this
procedure would go as follows:

R∗
1 = f5({1}) = 1, (31)

R∗
3 = min{ f5({1, 3})− R∗

1 , f5({3})} = 3, (32)

R∗
2 = min{ f5({1, 2, 3})− R∗

1 − R∗
3 , f5({1, 2})− R∗

1 ,

f5({2, 3})− R∗
3 , f5({2})} = 1. (33)

Generalization of this procedure to an arbitrary number of
users is shown in Algorithm 2. We refer the interested reader
to references [27]–[29] where this algorithm is explained in
more detail for an arbitrary intersecting submodular functions.

In each iteration i , the minimization problem (34) is over
all subsets of { j (1), . . . , j (i)}. Using the fact that all the
subsets considered in (34) contain a common element j (i)
it is easy to see that fβ(S)− R∗(S) is fully submodular over
the domain set { j (1), j (2), . . . , j (i −1)}. Now the polynomial
time solution of Algorithm 2 follows from the fact that
minimization of a fully submodular function can be done in
polynomial time [30].

Remark 5: The complexity of Algorithm 2 is
O(mSF M(m)), where SF M(m) is the complexity of
minimizing submodular function. The best known algorithm
to our knowledge is proposed by Orlin in [30], and has
complexity O(m5γ + m6), where γ is complexity of
computing the submodular function. For the submodular
function defined in (34), γ equals to the complexity of
computing rank, and it is a function of the file size N . When
users observe linear combinations of the file packets, the rank
over Fq can be computed by Gaussian elimination in O(N3)
time. For the “raw” packet model, rank computation reduces
to counting distinct packets, and therefore its complexity
is O(N). The complexity of sorting in Step 1 is O(m log m)
which is much lower than the complexity of the for loop in
Algorithm 2, and thus it does not contribute to the overall
order of complexity of the algorithm.

Remark 6: From Remark 2 and the fact that Edmonds’
algorithm provides a rate vector with sum-rate gβ(M), it
immediately follows that if Algorithm 2 outputs a rate
vector R∗ such that R∗(M) < β, then B( fβ) = ∅, and such
β is not a feasible sum-rate w.r.t. the problem (20). Hence, for
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Algorithm 3 Minimum Sum-Rate Algorithm (Binary Search)
1: Initialize βstart = 0, βend = N .
2: while βend − βstart > 1 do
3: β = �βstart +βend

2 �.
4: Execute Algorithm 2 with parameter β.
5: if

∑m
i=1 R∗

i = β then
6: βend = β.
7: else
8: βstart = β.
9: end if

10: end while
11: βend is the minimum sum-rate.

any given β, the feasibility of such sum-rate can be verified
in O(mSF M(m)) time.

C. Finding the Optimal Value of β

So far we have shown how to compute function h(β) defined
in (13) for any β when ϕi (Ri ) = αi Ri . To complete our
solution, i.e., to solve the problem defined in (10), it remains
to show how to minimize function h(β) efficiently.

Theorem 3: Function h(β), defined in (11), is convex when
β is a feasible sum-rate w.r.t. the optimization problem (11).

The proof of Theorem 3 is provided in Appendix B.
In order to minimize function h, first, we identify the

set of sum-rates β that are feasible w.r.t. the problem (10).
More precisely, we need to find the minimum sum-rate, since
every β that is larger than or equal to such value is feasible as
well. Hence, we proceed by analyzing the sum-rate objective,
i.e., when ϕi (Ri ) = Ri .

For any fixed parameter β ∈ Z+, Algorithm 2 provides an
optimal rate allocation w.r.t. the linear cost. It is only left to
find β that minimizes h(β) in (10). Let us first consider the
sum-rate cost, i.e., ϕi (Ri ) = Ri . From the equivalence of the
Algorithms 1 and 2, and from Remark 3 it follows that for any
given parameter β, the output rate vector R∗ of Algorithm 2
satisfies

m∑

i=1

R∗
i = gβ(M). (35)

Thus, for a randomly chosen parameter β we can verify
whether it is feasible w.r.t. the problem (13) by applying
Remark 2, i.e., if

∑m
i=1 R∗

i = β, then such sum-rate can be
achieved. Therefore, we can apply a simple binary search algo-
rithm to find the minimum sum-rate. Note that the minimum
sum-rate is always less than or equal to the file size N . Hence,
we can confine our search accordingly (see Algorithm 3).

Remark 7: The complexity of Algorithm 3 is
O(mSF M(m) log N).

For the general linear cost function ϕi (Ri ) = αi Ri , by
Theorem 3, h(β) is convex for β greater than the mini-
mum sum-rate (obtained from Algorithm 3). In Section III-F,
Lemma 5, we show that the search space for β that minimizes
function h can be limited to the file size N . Hence, in order to
solve the minimization problem (10) we can apply a simple

Algorithm 4 Minimum Linear Cost Algorithm
1: Initialize βstart = β∗

sum , βend = N , where β∗
sum is the

minimum sum-rate obtained from Algorithm 3.
2: β = �βstart +βend

2 �.
3: Execute Algorithm 2 for β − 1, β, and β + 1.
4: if h(β) ≤ h(β − 1) and h(β) ≤ h(β + 1) then
5: R∗ that corresponds to the sum-rate β is an optimal rate

allocation.
6: else if h(β − 1) ≥ h(β) ≥ h(β + 1) then
7: βstart = β + 1.
8: else
9: βend = β − 1.

10: end if
11: Go to Step 2.

binary search algorithm that finds the minimum of h(β) by
looking for a slope change in function h.

Remark 8: Since for any fixed β, h(β) can be found
by using Algorithm 2, and β∗

sum can be found by apply-
ing Algorithm 3, the complexity of Algorithm 4 is
O(mSF M(m) log N).

D. Using Subgradient Methods to Solve
Step 4 of Algorithm 2

In this section we propose an alternative solution to the min-
imization problem (34) in Algorithm 2 that does not involve
minimization of a submodular function. The underlying linear
optimization problem has the following form

min
R∈Zm

m∑

i=1

αi Ri , s.t. R ∈ B( fβ), (36)

given that β is a feasible sum-rate. Without loss of generality,
let us assume that α1 ≤ α2 ≤ · · · ≤ αm . In this case, the
minimization in Step 4 of Algorithm 2 can be written as

R∗
i = min

S
{ fβ(S)− R∗(S) : i ∈ S,

S ⊆ {1, 2, . . . , i}}, i = 1, 2, . . . ,m. (37)

Minimization (37) can be interpreted as a maximal update
along the i th coordinate such that R∗

i still belongs to polyhe-
dron P( fβ). This problem can be separately formulated as the
following maximization problem

R∗
i = max

R∈Ri
Ri ,

s.t. Rk ≥ R∗
k , k = 1, 2, . . . , i − 1,

R(S ∪ {i}) ≤ fβ(S ∪ {i}), ∀S ⊆ {1, 2, . . . , i − 1}.
(38)

Note that in an optimal solution, the condition Rk ≥ R∗
k ,

k = 1, . . . , i − 1, holds with equality because any pos-
sible increase of Rk can lead to the smaller value of Ri .
Moreover, since the above minimization is over an integer
submodular polyhedron, the optimal solution is also an integer
number. Therefore, minimization problems (38) and (37) are
equivalent.
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Let us denote by R(i) the rate region that corresponds to
the optimization problem (38)

R(i) = {R ∈ R
i |R(S ∪ {i}) ≤ fβ(S ∪ {i}),

∀S ⊆ {1, 2, . . . , i − 1}}. (39)

To solve optimization problem (38), we apply the dual
subgradient method. First, the Lagrangian function of the
problem (38) is

