PRIVATE INFORMATION RETRIEVAL WITH SIDE INFORMATION

SWANAND KADHE, BRENDEN GARCIA, ANOOSHEH HEIDARZADEH,
AND ALEX SPRINTSON – TEXAS A&M UNIVERSITY

SALIM EL ROUAYHEB – RUTGERS UNIVERSITY

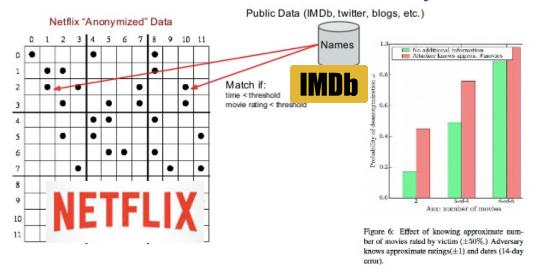
Side Info + Security

Usually

Side "Something" + Security = Bad News

Side-channel attacks

side information and de-anonymization

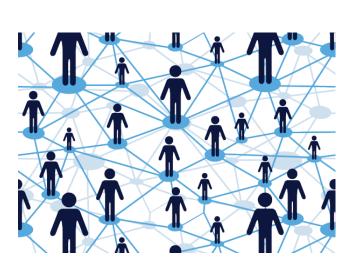


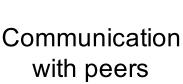
Today
Side Information + PIR = Good News

WHY PIR WITH SIDE INFORMATION?

Because side information is everywhere nowadays







Previous PIR Sessions*

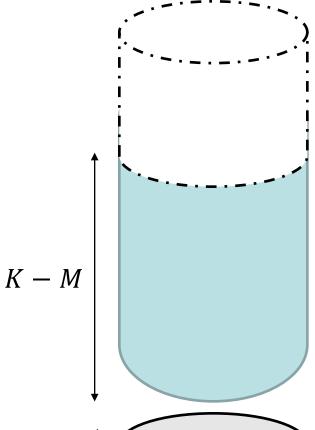
TAKEAWAY MESSAGE

Without Side Information

K messages database K

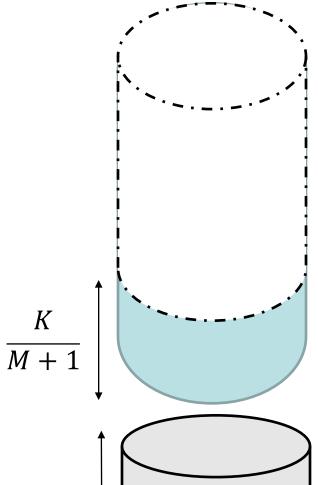
Side Information: Ø

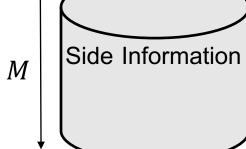
Protecting Demand and Side Information



M Side Information

Protecting only demand





Related Work – PIR with Side Information

Tandon'17:

N servers, K messages of L bits, SL bits in side information. Side Information:

- Function of replicated messages
- Known to the server

Wei-Banawan-Ulukus '17

N servers, K messages, rK bits in side information Side Information:

- Unknown to server
- Random fraction r of bits from each message

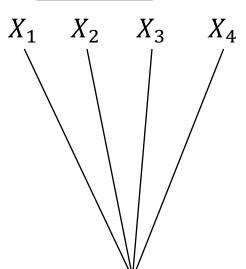
Piecewise linear inner and outer bounds are found for low and high caching ratios (r)

Chen-Wang-Jafar'17:

Model is similar to ours. Results discussed later

Holy Grail: Single Server: Example

 X_1, X_2, X_3, X_4



Without any side information how can the user download X_1 privately?

User downloads everything from the server.

W = 1 demand index

Holy Grail: Single Server: Example

 X_1, X_2, X_3, X_4

Without any side information how can the user download X_1 privately?

User downloads everything from the server.

