
Correcting		Localized Deletions
Using	Guess	&	Check	Codes

Salim	El	Rouayheb

Joint	work	with
Serge	Kas Hanna	and	Hieu Nguyen

Rutgers	University

55th	Annual	Allerton	Conference	on	Communication,	 Control,	and	Computing

Motivation

2

• Our	motivation:	file	synchronization,	E.g.	Dropbox

Alice Bob

10101010	…

• Recent	application:	DNA-based	storage

• Deletions	were	first	studied	by	Varshamov-Tenengolts (‘65)	and	
Levenshtein (‘66)

110010	…

• Deletions:		10101010 110010
Transmitted Received

Localized	Deletions

3

• Motivation:	file	synchronization,	E.g.	Dropbox

Localized
edits

Previous	Work	on	Deletions

4

Ø Unrestricted	deletions

Ø Bursty deletions

• File	synchronization:	[Ma	et	al.	‘11]	

• Code	constructions:	 [Levenshtein ‘67],	[Cheng	et	al.	14],	[Schoeny et	al		‘17]

Existence	of	codes	for	
localized	model	w=3,4

• Information	theoretic	approach:	[Gallager ’61],	[Dobrushin ‘67];	lower	and	
upper	bounds	on	the	capacity:	[Mitzenmacher and	Drinea ‘06],	[Diggavi et	
al.	‘07],	[Kanoria and	Montanari ‘13],	[Venkataramanan et	al.	’13]	…

• Code	constructions	and	fundamental	limits:	[Varshamov and	Tenenglots
‘65],	[Levenshtein ‘66],	[Schulman	and	Zuckerman	 ‘99],	[Helberg and	
Ferreira	 ‘02]	,	[Cullina and	Kiyavash ‘14],	[Gabrys et	al.	‘16],	[Brankensiek
et	al.	’16],	[Thomas	 et	al.	’17]	…

• Recent	file	synchronization	algorithms:	[Yazdi and	Dolecek ‘14],	
[Venkataramanan et	al.	‘15],	[Sala	et	al.	’17] …

Model	and	Contribution

5

! = 101010111000100100010	110101110000 01010001100111111000010

Ø # ≤ % deletions	 localized	in	a	window	of	size	%
window	of	size	%

# deletions	(in	red)

Ø Our	assumptions:	1)	positions	of	the	deletions	 are	independent	 of	the	
codeword;	2)	information	message	 is	uniform	 iid

Ø Contribution:	Explicit	codes	with	deterministic	polynomial	time	encoding	
and	decoding	that	can	correct	localized	deletions	whp

• Logarithmic	redundancy:	& − (=) log (+% + 1

• Polynomial	time	encoding	and	decoding
• Asymptotically	vanishing	probability	of	decoding	 failure
• Can	be	generalized	 to	multiple	windows

Guess	&	
Check	(GC)
Codes

Ø Hard	problem	for	% = &

Ø [Schoeny et	al.	’17]:	existence	of	codes	for	% = 3,4

GC	Codes	Example

6

• Encoding	the	message	of	length	k=16:	 1	1	1	0	0	0	0	0	0	0	1	1	0	0	0	1

1110		0000		0011		0001
GF(17)

14 0 3 1 (6,4)	MDS 14 0 3 1 1 0

Ø Guess	1:	

• Decoding

1					1100		0000		0001				
12 0 1?

5 12 0 1

2	MDS	
parities

Ø Guess	2: 14 3 0 1

Ø Guess	3: 14 0 3 1

Ø Guess	4: 14 0 0 4

1110		 0					0000		0001

1110		0000				0				0001

1110		0000		0000				1

0

Decoded	using	1st parity

Check	with	
2nd parity

1110000000001

• Assume	that	the	deletions	 (in	red)	affect	only	one	systematic	block

16	bits 13	bits

1110		0000		0011 0001

GF(17)

[Kas Hanna	and	
El	Rouayheb
ISIT	17’]

Deletions	occur	in	one	of	these	windows

Generalizing	to	Any	Window	Position

7

Ø Guess	1:	

• Decoding,	window	of	size	log	k	can	affect	at	most	2	consecutive blocks

11000						0011		0001
3 1?

14 4 3 1

Ø Guess	2: 12 7 2 1

Ø Guess	3: 12 1 11 15

1100						00011						0001

1100		0001						10001

12

Decoded	using	1st &	2nd parity

Check	with	
3rd parity

• Same	encoding	with	one	extra	parity

1110		0100		0011		0001
GF(17)

(7,4)	MDS 14 4 3 1 5 8
3	MDS	parities

12
log	k	bits	

1110	0100	0011	0001 1100000110001

• Assume	that	3	deletions	 (in	red)	affect	 systematic	bits,	w=log	k=4	bits

16	bits 13	bits

window

Recovering	the	MDS	parities

8

• Buffer:	w	zeros +	a	single	one

Ø How	to	recover	 the	MDS	parity	symbols	at	the	decoder?