L(R,λ) = Ri +
i−1∑

k=1

λk(Rk − R∗
k ), s.t. R ∈ R(i), (40)

where λk ≥ 0, k = 1, 2, . . . , i − 1. Then, the dual function
δ(λ) equals to

δ(λ) = max
R∈R(i)

L(R, λ)

= max
R∈R(i)

{

Ri +
i−1∑

k=1

λk Rk

}

−
i−1∑

k=1

λk R∗
k . (41)

Due to the maximization step in (41) over multiple hyper-
planes, it immediately follows that δ(λ) is a convex function.
By the weak duality theorem [31],

δ(λ) ≥ R∗
i , ∀λk ≥ 0, k = 1, 2, . . . , i − 1. (42)

Hence,

min
λ

{δ(λ)|λk ≥ 0, k = 1, 2, . . . , i − 1} ≥ R∗
i (43)

Since optimization problem (38) is linear, there is no duality
gap, i.e.,

R∗
i = min

λ
{δ(λ)|λk ≥ 0, k = 1, 2, . . . , i − 1} . (44)

To solve optimization problem (44), we apply the dual subgra-
dient method [32] as follows. Starting with a feasible iterate
λk[0], k = 1, 2, . . . , i −1, w.r.t. the optimization problem (44),
and the step size θ j , every subsequent iterate λk [ j + 1] for all
k = 1, 2, . . . , i − 1, can be recursively computed as follows

λk[ j + 1] =
{
λk[ j ] − θ j (R̃k[ j ] − R∗

k )
}

+, (45)

where R̃k[ j ] is an optimal solution to the problem

max
R∈R(i)

Ri +
i−1∑

k=1

λk[ j ]Rk . (46)

Note that R̃k [ j ] − R∗
k , k = 1, 2, . . . , i − 1, is a derivative of

the dual function δ(λ[ j ]).
Lemma 2: An optimal solution to the problem (46) can be

obtained as follows. Let t (1), t (2), . . . , t (i −1) be an ordering
of 1, 2, . . . , i −1 such that λt (1) ≥ λt (2) ≥ · · · ≥ λt (i−1). Then,

R̃i [ j ] =
{

fβ({i}), if λt (1) ≤ 1,

0, otherwise.
(47)

R̃t (k) = fβ(St (k) ∪ {i})−
k−1∑

u=1

R̃t (u)[ j ] − R̃i [ j ], (48)

for k = 1, 2, . . . , i − 1, where St (k) � {t (1), t (2), . . . , t (k)}.
The proof of this Lemma is provided in Appendix D.

Remark 9: The complexity of the algorithm proposed by
Lemma 2 is O(i log i + iγ ), where γ is the complexity of
computing rank.

We apply subgradient methods instead of gradient because
the function δ(λ)[ j ] even though convex, is not differentiable.
From Lemma 2, it follows that for a given λ[ j ], there may
be more than one maximizer of the problem (46). Due to
possibility of having more than one direction along which we
can update vector λ[ j ] according to (45), subgradient method
is not technically a descent method; the function value δ(λ[ j ])
may often increase in the consecutive steps. For that reason,
at each step we keep track of the smallest solution up to that
point in time

λ̃[ j ] = argmin {δ(λ[0]), δ(λ[1]), . . . , δ(λ[ j ])}. (49)

Before we go any further, note that the primal optimization
problem (38) is over real vectors. However, the minimiza-
tion (36) is an integer optimization problem. As pointed out
above, the optimal solution of the problem (38) is equal to the
solution of the problem (36). Therefore, we can choose the
number of iterations l of the dual subgradient method such
that we get “close enough” to an integer solution. In other
words,

∣∣
∣δ(λ̃[l])− R∗

i

∣∣
∣ ≤ ε, (50)

where ε < 0.5. Then,

R∗
i = round(δ(λ̃[l])). (51)

E. Convergence Analysis

In this section we explore the relationship between the
number of iterations of the dual subgradient method l, and
the step size θ j , such that it is guaranteed that (51) provides
the optimal solution.

Lemma 3: Let λ∗ be an optimal vector that minimizes the
dual function δ. Then,

δ(λ̃[l − 1])− δ(λ∗)

≤
(∑i−1

k=1 λk [0]
)2 +

(∑i−1
k=1 λ

∗
k

)2 + 2N2 ∑l−1
j=0 θ

2
j

2
∑l−1

j=0 θ j
. (52)

The proof of Lemma 3 can be derived from the notes
on subgradient methods presented in [32]. For the sake of
completeness, we provide its entire proof in Appendix E.

Since by Lemma 3, λ∗ can be an arbitrary minimizer of
the dual function δ, let us choose λ∗ that can be bounded as
suggested by the following lemma.

Lemma 4: There exists an optimal solution to the
problem (44) that satisfies

i−1∑

k=1

λ∗
k ≤ m. (53)

The proof of this Lemma is provided in Appendix F.
An initial feasible λ[0] can be chosen as follows

λk[0] = 0, ∀k ∈ {1, 2, . . . , i − 1}. (54)
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Algorithm 5 Minimization (34) of Algorithm 2
1: Select parameters l, and θ j , j = 0, 1, . . . , l − 1 such that

m2 + 2N2 ∑l−1
j=0 θ

2
j

2
∑l−1

j=0 θ j
<

1

2
. (60)

2: Set λk[0] = 0, k = 1, 2, . . . , i − 1, and λ̃[0] = λ[0].
3: for j = 0 to l − 1 do
4:

λk[ j + 1] =
{
λk [ j ] − θ j (R̃k[ j ] − R∗

k )
}

+ , (61)

for k = 1, 2, . . . , i−1, where R̃[ j ] is computed according
to Lemma 2.

5:

λ̃[ j + 1] = argmin
{
δ(λ[ j + 1]), δ(λ̃[ j ])

}
. (62)

6: end for
7:

R∗
i = round

(
δ(λ̃[l])

)
. (63)

Combining (52), (53) and (54), we obtain

δ(λ̃[l − 1])− δ(λ∗) ≤ m2 + 2N2 ∑l−1
j=0 θ

2
j

2
∑l−1

j=0 θ j
. (55)

There are many ways to choose the step size that satisfies
the condition (55) (see [32]). Here, we briefly examine the
constant step size, where θ j = θ , j = 0, 1, 2, . . .. In this case,
the inequality (55) becomes

δ(λ̃[l − 1])− δ(λ∗) ≤ m2 + 2N2lθ2

2lθ
. (56)

Hence, the condition (50) is satisfied when

m2 + 2N2lθ2

2lθ
<

1

2
. (57)

It can be easily verified that (57) holds when

θ <
1

2N2 , (58)

l >
m2

θ(1 − 2N2θ)
. (59)

Putting all these results together, the minimization (37) can
be obtained by running Algorithm 5.

Remark 10: From Remark 9 it follows that the complex-
ity of Algorithm 5 is SF M(m) = O(lm log m + lmγ ).
For a constant step size θ , from (58) and (59) it follows
that the complexity of Algorithm 5 can be bounded by
O(N2m3 log m + N2m3γ ).

Remark 11: Note that Algorithm 5 can be applied to solve
problem (36) when fβ is an arbitrary intersecting submodular
function over integers.

Algorithm 6 Minimizing Separable Convex Cost Under Sub-
modular Constraints
1: Set Ri = 0, ∀i ∈ M.
2: for j = 1 to β do
3: Find i∗ ∈ M such that

i∗ = argmin
i∈M

{di (Ri + 1)|R + e(i) ∈ P(gβ)}, (65)

where

di (Ri + 1) � ϕi (Ri + 1)− ϕi (Ri ), (66)

and e(i) is the unit basis m-dimensional vector with i th

coordinate equals to 1.
4: Set Ri∗ = Ri∗ + 1.
5: end for
6: R∗ = R is an optimal rate vector w.r.t. the problem (64).