With One Packet of Side Information how can the user download X_1 privately?

$$W = 1$$
 demand index
 $S = \{2\}$. side info index

Holy Grail: Single Server: Example

$$X_1, X_2, X_3, X_4$$

$$X_1 + X_2 + X_3 + X_4$$
 $X_1 + 2X_2 + 3X_3 + 4X_4$
 $X_1 + 4X_2 + 4X_3 + 4X_4$

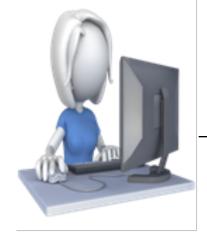
Without any side information how can the user download X_1 privately?

User downloads everything from the server.

$$X_1 + 4X_2 + 4X_3 + X_4$$

With One Packet of Side Information how can the user download X_1 privately?

Send 4-1 random linear combinations



W = 1 demand index $S = \{2\}$. side info index

Can we do better?

PROBLEM MODEL

N non-colluding servers

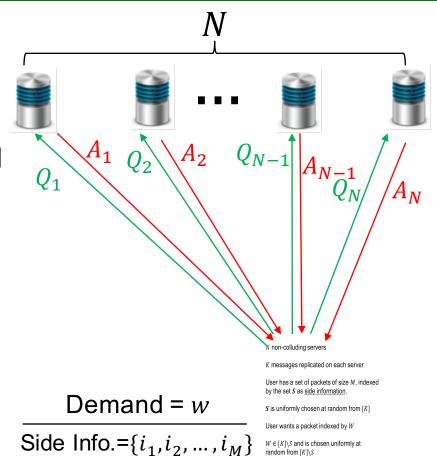
K messages replicated on each server

User has a set of packets of size M, indexed by the set S as side information.

 \boldsymbol{S} is uniformly chosen at random from [K]

User wants a packet indexed by W

 $W \in [K] \setminus S$ and is chosen uniformly at random from $[K] \setminus S$



PROBLEM MODEL

N non-colluding servers

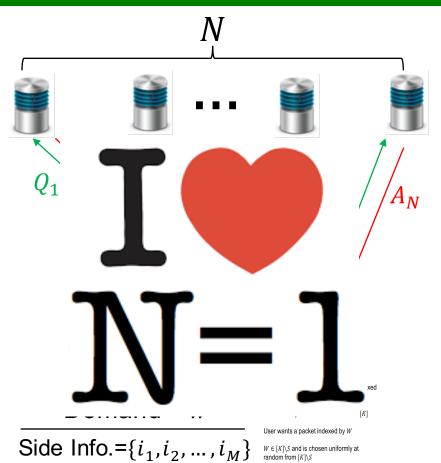
K messages replicated on each server

User has a set of packets of size M, indexed by the set S as side information.

S is uniformly chosen at random from [K]

User wants a packet indexed by W

 $W \in [K] \setminus S$ and is chosen uniformly at random from $[K] \setminus S$



RESULTS

For K messages, and M packets as side information

Theorem 1 (Single Server): The following are the capacities when enforcing the respective privacy:

W-privacy:
$$C_W = \left[\frac{K}{M+1}\right]^{-1}$$

$$(W, S)$$
-privacy: $C_{W,S} = (K - M)^{-1}$

Theorem 2 (Multi-Server): The capacity is lower bounded, when enforcing *W*-privacy, by:

Conjecture

$$C_W \ge \left(1 + \frac{1}{N} + \frac{1}{N^2} + \dots + \frac{1}{N^{\left(\frac{K}{M+1} - 1\right)}}\right)^{-1}$$

(W,S) Privacy:

Or how to protect both your demand & side information

Single Server: (W, S)-Privacy General Achievability

$$X_1, X_2, \dots, X_K$$

M-K random linear combinations over a high field Or MDS coded packets

In general the user can query the parity symbols of a (2K + M, K) systematic MDS code from the server to decode.

Converse later.

$$\frac{\mathsf{Demand} = w}{\mathsf{Side Info.=}\{i_1, i_2, \dots, i_M\}}$$

W Privacy:

Or how to protect your demand

$$X_1, X_2, \dots, X_9$$

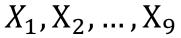
$$\frac{W=5}{S=\{1,8\}}$$

Partition and Code Scheme:

Say K = 9 and M = 2.

