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Cloud Storage:

Google data center at Council Bluffs, lowa

We want cloud systems to be reliable, efficient, and available
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Coding for Distributed Storage
Two metrics have received primary research attention

» Repair bandwidth
Dimakis et al. '10,
Suh-Ramachandran '10, ]ﬁ D D
Cadambe et al. '10, -
Rashmi et al. '11,
Tamo et al. '13,
Ye-Barg '16, ..., ..., ...

vdp
Regenerating Codes

» Locality
Huang et al. 07,

X 0000
Gopalan et al. '12, yr r
Papailiopoulos-Dimakis '14,

Goparaju-Calderbank 14, Locally Repairable Codes
Tamo-Barg '14, ..., ..., ...
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Mixed and Correlated Failure Patterns

» Coding has predominantly focused on following type of failures

» The unit of failure is entire disk

> Failures occur independently
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Mixed and Correlated Failure Patterns

» Coding has predominantly focused on following type of failures
> The unit of failure is entire disk

> Failures occur independently

> Storage systems suffer from a large number of
failures
> Mixed failures: entire drive (node) plus a few blocks fail

» Correlated failures: a bunch of nodes fail simultaneously

%

Joud
Jouu
JoUu

SsD1 SSD2 SSD3 SSD4

Rack1 Rack2 Rack3 Rack4

SSD Array

Data center

Example: Mixed failure in a solid state drive (SSD) array, and a correlated

failure in a data center
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Mixed and Correlated Failure Patterns: Related Work

» Cooperative or centralized regeneration, cooperative local recovery
[Shum—Hu '13, Rawat-Mazumdar-Vishwanath '14, Wang-Tamo-Bruck '16]

> Local error correction [Prakash-Kamath-Lalitha-Kumar 12,
Song-Dau-Yuen-Li '14]

» Maximally recoverable codes [Gopalan-Huang-Jenkins-Yekhanin '14,
Gopalan-Hu-Saraf-Wang-Yekhanin '16]

» Sector-Disk codes, partial MDS codes [Blaum-Hafner-Hetzler '13,
Blaum-Plank-Schwartz-Yaakobi '14, Plank-Blaum '14]

We are interested in codes that allow local recoverability from mixed
and/or correlated erasures and errors
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Crisscross Failure Patterns

» We focus on crisscross failures that form a subclass of mixed and

correlated failures
» A crisscross failure pattern affects a limited number of number of

rows or columns (or both)

O OO 10000
COOOOINOOOO) 00D
COOOO0OIIOOIIOOOOE
COOOOUIIECOOOLUIEbOoOOO
COOOOIIOOOOImOOouos

Rack 1 Rack 2 Rack 3

» Codes for crisscross errors (with no locality) have been studied
previously [Roth '91, Blaum-Bruck '00]
» We construct codes that allow local recovery from small weight

crisscross failures. We take a rank-metric approach for code design.
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Our Contributions

1. We consider the notion of rank-locality

2. We establish a Singleton-like upper bound on the minimum

rank-distance for codes with rank-locality

3. We present an optimal code construction
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Rank-Metric Codes

» A rank-metric code € is a non-empty subset of Fqm of size g™k
endowed with rank-distance metric
dg (A, B) =rank (A — B) [Delsarte '78, Gabidulin '85, Roth '91]

C = XX

a C Cymi

» Maximum rank-distance (MRD) codes are analogues of the
maximum distance separable (MDS) codes in the Hamming metric

» MRD codes achieve the Singleton bound for the rank-metric codes

‘el < qmax{n,m}(min{n,vn}fd#»l)
N
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Gabidulin Codes

Rank-metric analogues of Reed-Solomon codes

> Let P ={p1,---,pn} be a set of n elements in Fym that are linearly
independent over Iy (m > n)

> Let Giu(x) € Fgm[x] denote the linearized polynomial of g-degree at
most k — 1 with coefficients m as follows.