F. General Separable Convex Cost

In the previous section, for the linear cost function, we
applied Edmonds’ algorithm in order to obtain the optimal rate
allocation. Edmonds’ algorithm is greedy by its nature since all
rate updates are reaching the boundary of polyhedron P(gβ).
This effectively means that Edmonds’ algorithm provides rate
allocations that are vertices of the base polyhedron B(gβ).
While this was an optimal approach in the case of linear
objectives, for the general separable convex cost function the
optimal rate vector may not belong to a vertex of B(gβ).
We will show this in Example 3.

The general convex cost optimization problem

min
R∈Zm

m∑

i=1

ϕi (Ri ), s.t. R ∈ B(gβ) (64)

is known as a resource allocation problem under submodular
constraints [33], and it can be solved by applying the following
intuitive approach: instead of applying greedy scheme, we
will incrementally update by one symbol in Fq a commu-
nication rate of a user that has the minimal discrete derivative
(see Algorithm 6).

Definition 4: Let us define set T j to be the set of all users
that are in iteration j of Algorithm 6 allowed to update their
transmission rates

T j �
{
i |R + e(i) ∈ P(gβ)

}
. (67)

The question is how to efficiently recover set T j in each
round of Algorithm 6. First, we observe that P(gβ) = P( fβ)
according to Theorem 2. Second, note that in Algorithm 2, the
minimization (34) outputs the maximum rate vector update
along one coordinate. Therefore, we only need to verify
whether such update is at least equal to one symbol in Fq .
In other words, i ∈ T j if

min
S⊆M\{i}

{ fβ(S ∪ {i})− R(S ∪ {i})} ≥ 1. (68)

Now we can obtain a polynomial time solution to problem (13)
by applying Algorithm 7.

The complexity of (68) is SF M(m), since the function
fβ(S) − R∗(S) is fully submodular. This check can be done
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Algorithm 7 Minimizing separable Convex Cost Under Inter-
secting Submodular Constraints
1: Set Ri = 0, ∀i ∈ M.
2: for j = 1 to β do
3: Construct set T j as follows

T j = {i : min
S⊆M\{i}

{ fβ(S ∪ {i})− (69)

R(S ∪ {i})} ≥ 1}.
4: Find i∗ ∈ T j such that

i∗ = argmin
i∈T j

{di (Ri + 1)}. (70)

5: Set Ri∗ = Ri∗ + 1.
6: end for
7: R∗ = R is an optimal rate vector w.r.t. the problem (64).

either by minimizing submodular function as suggested in (68)
or by running the dual subgradient algorithm similar to the
one proposed in Section III-D. Here, we briefly explain the
differences. First, rate region R(i) defined in (39), now has
the following form

R(i) = {R ∈ R
m |R(S ∪ {i}) ≤ fβ(S ∪ {i}), ∀S ⊆ M \ {i}}.

(71)

Let us denote by R∗ ∈ R
m the current rate allocation in

round j of Algorithm 7. Then, if the maximization

max
R∈R(i)

Ri ,

s.t. Rk ≥ R∗
k , k = 1, 2, . . . ,m, (72)

is at least 1, then i ∈ T j . Problem (72) can be solved by
following the same steps in solving the dual problem as in
Section III-D.

Remark 12: At each iteration, Algorithm 7 calls (69) m
times, and there are total of β iterations. Therefore, the
complexity of Algorithm 7 is O(mβSF M(m)).

Lemma 5: Let us denote by β∗ the minimizer of the function
h defined in (13). Then, β∗ ≤ N.

The proof of Lemma 5 is provided in Appendix G.
For the general non-decreasing set of convex functions ϕi ,

i ∈ M, from Theorem 3 we know that function h is convex.
Moreover, by Lemma 5 it follows that the minimizer of h
is at most equal to N . Therefore, in order to minimize h,
we can apply Algorithm 4 which computes h(β) for any β
by applying Algorithm 7. Thus, the overall complexity of the
proposed solution is O(mSF M(m)N log N).

G. Fairness Under the Fixed Sum-Rate Budget

In this section we study the problem where for the fixed
feasible sum-rate budget β, the goal is to distribute communi-
cation load to users as evenly as possible. Linear cost function
is by its nature “unfair,” since it can potentially result in a
communication scheme where only a small group of users
transmit packets. For the fixed sum-rate budget, the “fairness”
can be achieved by introducing an uniform, non-decreasing

Fig. 3. Algorithm 7 applied to the three-user problem from Example 3,
with the cost function

∑3
i=1 Ri log Ri and the fixed sum-rate R1 + R2 +

R3 = 5. To minimize the cost, in each iteration we update the rate of the user
who has transmitted the least amount of symbols in Fq such that the update
still belongs to polyhedron P( fβ).

(in the integer domain) objective ϕi (Ri ) = Ri log Ri ,
i = 1, . . . ,m, and it is illustrated in the example below.

Example 3: Consider the same three-user problem as in
Example 1

x1 = [
w1 w2

]T
,

x2 = [
w2 w4 w5 w6

]T
,

x3 = [
w3 w4 w5 w6

]T
, (73)

where wi ∈ Fq , i = 1, . . . , 6.
In case of the linear objective R1+3R2+2R3, and the given

sum-rate β = 5, we showed in Example 2 that the optimal DE-
rate vector obtained by using Algorithm 2, belongs to a vertex
of the base polyhedron B( fβ):

R∗
1 = 1, R∗

2 = 1, R∗
3 = 3. (74)

Let us now analyze the case when the objective is
ϕi (Ri ) = Ri log Ri , i = 1, 2, 3. Then, from (66), it follows
that

di (Ri + 1) = (Ri + 1) log(Ri + 1)− Ri log Ri . (75)

It is not hard to show that the above function di () is increasing.
Hence, step 4 of Algorithm 7 can be written as

i∗ = argmin
i∈T j

Ri , (76)

where T j can be computed from (68), and j = 1, . . . , β is
an iteration of Algorithm 7. The condition (76) proves that
ϕi (Ri ) = Ri log Ri is a good measure for fairness, since it
is enforcing the transmission vector R to be as uniform as
possible. The execution steps of Algorithm 7 are shown in
Figure 3. It can be verified that

T1 = {1, 2, 3}, T2 = T3 = T4 = T5 = {2, 3}. (77)

Therefore, the optimal DE-rate vector for this example is
R∗

1 = 1, R∗
2 = 2, R∗

3 = 2.
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Fig. 4. Multicast network constructed from the source model and DE-rate
vector R∗

1 = 1, R∗
2 = 1, R∗

3 = 3. Hence, in an optimal scheme users 1, 2 and
3 are transmitting 1, 1, and 3 linear combinations of their own observations in
Fq , respectively. Each user receives side-information from “itself” (through
the links si → ri , i = 1, 2, 3) and from the other users (through the links
ti → r j , i, j ∈ {1, 2, 3}, i �= j).