- 1.) User Partitions {1,2,...,9} into 3 equal sized sets
 - a.) One set is {1,5,8}
- b.) The others are randomly chosen from remaining elements to be {2,6,9} and {3,4,7}.
- 2.) Client sends sets of partition to server in random order

Partition: {1,5,8} {2,6,9}{3,4,7}



{1,5,8}

W = 5 $S = \{1,8\}$

Partition and Code Scheme:

Say K = 9 and M = 2.

- 1.) User Partitions {1,2,...,9} into 3 equal sized sets
 - a.) One set is {1,5,8}
- b.) The others are randomly chosen from remaining elements to be {2,6,9} and {3,4,7}.
- 2.) Client sends sets of partition to server in random order

Partition: $\{2,6,9\}\{3,4,7\}$

$$X_1, X_2, \dots, X_9$$

 $\{2,6,9\}\ \{1,5,8\}\ \{3,4,7\}$

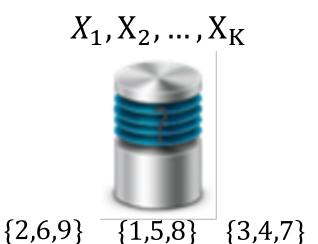
$$W = 5$$
$$S = \{1,8\}$$

Partition and Code Scheme:

Say K = 9 and M = 2.

- 1.) User Partitions {1,2,...,9} into 3 equal sized sets
 - a.) One set is {1,5,8}
- b.) The others are randomly chosen from remaining elements to be {2,6,9} and {3,4,7}.
- 2.) Client sends sets of partition to server in random order

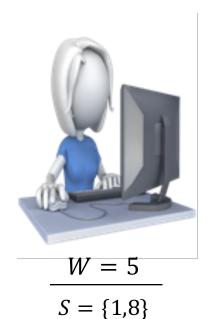
Partition:



Partition and Code Scheme:

Say K = 9 and M = 2.

3.) Client sends user the 3 packets corresponding to the bitwise XOR of the partition.



$$X_1, X_2, \dots, X_K$$

$$X_2 + X_6 + X_9$$
 $X_1 + X_5 + X_8$ $X_3 + X_4 + X_7$

Partition and Code Scheme:

Say K = 9 and M = 2.

3.) Client sends user the 3 packets corresponding to the bitwise XOR of the partition.

$$X_3 + X_4 + X_7$$

 $S = \{1,8\}$

$$X_1, X_2, \dots, X_K$$

Partition and Code Scheme:

Say K = 9 and M = 2.

3.) Client sends user the 3 packets corresponding to the bitwise XOR of the partition.

$$W = 5$$
$$S = \{1,8\}$$

$$X_2 + X_6 + X_9$$

$$X_1 + X_5 + X_8$$

$$X_2 + X_6 + X_9$$
 $X_1 + X_5 + X_8$ $X_3 + X_4 + X_7$

$$X_1, X_2, \dots, X_K$$

Partition and Code Scheme:

Say K = 9 and M = 2.

3.) Client sends user the 3 packets corresponding to the bitwise XOR of the partition.

 $S = \{1,8\}$

$$X_2 + X_6 + X_9$$
 $X_1 + X_5 + X_8$

$$X_1 + X_5 + X_8$$

$$X_3 + X_4 + X_7$$

User Decodes with this packet

$$X_1, X_2, \dots, X_K$$

Demand W = w

Side Info.(S)={ $i_1, i_2, ..., i_M$ }

Partition and Code Scheme:

Assume (M+1)|K.

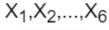
- 1.) User Partitions $\{1,2,...,K\}$ into $\frac{K}{M+1}$ equal sized sets:
 - a.)One set is $\{w\} \cup S$
- b.) The others are randomly chosen from remaining elements
- 2.) User sends sets of partition to server in random order
- 3.) The server sends back the bitwise XOR of the packets indexed by each set in the partition.

Single Server: W-Privacy Converse

Proposition (Necessary Condition for W-Privacy):

A solution to the PIR problem for W-Privacy must have the property that $\forall i \in [K], \exists S_i \subseteq [K] \setminus \{i\}, |S_i| = M$, such that X_i can be decoded with the response from the server and S_i .

