Correcting Localized Deletions Using Guess \& Check Codes

Salim El Rouayheb

Rutgers University
Joint work with
Serge Kas Hanna and Hieu Nguyen

Motivation

Transmitted

- Deletions: 10101010
- Deletions were first studied by Varshamov-Tenengolts ('65) and Levenshtein (‘66)
- Our motivation: file synchronization, E.g. Dropbox

- Recent application: DNA-based storage

Localized Deletions

- Motivation: file synchronization, E.g. Dropbox

Scientific Paper

Abstract	$\begin{aligned} & 1110101010101010101010 \\ & 100100101100101010101010 \end{aligned}$
Intro.	101010101010000011100000
	011111110101010101010101
Main	010100000011111010101010
Result	000101010000000100101010
	000100010111111111110000
Proof	010101010101010101010101
	011010101010101001010010
	101111010100111101010010
Simulations	100010100010100010000010
	010100000000010101010101
Conclusion	010101011010000101110101
	01010010101000110100

Scientific Paper
Abstract 1110101010101010101010 100100101100101010101010 101010101010000011100000 011111110101010101010101 010100000011111010101010 000101010000000100101010 000100010111111111110000 010101010101010101010101 011010101010101001010010 101111010100111101010010 100010100010100010000010 100010100010100010000010 010100000000010101010101 010101011010000101110101 01010010101000110100

Advisor

1110101010101010

1001100110101011

Student

Previous Work on Deletions

> Unrestricted deletions

- Information theoretic approach: [Gallager '61], [Dobrushin '67]; lower and upper bounds on the capacity: [Mitzenmacher and Drinea '06], [Diggavi et al. ‘07], [Kanoria and Montanari '13], [Venkataramanan et al. '13] ...
- Recent file synchronization algorithms: [Yazdi and Dolecek '14], [Venkataramanan et al. '15], [Sala et al. '17] ...
- Code constructions and fundamental limits: [Varshamov and Tenenglots ‘65], [Levenshtein ‘66], [Schulman and Zuckerman '99], [Helberg and Ferreira ‘02] , [Cullina and Kiyavash '14], [Gabrys et al. '16], [Brankensiek et al. '16], [Thomas et al. '17] ...

> Bursty deletions

- File synchronization: [Ma et al. '11]

Existence of codes for

- Code constructions: [Levenshtein '67], [Cheng et al. 14\}, [Schoeny et al '17]

Model and Contribution

$$
x=10101011100010010001 \underset{\text { window of size } \boldsymbol{w}}{\stackrel{\delta \text { deletions (in red) }}{\stackrel{\text { 11010111000 }}{\leftrightarrows}} 01010001100111111000010}
$$

$>\delta \leq \boldsymbol{w}$ deletions localized in a window of size \boldsymbol{w}
$>$ Hard problem for $\boldsymbol{w}=n$
$>$ [Schoeny et al. '17]: existence of codes for $\boldsymbol{w}=3,4$
$>$ Our assumptions: 1) positions of the deletions are independent of the codeword; 2) information message is uniform iid
$>$ Contribution: Explicit codes with deterministic polynomial time encoding and decoding that can correct localized deletions whp

Guess \&
Check (GC)
Codes - Asymptotically vanishing probability of decoding failure

- Can be generalized to multiple windows

GC Codes Example

Deletions occur in one of these windows

- Encoding the message of length $k=16$: 11100000001

- Assume that the deletions (in red) affect only one systematic block

- Decoding

Check with $2^{\text {nd }}$ parity

> Guess 3: $11100000<0<0001$ -

> Guess 4: $111000000000>1$路

14	0	0	4

[Kas Hanna and El Rouayheb ISIT 17’]

Generalizing to Any Window Position

- Assume that 3 deletions (in red) affect systematic bits, $w=\log \mathrm{k}=4$ bits

- Same encoding with one extra parity

- Decoding, window of size log k can affect at most 2 consecutive blocks

Decoded using $1^{\text {st }} \& 2^{\text {nd }}$ parity
> Guess 1:

Check with $3^{\text {rd }}$ parity

Recovering the MDS parities

$>$ How to recover the MDS parity symbols at the decoder?
$\xrightarrow[111000000011000100010000]{\text { systematic bits }} \xrightarrow{\text { MDS parities }}$
> Trivial solution: repeat the parity bits
$\xrightarrow[111000000011000100000000000011110 \ldots 0]{\stackrel{\text { systematic bits }}{~}} \stackrel{(\delta+1) \text { repetition code }}{\longrightarrow}$
$>$ Better solution: insert a buffer between systematic and MDS parity bits
$\xrightarrow[1110000000110001]{\text { systematic bits }} \underset{\underbrace{\text { buffer }}_{\text {w+1 bits }}}{\substack{\text { MDS parities }}}$

- Buffer: w zeros + a single one
- Deletions cannot affect both systematic and parity bits simultaneously
- If parity bits get affected -> simply output the first k bits. Else apply Guess \& Check decoding

When does decoding fail?

- Encoding the message of length k=16: 1100010001110010

- Assume that the deletions (in red) affect only one systematic block

- Decoding

Decoded using $1^{\text {st }}$ parity

 Failure

Simulations - Decoding Failure

- Simulation results for: $\boldsymbol{w}=\log k, \delta=\log k-1, \mathrm{c}=3,4 \mathrm{MDS}$ parities

Main Results

Theorem 1 (One window): Guess \& Check (GC) codes can correct in polynomial time up to $\delta \leq \boldsymbol{w}=O(\log k)$ localized deletions, where $m \log k<\boldsymbol{w}<(m+1) \log k$ for some integer $m \geq 0$. Let $c>m+2$ be a constant integer.
$>$ Redundancy: $c \log k+\boldsymbol{w}+1$
$>$ Encoding complexity is $\mathcal{O}(k \log k)$, Decoding complexity is $\mathcal{O}\left(k^{3} / \log k\right)$
< $工$ Probability of decoding failure: $\operatorname{Pr}(F) \leq k^{m+4-c} / \log \bar{k}^{-\cdots-}$?

Sketch of Theorem $2(z>1$ windows):

$>$ Redundancy: $c(z \boldsymbol{w}+1) \log k$
$>$ Encoding complexity is $\mathcal{O}(k \log k)$, Decoding complexity is $\mathcal{O}\left(k^{z+2}\right)$

- Probability of decoding failure: $\operatorname{Pr}(F) \leq k^{z(m+4)-c}$

Sketch of Theorem 3 [ISIT '17] (Unrestricted deletions):

$>$ Redundancy: $c(\delta+1) \log k$
$>$ Encoding complexity is $\mathcal{O}(k \log k)$, Decoding complexity is $\mathcal{O}\left(k^{\delta+2} / \log ^{\delta} k\right)$
$<\beth$ Probability of decoding failure: $\operatorname{Pr}(F)=0\left(k^{2 \delta-c} / \log ^{\delta} k\right)^{-}$,

Test GC Codes Online

> Test the codes online using the Jupyter notebook

Go to : https://try.jupyter.org/

Upload the notebook files from http://eceweb1.rutgers.edu/csi/software.html
> C++ \& Python codes are available on GitHub

C) GitHub

GitHub repository: https://github.com/serge-k-hanna/GC
> For more details: http://eceweb1.rutgers.edu/csi/software.html

Simulations - Running Time

Running Time for Deletions Localized in One Window of size $\log (\mathrm{k})$

Decoding Failures: What Happened.

- Decoding failure: more than one possible guess, different decoded strings
- Example for one deletion: 16-bit message 0000100011110110

2 parities
$\left.\begin{aligned} & \text { (} 6,4 \text {) MDS encoding over GF(17): } \\ & 0\end{aligned} \right\rvert\,$
$>$ Suppose $14^{\text {th }}$ bit gets deleted, decoding:

- Probability of decoding failure for a given string: combinatorial problem that depends on the string and deletion position
- Proof approach: assume message is uniform iid, average over all possible messages

Decoding Failure - 1 Deletion

Assume WLOG that Guess 1 is correct, observe the output of decoder at wrong Guess $i \neq 1$

Set of all transmitted k-bit strings
Set of all GC decoder outputs

$\operatorname{Pr}($ decoding failure in guess $i \neq 1)=\operatorname{Pr}($ decoded string is in $A)$
Lemma: at most 2 different transmitted sequences can lead to the same decoded string in any Guess $i \neq 1$