IV. CODE CONSTRUCTION

In Theorem 1, we showed that in order to achieve optimal
communication rates, it is sufficient for each user to transmit
the optimal number of linear combinations of its observations.
In this section, we show how to efficiently design the trans-
mission scheme. We explain the code construction on the three
user problem from Example 2, where

x1 = [
w1 w2

]
,

x2 = [
w2 w4 w5 w6

]
,

x3 = [
w3 w4 w5 w6

]
, (78)

and R∗
1 = 1, R∗

2 = 1, R∗
3 = 3. This means that in an optimal

scheme users 1, 2 and 3 transmit 1, 1, and 3 linear combina-
tions of their own observations in Fq , respectively. We design
the coding scheme by first constructing the corresponding
multicast network (see Figure 4). In this construction, notice
that there are several types of nodes. First, there is a super
node S that has all the packets. Each user in the system is
a transmitter, while in addition, each user is also a receiver.
To model this, we denote s1, s2 and s3 to be the “transmitting”
nodes, and r1, r2 and r3 to be the “receiving” nodes. The side-
information observed by users 1, 2 and 3 gets directly routed
from s1, s2 and s3 to the receivers r1, r2 and r3 through direct
edges (dashed edges in Figure 4). To model the broadcast
nature of each transmission, we introduce the “dummy” nodes
t1, t2 and t3, such that the capacity of the links (si , ti ) is the
same as link capacity (ti , r j ), j �= i , and is equal to R∗

i ,
∀i ∈ M.

Now, when we have a well-defined network it is only left
to figure out transmissions on all the edges. For instance,
this can be achieved using Jaggi et al. algorithm [16]. The
first step of this algorithm is to determine N = 6 disjoint
paths from the super-node S to each receiver r1, r2 and r3
by using the Ford-Fulkerson algorithm [34]. Such paths are
designed to carry linearly independent messages from the
super node to the receivers. When each user observes some

Fig. 5. When each user observes subset of the file packets, we can model
the observations by adding an extra layer of N = 6 nodes to the graph in
Figure 4. Each extra node represents one file packet, and all extra edges are
of capacity 1. Then, users’ observations can be modeled by connecting nodes
from this layer to the users’ nodes s1, s2 and s3 according to (78).

subset of the file packets (as it is the case in this example), this
problem can be solved as a special case of [7]. Namely, we can
directly apply Jaggi et al. algorithm to this problem by slightly
modifying the upper portion of the multicast network from
Figure 4 (see Figure 5). Note that in this case, we were able to
model observations of each user simply by adding one more
layer of nodes which represent individual file packets, and
then connecting these packet nodes with each user according
to (78). In other words, the entire source model and the
communication model can be represented by multicast acyclic
graph. Therefore, Jaggi et al. algorithm would find actual
transmissions of each user in polynomial time.

In the case of general linear packet model, it is not possible
to represent users’ observations just by adding one extra layer
of nodes to the multicast graph as in Figure 5. This is because
there is an underlying correlation between all the linear
combinations that appear in the users’ observation vectors,
and it would be suboptimal to treat all these combinations
independently. Thus, the only way to solve this problem is
to directly give the linear combinations to the users’ nodes
s1, s2 and s3. This can be achieved by applying Harvey’s
algorithm [25] which is based on matrix representation of
transmissions in the network [24], [35], and simultaneous
matrix completion problem over finite fields. In the remainder
of this section, we briefly examine building blocks of this code
construction algorithm.

First, we choose source matrix A to be the side-information
matrix of all users as,

A = [
AT

1 . . . AT
m 0 . . . 0

]
, (79)

where Ai corresponds to the observation matrix defined in (1).
Matrix A is an N × � matrix, where � is the total number of
edges in the network.

The transfer matrix M(ri ) from the super-node S to any
receiver ri , i ∈ A can be obtained as shown in [24]. It is a
N × N matrix with the input vector w, and the output vector
corresponding to the observations at the receiver ri

M(ri ) = A(I − )−1D(ri ), i = 1, 2, . . . ,m, (80)

where  is adjacency matrix of the multicast network, and
D(ri ) is an output matrix. For more details on how these
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matrices are constructed, we refer the interested reader to the
reference [24].

A multicast problem has a network coding solution if and
only if each matrix M(ri ) is non-singular. In [25], the author
showed that for the expanded transfer matrix defined as

E(ri ) =
[

A 0
I −  D(ri )

]
, i = 1, 2, . . . ,m, (81)

it holds that det(M(ri )) = ± det(E(ri )).
Some entries of the matrices  and D(ri ), i = 1, 2, . . . ,m,

are unknowns. To obtain the actual transmissions on all the
edges, it is necessary to replace those unknown entries with
elements from Fq such that all matrices E(ri ), i = 1, 2, . . . ,m,
have full rank. This is known as a simultaneous matrix
completion problem and it is solved in [25] in polynomial
time provided that |Fq | > m.

Remark 13: The complexity of the algorithm proposed
in [25] applied to our problem is O(m4γ log(m N)), where γ
is the complexity of computing rank.

V. RANDOMIZED ALGORITHM

In this section we combine Algorithm 6 with the linear
network coding scheme to produce a randomized solution to
the optimization problem (13) of linear complexity (in number
of users). First, note that Algorithm 6 is incremental by its
nature, i.e., in each iteration we update the rate vector by one
symbol in Fq . Say that user i updates its rate at round j of
Algorithm 6. Along with the rate update, let user i transmit
an appropriately chosen linear combination of its observations;
using the notation from Section II, we have

v
( j )
i = b( j )

i Ai w, (82)

where b( j )
i ∈ F

�i
q , is the vector of coefficients that lead

to the optimal communication scheme. We note that those
coefficients are not known a priori; they can be figured out by
applying the algorithm proposed in Section IV only after the
entire optimal DE-rate vector is recovered. For now, let us just
assume that we have access to the vectors b( j )

i for all iterations
j = 1, . . . , β, and for all users i ∈ M that are scheduled to
update their communication rates. Later, we will use random
linear network coding argument to relax these assumptions.

In the expression (82), let us define u( j ) ∈ F
N
q as

u( j ) � b( j )
i Ai . (83)

Then, we can write (82) as

v
( j )
i = u( j )w. (84)

By generating transmissions along with the rate updates, we
can actually reduce the complexity of verifying whether the
rate vector update still belongs to the polyhedron P( fβ). This
result is stated in the following theorem.

Theorem 4: Let the set T j be defined as in (67). Then,

T j = {i ∈ M|rank(Ai ∪ u(1) ∪ · · · ∪ u( j−1))

> N − (β − j + 1)}. (85)

The proof of Theorem 4 is provided in Appendix H.

Algorithm 8 Randomized Algorithm
1: Set Ri = 0, ∀i ∈ M.
2: for j = 1 to β do
3: Find T j as defined in (85).
4: Find i∗ ∈ T j such that

i∗ = argmin
{
di (Ri + 1)|i ∈ T j

}
, (86)

where di () is defined in (66).
5: Let i∗ transmit, and create a transmission v( j )

i∗ by creat-

ing a vector b( j )
i∗ uniformly at random over F

�i∗
q .

6: Set Ri∗ = Ri∗ + 1.
7: end for
8: R∗ = R is an optimal rate vector w.r.t. the problem (64).

So far we have assumed that the vectors u( j ) are provided
to us deterministically, and that they render optimal commu-
nication scheme. However, this assumption is unjustifiable
since we saw in Section IV that in order to construct a
deterministic communication scheme we need to know optimal
DE-rate vector beforehand. To go around this problem we
invoke a random linear network coding scheme. The basic
idea behind the random linear network coding argument is
that if user i is scheduled to transmit in round j , then we can
choose vectors b( j )

i in (82) uniformly at random over F
�i
q . The

following lemma provides a relationship between probability
of generating optimal transmissions and the field size q .

Lemma 6: For the random linear network coding scheme,
the probability of choosing an optimal sequence of
vectors u( j ), j = 1, 2, . . . , β, is at least (1 − m

q )
β .