Ø Trivial	solution:	repeat	 the	parity	bits	

systematic	bits

(# + 1) repetition	code

Ø Better	 solution:	insert	a	buffer	 between	systematic	and	MDS	parity	bits

• If	parity	bits	get	affected	 ->	simply	output	the	first	(bits.	Else	apply	
Guess	&	Check	decoding

• Deletions	cannot	affect	 both	systematic	and	parity	bits	simultaneously	

111000000011000100010000
MDS	parities

systematic	bits

11100000001100010000000000001111 0	… 0

systematic	bits

1110000000110001	00001 00010000
MDS	paritiesbuffer

w+1	bits

When	does	decoding	fail?

9

• Encoding	the	message	of	length	k=16:	 1	1	0	0	0	1	0	0	0	1	1	1	0	0	1	0

1100		0100		0111		0010
GF(17)

14 4 7 2 (6,4)	MDS 14 4 7 2 8 13

Ø Guess	1:	

• Decoding

0					0100		0111		0010				
4 7 2?

14 4 7 2

2	MDS	
parities

Ø Guess	2: 2 14 7 2

Ø Guess	3: 2 3 1 2

Ø Guess	4: 2 3 9 11

0010				0					0111		0010

0010		0011				1 0010

0010		0011		1001				0

13

Decoded	using	1st parity

Check	with	
2nd parity

log	k	bits	

0010001110010

• Assume	that	the	deletions	 (in	red)	affect	only	one	systematic	block

16	bits 13	bits

1100 0100		0111		0010

GF(17)

Decoding
Failure

Simulations	– Decoding	Failure

10

((message	length	in	bits)

Pr
ob

ab
ili
ty
	o
f	F
ai
lu
re

4 = 106 iterations

• Simulation	results	 for:	% = log (, # = log (− 1 , c = 3,4MDS	parities

Main	Results

11

Sketch of Theorem 2 (8 > : windows):

Ø Encoding complexity is ;((log (), Decoding complexity is ;((<=>)

Ø Probability of decoding failure: Pr A ≤ (<(B=C)DE

Ø Redundancy:)(F% + 1) log (

Theorem 1 (One window): Guess & Check (GC) codes can correct in
polynomial time up to # ≤ % = G(log () localized deletions, where
H log (< % < H + 1 log (for some integer H ≥ 0. Let) > H+ 2 be a
constant integer.

Ø Encoding complexity is ;((log (), Decoding complexity is ;((L/ log ()
Ø Probability of decoding failure: Pr A ≤ (B=CDE/ log (

Ø Redundancy:) log (+ %+ 1

Sketch of Theorem 3 [ISIT ‘17] (Unrestricted deletions):
Ø Redundancy:)(# + 1) log (

Ø Encoding complexity is ;((log (), Decoding complexity is ;((N=>/ logN ()
Ø Probability of decoding failure: Pr A = ;((>NDE/ logN ()

Test	GC	Codes	Online

12

Ø C++	&	Python	codes	are	available	on	GitHub

GitHub repository:	https://github.com/serge-k-hanna/GC

Ø Test	the	codes	online	using	the	Jupyter notebook	

Go	to	:	https://try.jupyter.org/

Upload	 the	notebook	 files	from	http://eceweb1.rutgers.edu/csi/software.html

Ø For	more	details:	http://eceweb1.rutgers.edu/csi/software.html

Simulations	– Running	Time

13

C++	:	
Early	termination	
with	precomputing

Python:
All	cases	without	
precomputing

Python:
All	cases	with	precomputing

Python:
Early	termination	
with	precomputing

Decoding	Failures:
What	Happened.