Proof of $\operatorname{Pr}(F)$ for One Deletion

$$
\begin{align*}
& \begin{array}{c}
\operatorname{Pr}(F) \leq \operatorname{Pr}\left(\bigcup_{i=2}^{k / \log k}\left\{\mathcal{Y}_{i} \in A, \mathcal{Y}_{i} \neq \mathcal{Y}_{1}\right\}\right) \\
\text { Union }_{k / \log k}^{\leq} \sum_{i=2}^{k / \log k} \operatorname{Pr}\left(\mathcal{Y}_{i} \in A, \mathcal{Y}_{i} \neq \mathcal{Y}_{1}\right)
\end{array}, \tag{1}\\
& \leq \sum_{i=2} \operatorname{Pr}\left(\mathcal{Y}_{i} \in A\right) \tag{3}\\
& k / \log k \\
& =\sum_{i=2} \sum_{Y \in A} \operatorname{Pr}\left(\mathcal{Y}_{i}=Y\right) \tag{4}\\
& \text { Lemma } \leq \sum_{i=2}^{k T \log k} \sum_{Y \in A} \frac{2}{|B|} \text {, } \tag{5}\\
& =2\left(\frac{k}{\log k}-1\right) \frac{|A|}{|B|} \tag{6}
\end{align*}
$$

k : length of message \mathcal{Y}_{i} : string decoded in Guess i c : number of parities A : set satisfying all c parities B : set satisfying first parity q : field size

Claim

$>$ Claim 1 (one deletion): at most 2 different transmitted strings can lead to the same decoded string in any wrong guess

$>$ Claim 2 (δ deletions): a constant number of different transmitted strings can lead to the same decoded string in any wrong guess

Claim - Example

$>$ Claim 1 (one deletion): at most 2 different transmitted strings can lead to the same decoded string in any wrong guess
> Example
parity

$$
\begin{aligned}
& \mathbf{u}_{1}=0000000000000000 \underset{\substack{\text { Encoding } \\
\text { in GF(16) }}}{\longrightarrow} \begin{array}{|l|l|l|l|l|l|}
\hline & \alpha & 0 & 0 & 0 & 0 \\
\mathbf{u}_{2}=0010000000000010 & \alpha & 0
\end{array}
\end{aligned}
$$

$>3^{\text {rd }}$ bit deleted; Guess: deletion occurred in $4^{\text {th }}$ block

$$
\text { Received }\left\{\begin{array}{lll|l|l}
\mathbf{y}_{\mathbf{1}} & 0000 & 0000 & 0000 & 000 \\
\mathbf{y}_{\mathbf{2}} & 0000 & 0000 & 0000 & 010
\end{array}>0000000000000000\right.
$$

$>\mathbf{u}_{3}=1111111111111111$ and $\mathbf{u}_{4}=0010000000000000$
$>$ Two conditions: (1) Symmetry constraint; (2) Algebraic linear constraint

Claim

> Suppose $3^{\text {rd }}$ bit is deleted, guess : deletion occurred in $4^{\text {th }}$ block
$\underbrace{b_{1} b_{2} b_{4} b_{5}}$
$\underbrace{b_{6} b_{7} b_{8} b_{9}}$

Symbol 3

Erasure
> How many different messages can lead to same decoded string?
> Symmetry constraint: same decoded string \Rightarrow same bit values at positions of symbols 1,2 and 3
> Bits which can be different: b_{14}, b_{15}, b_{16} and b_{3} (deleted bit)
> Algebraic constraint: erasure is decoded using first parity

$$
\begin{array}{cc}
4 b_{14}+2\left(b_{3}+b_{15}\right)+b_{16}=p_{1} & \text { Equation has at } \\
b_{14}, b_{15}, b_{16}, b_{3} \in G F(2) & \text { most 2 solutions } \\
p_{1} \in G F(17) &
\end{array}
$$

Application to File Synchronization

- Interactive synchronization algorithm by [Venkataramanan et al. '15]
> Isolate single deletions, use VT codes
$>$ Modification: isolate δ or fewer deletions, use GC codes
- Gain: (1) less communication rounds, (2) lower communication cost

Summary

- Guess \& Check Codes for localized deletions
$>$ For single or multiple windows
$>$ Explicit code construction with logarithmic redundancy
$>$ Deterministic polynomial time encoding and decoding
> Asymptotically vanishing probability of decoding failure
- Open problems
- Capacity of deletion channel with localized deletions?
- Codes for adversarial localized deletions
- And of course for "unrestricted" deletion capacity and codes are still open problems