The proof of Lemma 6 directly follows from [35]. The idea is
to relate this problem to a multicast problem as in Section IV,
while assuming that the optimal rates are given. Then, by
randomly generating transmissions on each link, we obtain
the exactly same formulation as in [35].

Putting all these results together, from Algorithm 6
we can devise its Randomized counterpart as follows
(see Algorithm 8).

Remark 14: The complexity of Algorithm 8 is O(mγ N),
where γ is the complexity of computing rank.

Remark 15: When β is not a feasible sum-rate w.r.t. the
optimization problem (13), then after β iterations of Algo-
rithm 8 there exists a user that cannot reconstruct all the
packets. In other words

∃i ∈ M, s.t. rank
(

Ai ∪ u(1) ∪ · · · ∪ u(β)
)
< N. (87)

In order to solve the optimization problem (10), we can
apply a binary search algorithm similar to Algorithm 4.
Thus, the overall complexity of the proposed algorithm is
O(mγ N log N).

Example 4: Let us consider the same problem as
in Example 3

x1 = [
w1 w2

]
,

x2 = [
w2 w4 w5 w6

]
,

x3 = [
w3 w4 w5 w6

]
, (88)
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where wi ∈ Fq , i = 1, . . . , 6, and q is some large prime
number. For the uniform objective

∑3
i=1 Ri log Ri with a fixed

sum-rate
∑3

i=1 Ri = 5, Algorithm 8 executes the following
steps:

• Set R1 = R2 = R3 = 0.
• j = 1 : Updates of the rate vector R∗ are selected accord-

ing to the rule (76):

argmin {Ri |i ∈ T1 = {1, 2, 3}} = {1, 2, 3}, (89)

User 1 transmit some random linear combination of its
observation, say v(1)1 = w1 + 7w2. Set

R1 = R1 + 1 = 1. (90)

• j = 2 : Vector R is updated according to the rule:

argmin {Ri |i ∈ T2 = {2, 3}} = {3}. (91)

User 3 transmit some random linear combination of its
observation, say v(2)3 = w3 +w4 + 5w5 + 11w6. Set

R3 = R3 + 1 = 1. (92)

• j = 3 : Vector R is updated according to the rule:

argmin {Ri |i ∈ T3 = {2, 3}} = {2}. (93)

User 2 transmit some random linear combination of its
observation, say v(3)2 = 4w2 + 3w4 + 13w5 + 8w6. Set

R2 = R2 + 1 = 1. (94)

• j = 4 : Vector R is updated according to the rule:

argmin {Ri |i ∈ T4 = {2, 3}} = {3}. (95)

User 3 transmit some random linear combination of its
observation, say v(4)3 = 9w3 + 5w4 + 14w5 + 17w6. Set

R3 = R3 + 1 = 2. (96)

• j = 5 : Vector R is updated according to the rule:

argmin {Ri |i ∈ T5 = {2, 3}} = {2}. (97)

User 2 transmit some random linear combination of its
observation, say v(5)2 = 11w2 + 2w4 + 18w5 + 6w6. Set

R2 = R2 + 1 = 2. (98)

• R∗ = R is an optimal DE-rate vector w.r.t. the uniform
objective and the condition R(M) = 5.

It can be verified that after this round of communication all
the users are able to recover the file.

VI. INTRODUCING CAPACITY CONSTRAINTS

In this section we explore a data exchange problem where
the transmissions of each user can be further restricted. For
instance, we can limit the total number of packets sent by each
user. Say that user i is not allowed to transmit more than ci

packets in Fq . Then, optimization problem (10) becomes

min
β∈Z+

h(β), (99)

where h(β) can be obtained from (25) by adding capacity
constraints

h(β) = min
R∈Zm

m∑

i=1

ϕi (Ri ),

s.t., R ∈ B(gβ), Ri ≤ ci , ∀i ∈ M, (100)

provided that gβ(M) = β. We also assume that the capacity
vector c is feasible, i.e., there exists a rate vector R ∈ B(gβ)
such that the capacity constraints in (100) are satisfied.

In Section III we pointed out that the optimality of all
the algorithms we studied is guaranteed due to the fact that
the constraint set of the problem (13) constitutes a base
polyhedron of a submodular function. In this section we show
that by adding individual capacity constraints, the constraint
set in (13) also forms a base polyhedron of a submodular
function. This implies that in such a case we can still apply
every algorithm developed so far in order to obtain an optimal
DE-rate vector.

We begin our analysis by defining the restriction of a
submodular function (see [33] for the reference).

Definition 5: For a submodular function gβ : 2M → Z,

and a vector c ∈ Z
m , define a function gc

β : 2M → Z by

gc
β(S) � min

V⊆S

{
gβ(V)+ c(S \ V)} , ∀S ⊆ M. (101)

The submodular function gc
β is called the restriction of gβ by

vector c.
Theorem 5 [33, Th. 8.2.1]: Let gc

β be restriction of a

submodular function gβ by vector c. Then, gc
β is submodular.

Theorem 6: For a submodular function gβ defined in (22)
and a feasible capacity vector c w.r.t. problem (100), the base
polyhedron B(gc

β) of the restriction of gβ by c, is given by

B(gc
β) = {

R|R ∈ B(gβ), Ri ≤ ci , ∀i ∈ M
}
, (102)

provided that the sum-rate β and the capacity vector c are
feasible w.r.t. the optimization problem (13).

The proof of Theorem 6 is provided in Appendix I.
From Theorem 6 it follows that the constraint set of (100)

forms a submodular polyhedron B(gc
β), which further implies

that all the algorithms developed so far can be applied to
obtain an optimal DE-rate vector. For instance, with capacity
constraints, Step 4 of Algorithm 1 becomes

R∗
j (i) = min{c j (i), gβ({ j (1), j (2), . . . , j (i)})

− gβ({ j (1), j (2), . . . , j (i − 1)})}. (103)

This modification propagates to Algorithm 2 as well. Similarly,
at iteration j , Step 4 of Algorithms 7 and 8 is modified as
follows

i∗ = argmin{di (R
∗
i + 1)|i ∈ T j , s.t., R∗

i + 1 ≤ ci }. (104)

Remark 16: If the capacity vector c was not feasible w.r.t.
problem (100), then all algorithms considered so far would
terminate before reaching a sum-rate equal to β.
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Example 5: Let us consider the same problem as in
Example 2

x1 = [
w1 w2

]
,

x2 = [
w2 w4 w5 w6

]
,

x3 = [
w3 w4 w5 w6

]
, (105)

where wi ∈ Fq . For the cost function R1 + 3R2 + 2R3,
and the sum-rate β = 5, let the capacity constraints be
ci ≤ 2, i = 1, 2, 3. Then, by applying Algorithm 2 with the
modification (103), we obtain the following result

R∗
1 = min{ f5({1}), c1} = 1, (106)

R∗
3 = min{min{ f5({1, 3})− R∗

1 , f5({2})}, c3} = 2, (107)

R∗
2 = min{min{ f5({1, 2, 3})− R∗

1 − R∗
3 , f5({1, 3})− R∗

1 ,

f5({2, 3})− R∗
3 , f5({2})}, c2} = 2. (108)

Without capacity constraints, as it was the case in
Example 2, user 3 would transmit 3 packets in Fq .