13

• Example	for	one	deletion:	16-bit	message	0000100011110110

Ø (6,4)	MDS	encoding	over	GF(17):	 0 8 15 6 12 5
2	parities

Ø Suppose	14th bit	gets	deleted,	decoding:
v Guess	1: 8 4 7 10

v Guess	4: 0 8 15 6

Guesses	1	&	4	satisfy
the	2	parities

• Probability	of	decoding	 failure	for	a	given	string:	combinatorial	problem	
that	depends	on	the	string	and	deletion	position

v Guess	2:

v Guess	3:
8 4 7 10

8 4 7 10

• Decoding	failure:	more	than	one	possible	guess,	different	 decoded	strings

• Proof	approach:	assume	message	 is	uniform	iid,	average	over	all	possible	
messages

Decoding	Failure	– 1	Deletion
15

Set	of	all	transmitted	k-bit	strings

B B

A

Set	of	all	GC	decoder	outputs

Set	satisfying	
all) parities

Assume	WLOG	that	Guess	 1	is	correct,	observe	the	output	of	decoder	at	wrong Guess	O ≠ 1

Decoding	fails	if	
decoded	string	is	in	A	

Lemma:	at	most	2	different	transmitted	 sequences	 can	lead	to	the	same	
decoded	string	 in	any	Guess	O ≠ 1

Set	satisfying	
first	parity

QR decoding	failure	in	guess	O ≠ 1 = QR	(decoded	string	is	in])

·
·
·

·

··

14

Fixed:
- Guess
- Deletion	
- First	parity

Proof	of	Pr(F)	for	One	Deletion

15

B B

A

k : length of message

Yi : string decoded in Guess i

c : number of parities

A : set satisfying all c parities

B : set satisfying first parity

Union	
bound

Lemma

Subspace
cardinality

q : field size

Claim

17

Ø Claim	1	(one	deletion):	at	most	2	different	 transmitted	strings	can	
lead	to	the	same	decoded	string	in	any	wrong	guess

Set	of	all	transmitted	k-bit	strings

B B

Set	of	all	GC	decoder	outputs

Set	satisfying	
first	parity

·

·
··

Fixed:
- Guess
- Deletion	position
- First	parity

Ø Claim	2	(# deletions):	 a	constant number	of	different	 transmitted	
strings	can	lead	to	the	same	decoded	string	in	any	wrong	guess

Claim	- Example

17

^: = 0000000000000000

^_ = 0010000000000010

0000		0000		0000		000

0000		0000		0000		010

Ø Claim	1	(one	deletion):	at	most	2	different	 transmitted	strings	can	
lead	to	the	same	decoded	string	in	any	wrong	guess

0000	0000	0000	0000

Ø Example

Ø 3rd bit	deleted;	Guess:	deletion	occurred	 in	4th block	

0 0 0 0 0
parity

` 0 0 ` 0

Encoding	
in	GF(16)

Ø ^L = 1111111111111111 and	^a = 0010000000000000

Ø Two	conditions:	(1)	Symmetry	constraint;	(2)	Algebraic	 linear	constraint	

Decodeb:

b_
Received

Claim

18

Ø Suppose	3rd bit	is	deleted,	 guess	:	deletion	occurred	 in	4th block

8b1 + 4b2 + 2b4 + b5

b1b2b4b5 b6b7b8b9 b10b11b12b13 b14b15b16

8b6 + 4b7 + 2b8 + b9 8b10 + 4b11 + 2b12 + b13 ?

Symbol	1 Symbol	2 Symbol	3 Erasure

Ø How	many	different	 messages	can	lead	to	same	decoded	string?	

GF(17)

Ø Symmetry	constraint:	 same	decoded	string	⇒ same	bit	values	at	positions	of	
symbols	1,	2	and	3

Ø Bits	which	can	be	different:	 																						and						(deleted	 bit)b14, b15, b16 b3

Ø Algebraic	constraint:	erasure	 is	decoded	using	first	parity

4b14 + 2(b3 + b15) + b16 = p1

b14, b15, b16, b3 2 GF (2)

p1 2 GF (17)

Equation	has	at	
most	2	solutions

Application	to	File	Synchronization

20

• Interactive	 synchronization	algorithm	by	[Venkataramanan et	al.	’15]	
Ø Isolate	single	deletions,	use	VT	codes
Ø Modification:	isolate	# or	fewer	 deletions,	use	GC	codes

• Gain:	(1)	less	communication	rounds,	(2)	lower	communication	cost	

Up	to	75%	
improvement

Up	to	15%	
improvement

19

N=1000
iterations

Summary

16

• Guess	&	Check	Codes	 for	localized	deletions

Ø Explicit	code	construction	 	with	logarithmic	redundancy

Ø Deterministic	polynomial	time	encoding	and	decoding

Ø Asymptotically	vanishing	probability	of	decoding	 failure

Ø For	single	or	multiple	windows

• Open	problems
• Capacity	of	deletion	channel	with	localized	deletions?
• Codes	 for	adversarial	 localized	deletions	
• And	of	course	 for	“unrestricted”	 deletion	capacity	and	codes	are	still	

open	problems

20