Original PIR Problem



W=1 S={2,3}

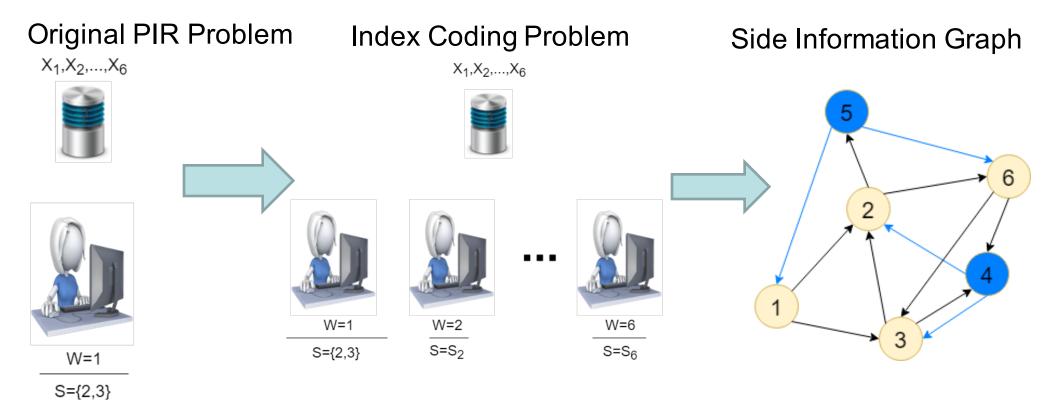
W=1

 $S=\{2,3\}$

 $\frac{W=2}{S=S_2}$

W=6 S=S₆

Single Server: W-Privacy Converse



Length of Index Coding Solution lower bounded by size of Maximum Acyclic Induced Subgraph (MAIS) of side information graph.

Lemma:

Let G be an M-regular simple directed graph with K nodes. Then

$$|MAIS(G)| \ge \left\lceil \frac{K}{M+1} \right\rceil$$

Multi Server Results

To establish capacity bound:

$$C_W \ge \left(1 + \frac{1}{N} + \frac{1}{N^2} + \dots + \frac{1}{N^{\left(\frac{K}{M+1} - 1\right)}}\right)^{-1}$$

User partitions packets and sends partition to server; server forms supermessages.

The user and servers then run the classical PIR scheme

[Sun-Jafar '16] on the super messages, where the user wants the packet corresponding to the set $\{w\} \cup S$ in the partition.

$$X_1, X_2, ..., X_9$$

Partition:

Super Messages:

Server 1	Server 2
$\hat{X}_{1,1}, \hat{X}_{2,1}, \hat{X}_{3,1}$	$\hat{X}_{1,2},\hat{X}_{2,2},\hat{X}_{3,2}$
$\hat{X}_{1,3} + \hat{X}_{2,2}$	$\hat{X}_{1,5} + \hat{X}_{2,1}$
$\hat{X}_{1,4} + \hat{X}_{3,2}$	$\hat{X}_{1,6} + \hat{X}_{3,1}$
$\hat{X}_{2,3} + \hat{X}_{3,3}$	$\hat{X}_{2,4} + \hat{X}_{3,4}$
$\hat{X}_{1,7} + \hat{X}_{2,4} + \hat{X}_{3,4}$	$\hat{X}_{1,8} + \hat{X}_{2,3} + \hat{X}_{3,3}$

Table: Packets sent to user from servers

Recently the capacity for (W, S)-privacy in this scenario was found to be:

$$\left(1+\frac{1}{N}+\cdots+\frac{1}{N^{K-M-1}}\right)^{-1}$$
 [Chen-Wang-Jafar '17]

Summary

- Introduced PIR with Side information
- Gains even in the case of a single server
- Two types of privacy: W privacy (demand) and (W,S) privacy (demand and side info)
- Achievability: Partition and Code
- Combinatorial converse proof based on index codes and directed graph
- Open problems
- PIR capacity: Multi-server W-privacy. We presented an achievability scheme
- Many possible formulations
 - Coded vs. uncoded side inform
 - How much the servers know about the side info

–