VII. CONCLUSION

In this work we addressed the problem of the data exchange,
where each user has some side-information about the file, and
is interested in recovering it. We assumed that the users are
allowed to “talk” to each other over a noiseless broadcast
channel. For the case when the side information is in the form
of the linearly coded packets, we provided deterministic and
randomized polynomial time algorithms for finding an optimal
communication scheme, w.r.t. a separable convex communi-
cation cost. For the deterministic algorithm, we proposed two
methods to determine how much should each user transmit in
an optimal scheme. The first one was based on minimizing a
submodular function, while the second technique was based
on subgradient methods. The latter technique also provides
an alternative solution to the Edmonds’ algorithm when the
underlying set function is intersecting submodular and over
integers.

APPENDIX A
PROOF OF THEOREM 1

In order for each user in M to reconstruct the file, it is
necessary for all of them to receive a sufficient number of
linear combinations over Fq so that the observation rank of
each user is full. For instance, in order for user 1 to recover
all N packets of the file, it is sufficient for him to select N −�1
linear equations from the remaining m − 1 users. In this case,
user 2 can send to user 1

R2 = rank
(
A{1,2}

) − rank
(
A{1}

)
(109)

of its linear equations, after which user 1’s observation rank
will be rank

(
A{1,2}

)
. Following this procedure, we have that

the number of linear equations sent by the remaining users is

R3 = rank
(
A{1,2,3}

) − rank
(
A{1,2}

)
(110)

...

Rm = rank (AM)− rank
(
AM\{m}

)

= N − rank
(
AM\{m}

)
. (111)

Observe that the number of linear equations each user
sends depends upon the ordering of users in equa-
tions (109) through (111). Let j (2), . . . , j (m) be any ordering
of 2, . . . ,m. Then, by applying the same approach as above,
we obtain other feasible rate tuples

R j (2) = rank
(
A{1, j (2)}

) − rank
(
A{1}

)
(112)

R j (3) = rank
(
A{1, j (2), j (3)}

) − rank
(
A{1, j (2)}

)
(113)

...

R j (m) = N − rank
(
AM\{ j (m)}

)
. (114)

From (112)-(114), observe that

m∑

i=t

R j (i) = N − rank
(
A{1, j (2),..., j (t−1)}

)
, (115)

for t = 2, . . . ,m. Note that (112) through (114) consti-
tute a feasible solution provided by Edmonds’ algorithm
(see Algorithm 1) for a fully submodular function gβ(S) =
β−N+rank(AS∪{1}), S ⊆ {2, . . . ,m}, for β = N−rank(A{1}).
Hence, it immediately follows that any rate vector R obtained
by applying (112) through (114) for any ordering of 2, . . . ,m,
should satisfy
∑

i∈S
Ri ≤ rank

(
AS∪{1}

) − rank
(
A{1}

)
, ∀S ⊆ M s.t. {1} /∈ S,

(116)

which is equivalent to
∑

i∈S
Ri ≥ N − rank

(
AM\S

)
,∀S ⊆ M s.t. {1} /∈ S. (117)

Let us denote the above region by R1. Similarly, for users 2
through m, we can define regions R2, . . . ,Rm . Let us denote
by Rint the set of all integer vectors Z

m that belong to the
cut-set region R defined in (5). Then, it is not hard to show
that

Rint = R1 ∩ R2 ∩ · · · ∩ Rm . (118)

From the discussion above, we know that if R ∈ Rint ,
then it is sufficient for user i to send Ri linear equations
separately to all the users, which makes the total of (m −1)Ri

equations over Fq sent by user i . The key property of the
linear network codes is that there exists one set of Ri linear
equations that user i can broadcast and simultaneously satisfy
demands of all the remaining users in M, provided that
the field size |Fq | is large enough [36]. Hence, every rate
tuple that belongs to Rint can be achieved via linear network
coding.

APPENDIX B
PROOF OF THEOREM 3

Consider two feasible sum-rates β1 and β2 w.r.t. the
problem (13). We show that for any λ ∈ [0, 1] such that
λβ1 + (1 − λ)β2 ∈ Z+ it holds that h(λβ1 + (1 − λ)β2) ≤
λh(β1)+ (1 − λ)h(β2). Let R(1) and R(2) be the optimal rate
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tuples w.r.t. h(β1) and h(β2), respectively. Then,

λh(β1)+ (1 − λ)h(β2)

=
m∑

i=1

(
λϕi (R

(1)
i )+ (1 − λ)ϕi (R

(2)
i )

)
(119)

(a)≥
m∑

i=1

ϕi (λR(1)i + (1 − λ)R(2)i ) =
m∑

i=1

ϕi (R
(λ)
i ), (120)

where (a) follows from the convexity of ϕi , ∀i ∈ M, and
R(λ) � λR(1) + (1 − λ)R(2). Now, we show that R(λ) is a
feasible DE-rate vector for the problem (13) when β = λβ1 +
(1 − λ)β2.

Since R(1)(M) = β1 and R(2)(M) = β2, it follows that

R(λ)(M) = λR(1)(M)+ (1 − λ)R(2)(M)

= λβ1 + (1 − λ)β2. (121)

From

R(i)(S) ≥ N − rank(AM\S), ∀S ⊂ M, i = 1, 2, (122)

we have

R(λ)(S) = λR(1)(S)+ (1 − λ)R(2)(S)
≥ N − rank(AM\S), ∀S ⊂ M. (123)

From (121) and (123) it follows that R(λ) is a feasible DE-
rate vector w.r.t. optimization problem (13) when β = λβ1 +
(1 − λ)β2. Therefore,

∑m
i=1 ϕi (R

(λ)
i ) ≥ h(λβ1 + (1 − λ)β2).

Hence, from (120), it follows that

h(λβ1 + (1 − λ)β2) ≤ λh(β1)+ (1 − λ)h(β2), (124)

which completes the proof of Theorem 3.

APPENDIX C
PROOF OF LEMMA 1

When S ∩T �= ∅, the following inequality holds due to the
submodularity of the rank function

fβ(S)+ fβ(T )
= rank(AS)+ rank(AT )− 2(N − β) (125)

≥ rank(AS∪T )+ rank(AS∩T )− 2(N − β) (126)

= fβ(S ∪ T )+ fβ(S ∩ T ). (127)

To show that the function fβ is submodular when β ≥ N , it
is only left to consider the case S ∩ T = ∅. Since fβ(∅) = 0,
we have

fβ(S)+ fβ(T )
= rank(AS)+ rank(AT )− 2(N − β) (128)

≥ rank(AS∪T )− (N − β) = fβ(S ∪ T ). (129)

The inequality in (129) directly follows from the submodular-
ity of the rank function

rank(AS )+ rank(AT )− rank(AS∪T ) ≥ 0 (130)

≥ N − β. (131)

This completes the proof of Lemma 1.

APPENDIX D
PROOF OF LEMMA 2

Let us construct the set function y : 2{1,2,...,i} → Z as
follows

y(S) =

⎧
⎪⎨

⎪⎩

0 if S = ∅,
fβ(S) if i ∈ S,
fβ(S ∪ {i}) if i /∈ S.

(132)

First, we show that R(i) = P(y). Let R ∈ P(y). Then, for
any S ⊆ {1, 2, . . . , i − 1}, it follows that

R(S ∪ {i}) ≤ y(S ∪ {i}) = fβ(S ∪ {i}). (133)

Therefore, R ∈ R(i).
Now, let R ∈ R(i). From (39) we have

R(S ∪ {i})≤ fβ(S ∪ {i})= y(S ∪ {i}),∀S⊆{1, 2, . . . , i − 1}.
(134)

Since the rate vector is non-negative, (134) implies that

R(S) ≤ fβ(S ∪ {i}) = y(S), ∀S ⊆ {1, 2, . . . , i − 1}.
(135)

From (134) and (135) it follows that R ∈ P(y). Hence,
R(i) = P(y).

Next, we show that function y is fully submodular. For any
S,T ⊆ {1, 2, . . . , i}, let us consider the following 3 cases

Case 1: i ∈ S, i /∈ T ,

y(S)+ y(T )
= fβ(S)+ fβ(T ∪ {i}) (136)
(a)≥ fβ(S ∪ T )+ fβ((S ∩ T ) ∪ {i}) (137)

= y(S ∪ T )+ y(S ∩ T ), (138)

where (a) is due to intersecting submodularity of function fβ .
Case 2: i /∈ S, i /∈ T ,

y(S)+ y(T )
= fβ(S ∪ {i})+ fβ(T ∪ {i}) (139)

≥ fβ(S ∪ T ∪ {i})+ fβ((S ∩ T ) ∪ {i}) (140)

= y(S ∪ T )+ y(S ∩ T ). (141)

Case 3: i ∈ S, i ∈ T ,

y(S)+ y(T ) = fβ(S)+ fβ(T ) (142)

≥ fβ(S ∪ T )+ fβ(S ∩ T ) (143)

= y(S ∪ T )+ y(S ∩ T ). (144)

Therefore, function y is indeed fully submodular. Hence,
problem (46) is a linear optimization problem over a submod-
ular polyhedron, and it can be solved by applying algorithm
similar to Algorithm 1 (see reference [26]). The only differ-
ence is that in this case, the weights in Step 1 of Algorithm 1
should be ordered in a non-increasing order.

If λt (1) ≤ 1, then

R̃i [ j ] = y({i}) = fβ({i}), (145)

R̃t (k)[ j ] = y(St (k) ∪ {i})− y(St (k−1) ∪ {i}) (146)

= fβ(St (k) ∪ {i})−
k−1∑

u=1

R̃t (u)[ j ] − R̃i [ j ], (147)

for k = 1, 2, . . . , i − 1.
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If for some r ∈ {1, 2, . . . , i − 2}, λt (r) ≥ 1 ≥ λt (r+1), then

R̃t (k)[ j ] = y(St (k))− y(St (k−1)) (148)

= fβ(St (k) ∪ {i})

−
k−1∑

u=1

R̃t (u)[ j ], t (k) ∈ {t (1), . . . , t (r)}, (149)

R̃i [ j ] = y(St (r) ∪ {i})− y(St (r)) = 0, (150)

R̃t (k)[ j ] = y(St (k) ∪ {i})− y(St (k−1) ∪ {i}) (151)

= fβ(St (k) ∪ {i})−
k−1∑

u=1

R̃t (u)[ j ],

t (k) ∈ {t (r + 1), . . . , t (i − 1)}, (152)

for k = 1, 2, . . . , i − 1.
If λt (i−1) > 1, then

R̃t (k)[ j ] = y(St (k))− y(St (k−1))

= fβ(St (k) ∪ {i})−
k−1∑

u=1

R̃t (u)[ j ], (153)

R̃i [ j ] = y(St (i−1) ∪ {i})− y(St (i−1)) = 0, (154)

for k = 1, 2, . . . , i −1. This completes the proof of Lemma 2.

APPENDIX E
PROOF OF LEMMA 3

After j + 1 iterations of the subgradient algorithm, the
Euclidian distance between λ[ j + 1] and a minimizer λ∗ of
the dual function δ, can be bounded as follows

i−1∑

k=1

(λk [ j + 1] − λ∗
k )

2

=
i−1∑

k=1

({
λk[ j ] − θ j (R̃k[ j ] − R∗

k )
}

+ − λ∗
k

)2

(155)

≤
i−1∑

k=1

(
λk[ j ] − θ j (R̃k[ j ] − R∗

k )− λ∗
k

)2
(156)

=
i−1∑

k=1

(
λk[ j ] − λ∗

k

)2 − 2θ j

i−1∑

k=1

(R̃k[ j ] − R∗
k )(λk[ j ] − λ∗

k )

+ θ2
j

i−1∑

k=1

(
R̃k[ j ] − R∗

k

)2
(157)

≤
i−1∑

k=1

(
λk[ j ] − λ∗

k

)2 − 2θ j
(
δ(λ[ j ])− δ(λ∗)

)

+ θ2
j

i−1∑

k=1

(
R̃k[ j ] − R∗

k

)2
, (158)

where the last inequality is due to the convexity of function
δ(λ), i.e.,

δ(λ[ j ])− δ(λ∗) ≤
i−1∑

k=1

(R̃k [ j ] − R∗
k )(λk[ j ] − λ∗

k), (159)

since R̃k[ j ]− R∗
k is a partial derivative of δ(λ[ j ]) at coordinate

λk[ j ], k = 1, 2, . . . , i − 1. Summing both sides of inequal-
ity (158) over j from 0 to l − 1, we obtain

i−1∑

k=1

(λk[l] − λ∗
k )

2

≤
i−1∑

k=1

(λk[0] − λ∗
k )

2 − 2
l−1∑

j=0

θ j
(
δ(λ[ j ])− δ(λ∗)

)

+
l−1∑

j=0

θ2
j

i−1∑

k=1

(
R̃k [ j ] − R∗

k

)2
. (160)

Therefore,

2
l−1∑

j=0

θ j
(
δ(λ[ j ])− δ(λ∗)

)

≤
i−1∑

k=1

(λk [0] − λ∗
k)

2 +
l−1∑

j=0

θ2
j

i−1∑

k=1

(
R̃k[ j ] − R∗

k

)2
. (161)

Since,

l−1∑

j=0

θ j
(
δ(λ[ j ])− δ(λ∗)

)

≥
l−1∑

j=0

θ j min
j∈{0,1,...,l−1}

(
δ(λ[ j ])− δ(λ∗)

)
, (162)

from (161) and (49) we obtain

δ(λ̃[l − 1])− δ(λ∗) = min
j∈{0,1,...,l−1} δ(λ[ j ])− δ(λ∗)

≤
∑i−1

k=1(λk[0] − λ∗
k )

2

2
∑l−1

j=0 θ j

+
∑l−1

j=0 θ
2
j

∑i−1
k=1

(
R̃k [ j ] − R∗

k

)2

2
∑l−1

j=0 θ j
(163)

≤
∑i−1

k=1(λk[0] − λ∗
k )

2

2
∑l−1

j=0 θ j

+
∑l−1

j=0 θ
2
j

(
∑i−1

k=1

(
R̃k [ j ]

)2 + ∑i−1
k=1

(
R∗

k

)2
)

2
∑l−1

j=0 θ j
(164)

≤
∑i−1

k=1(λk[0] − λ∗
k )

2

2
∑l−1

j=0 θ j

+
∑l−1

j=0 θ
2
j

((∑i−1
k=1 R̃k [ j ]

)2 +
(∑i−1

k=1 R∗
k

)2
)

2
∑l−1

j=0 θ j
(165)

≤
∑i−1

k=1(λk[0] − λ∗
k )

2 + 2N2 ∑l−1
j=0 θ

2
j

2
∑l−1

j=0 θ j
, (166)

where the last inequality holds because R(M) ≤ fβ(M) ≤ N
for any achievable DE-rate vector R. From (166),
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it immediately follows that

δ(λ̃[l − 1])− δ(λ∗)

≤
(∑i−1

k=1 λk [0]
)2+

(∑i−1
k=1 λ

∗
k

)2+2N2 ∑l−1
j=0 θ

2
j

2
∑l−1

j=0 θ j
, (167)

which completes the proof of Lemma 3.

APPENDIX F
PROOF OF LEMMA 4

For a minimizer λ∗ of a dual function δ, let us denote
by R̃ an optimal solution of the problem (41) obtained by
applying Lemma 2. Since

∑i
k=1 R̃k = fβ({1, 2, . . . , i}), and∑i

k=1 R∗
k ≤ fβ({1, 2, . . . , i}), it follows that

i−1∑

k=1

R̃k − R∗
k ≥ R∗

i − R̃i . (168)

By the formulation of the optimization problem (38), the
minimum value of the dual function δ is R∗

i . Therefore,

i−1∑

k=1

λ∗
k (R̃k − R∗

k ) = R∗
i − R̃i . (169)

From Theorem 2, it follows that

i∑

k=1

R∗
i = min

P∈P({1,...,i})
∑

S∈P
fβ(S), (170)

where P({1, . . . , i}) is the set of all partitions of the
set 1, ..., i . Let us denote by S∗

i , a set that belongs to an
optimal partitioning P∗ w.r.t. problem (170) such that i ∈ S∗

i .
Then,

∑

k∈S∗
i

R∗
k = fβ(S∗

i ). (171)

Now, let us select λ∗ as follows

λ∗
k =

{
1 if k ∈ S∗

i ,

0 otherwise.
(172)

To verify that this choice of λ∗ is indeed a dual optimal
solution, note that from Lemma 2, we have

∑

k∈S∗
i

R̃k = fβ(S∗
i ). (173)

Therefore,
∑

k∈S∗
i

R̃k − R∗
k = 0. (174)

From (172) and (174), it follows that
∑

k∈{1,...i−1}\S∗
i

λ∗
k(R̃k − R∗

k )

= R∗
i − R̃i +

∑

k∈S∗
i \{i}

λ∗
k(R

∗
k − R̃k). (175)

This is consistent with (169), and hence, λ∗ is indeed a dual
optimal solution. Therefore,

i−1∑

k=1

λ∗
k ≤ i − 1 ≤ m. (176)

This completes the proof of Lemma 4

APPENDIX G
PROOF OF LEMMA 5

By Lemma 1 we know that set functions fN and fN+1,
defined in (16), are fully submodular,

fN (S) =
{

rank(AS ) if ∅ �= S ⊆ M,

0 if S = ∅. (177)

fN+1(S) =
{

1 + rank(AS) if ∅ �= S ⊆ M,

0 if S = ∅. (178)

Let us denote by R∗ an optimal vector obtained by applying
Algorithm 6 for β = N . Edmonds’ algorithm implies that all
faces of the submodular polyhedron P( fN ) are achievable,
i.e., for any S ⊆ M, there exists a rate vector R such that
R(S) = gN (S) = fN (S), where the second equality is due to
submodularity of fN . Comparing fN and fN+1, we see that all
“faces” of polyhedron P( fN+1) expended by 1 compared to
polyhedron P( fN ) (and they are all achievable). Hence, while
applying Algorithm 6 for β = N + 1, we can see that the
optimal rate vector R̃ will differ from R∗ in one coordinate.
Let

j∗ = argmin {di (R
∗
i + 1)|R∗ + e(i) ∈ P( fN+1)}. (179)

Then,

R̃i =
{

R∗
i + 1 if i = j∗

R∗
i otherwise.

(180)

Evaluating costs for β = N and β = N + 1, we obtain

h(N) =
m∑

i=1

ϕi (R
∗
i ) =

∑

i �= j∗
ϕi (R

∗
i )+ ϕ j∗(R∗

j∗). (181)

h(N + 1) =
m∑

i=1

ϕi (R̃i )

=
∑

i �= j∗
ϕi (R

∗
i )+ ϕ j∗(R∗

j∗ + 1). (182)

Comparing (181) and (182), we conclude that
h(N) ≤ h(N + 1) since ϕ j∗ is a non-decreasing function.
Since h is a convex function (see Theorem 3), it immediately
follows that β∗ ≤ N . This completes the proof of Lemma 5.

APPENDIX H
PROOF OF THEOREM 4

Let us start by considering round j = 1 of Algorithm 6.
All rates are set to zero, i.e., R∗

i = 0, i = 1, . . . ,m. To check
whether user i belongs to set T1, we need to verify whether
its update belongs to polyhedron P( fβ)

R∗(S)+ 1 ≤ fβ(S), ∀S ⊆ M, s.t., i ∈ S, (183)
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where fβ is defined in (16). Since R∗ is a zero vector, we can
write the condition (183) as

1 ≤ β − N + rank(AS ), ∀S ⊆ M, s.t. i ∈ S, (184)

which is equivalent to

1 ≤ min
i∈S⊆M

{β − N + rank(AS)}. (185)

It is easy to see that S = {i} is the minimizer of the above
problem. Hence, i ∈ T1 if

rank(Ai ) > N − β, (186)

which matches the theorem statement for j = 1.
Say that user i belongs to T1 and that he is scheduled to

transmit in the first round according to the cost function. Thus,
user i transmits

v
(1)
i = u(1)w, (187)

where u(1) is appropriately chosen vector. All the remaining
users update their observation matrix by appending vector u(1)

to it

Ak ∪ u(1), ∀k ∈ M \ {i}. (188)

In the next round we reduce parameter β by 1, and again
ask the same question whether user i belongs to T2 for the
updated set of observations. Combining (186) and (188) it is
easy to see that in round j , the condition (186) becomes

rank
(

Ai ∪ u(1) ∪ · · · ∪ u( j−1)
)
> N − (β − j + 1), (189)

which completes the proof of Theorem 4.

APPENDIX I
PROOF OF THEOREM 6

Let R be any feasible rate vector w.r.t. the problem (100),
i.e.,

R(S) ≤ gβ(S), ∀S ⊆ M, (190)

R(S) ≤ c(S), ∀S ⊆ M, (191)

R(M) = gβ(M) = β. (192)

By substituting S with M \ S in (190), we obtain

R(M \ S) ≤ gβ(M \ S), ∀S ⊆ M, (193)

This can be rewritten as

R(S) ≥ R(M)− gβ(M \ S)
= β − gβ(M \ S), ∀S ⊆ M, (194)

where the last equality comes from (192). From (191), (192),
and (194) it follows that

gβ(M)− gβ(M \ V) ≤ R(V) ≤ c(V), ∀V ⊆ M. (195)

From (195), we have that

gβ(M) ≤ gβ(M \ V)+ c(V), ∀V ⊆ M, (196)

which implies that

gβ(M) ≤ min
V⊆M

{
gβ(M \ V)+ c(V)

} = gc
β(M). (197)

From (101), (192) and (197), we conclude that

gc
β(M) = gβ(M) = β. (198)

Hence, R(M) = gc
β(M). Since Ri ≤ ci , it follows that

R(S) = R(V)+ R(S \ V)
≤ gβ(V)+ c(S \ V), ∀V,S s.t. V ⊆ S ⊆ M. (199)

Finally (199) implies that

R(S) ≤ min
V⊆S

{
gβ(V)+ c(S \ V)} , ∀S ⊆ M. (200)

Hence, R ∈ B(gc
β).

Conversely, let R be such that R ∈ B(gc
β). Then,

R(S) ≤ gc
β(S) ≤ gβ(S)+ c(∅)

= gβ(S), ∀S ⊆ M, (201)

R(S) ≤ gc
β(S) ≤ gβ(∅)+ c(S)

= c(S), ∀S ⊆ M, (202)

R(M) = gc
β(M) = β (203)

where the second inequality in (201) and (202) directly follows
from (101). From (201), (202), and (203) it follows that

R ∈ B(gβ), s.t. Ri ≤ ci , ∀i ∈ M. (204)

This completes the proof of Theorem 6.
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