P1 P2 Pn
o L P
Gux)=Y mx®,  G=|Pl Ps - pa
j=0 : : : :
k—1 k—1 k—1
I i

» Gabidulin code is obtained by the following evaluation map

Enc:Fin — Fim
m — {Gm(Pi).Pi S P}
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(1, 8)-Locality [Prakash-Lalitha-Kumar '12]

» An (n, k) code € is said to have (1, 8) locality, if for each symbol c;,
i€ [n], of a codeword ¢ = [c; ¢co --- ¢ € G, there exists a set of
indices I (1) such that

1 ieT (i),
2. M) <r+6—1, and
3. dmin (Clr) =8,
where C |1(4) is the restriction of € on the coordinates I (i)

» Any & — 1 erasures can be repaired from at most v symbols

mi my ms 7| Pg

Sl

Example: An (17,7) code with (4, 3)-locality containing three local codes
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(1, 8)-Locality [Prakash-Lalitha-Kumar '12]

» An (n, k) code € is said to have (1, 8) locality, if for each symbol c;,
i€ [n], of a codeword ¢ = [c; ¢co --- ¢ € G, there exists a set of
indices I (1) such that

1 ieT (i),
2. M) <r+6—1, and
3. dmin (Clr) =8,
where C |1(4) is the restriction of € on the coordinates I (i)

» Any & — 1 erasures can be repaired from at most v symbols

mi my ms 7| Pg

Sl

Example: An (17,7) code with (4, 3)-locality containing three local codes

We are interested in locality with respect to rank-metric J
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(1, 8) Rank-Locality

» An (m x n, k) rank-metric code C is said to have (1, §) rank-locality
if for each column 1 € [n] of the codeword matrix, there exists a set
of columns I (1) C [n] such that

1. ieTl (i),
2. TA)|<r+6—1, and
3. dr (Clr)) =8,
where C |14y is the restriction of C on the columns indexed by I' (i)

» The code C |1(y) is said to be the local code associated with the i-th

column

Cy Cy C3
Rank-metric code with (4, 3) rank-locality: local codes C;, C,, and C3 are

rank-metric codes with rank-distance at least 2
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Rank-Locality: Minimum Distance Bound

Theorem: For a rank-metric code € C F7*™ of cardinality ™" with
(r,d) rank-locality, it holds that

dR(e)gn—kH—qﬂ —1) (5—1).
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Rank-Locality: Minimum Distance Bound

Theorem: For a rank-metric code € C F7*™ of cardinality ™" with

(r,d) rank-locality, it holds that

dR(e)gn—kH—Gﬂ —1) (5—1).

Remarks:

» Above Singleton-like bound for the rank-metric coincides with the
Singleton-like bound for the Hamming metric by [Prakash et al. '13,
Rawat et al. '14]

» Singleton-optimal code constructions exist for the Hamming metric
[Silberstein et al. '13, Tamo-Barg '14]
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Rank-Locality: Minimum Distance Bound

Theorem: dR(G’)gn—k—i-l—((ﬂ—l) (6 —1). J

T

Proof sketch:

—

n m XxXn
CEIqu C e F

By fixing a basis for Fqm, we
get a bijection
G Flm — F7T

» Let C = ¢(c). Then, we have
rank (C) < weight (¢)

» An (m x n, k, d) rank-metric code C
over [ can be considered as a block
code C' of length n over Fym

» Hence, we have dg (€) < dmin (€)

» The result follows from an upper

bound on the minimum Hamming
distance of an (n, k, d’)-LRC
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Rank-Locality: Code Construction
We build upon the construction of [Tamo-Barg '14]

» Intuition: What if we can interpolate low degree polynomials to

recover an erased symbol?

» For the rank-locality, we need to use linearized polynomials
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Rank-Locality: Code Construction

Assume: 7|k, (r+0—1)[n,n|m, p:=n/(r+6—1), q =2
» Encoding Linearized Polynomial:
> Given k information symbols m;;, i=0,..., r—1,5=0,..., <1,

define the encoding polynomial as

T1|

q(r+b —1)j+i
E My X .
j=0

i=0
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Rank-Locality: Code Construction

Assume: 7|k, (r+06—1)[n,n|m, p:=n/(r+6—-1),q=>2

» Encoding Linearized Polynomial:

> Given k information symbols m;, 1 =0, ..., r—1;5=0,..., k1,
define the encoding polynomial as
r—1 %*1
(r+8—1)j+i
Gu(x) = my;x9
i=0 j=0
» Evaluation Points:

> {ou, ..., 0 y5-1): basis of Fyr s 1 as a vector space over [y
> {B1,..., Bu}: basis of Fyn as a vector space over Fris-1
» Evaluation points are Py, Py, .-+, Py, where

Pj:{oqﬁj,léigr—i-é—l}
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Rank-Locality: Code Construction

Assume: 7|k, (r+6—1)In,n|m, p:=n/(r+0—-1), q=>2

» Encoding Linearized Polynomial:

> Given k information symbols m;;, i=0,...,7—1;5=0,..., ‘f —1,
define the encoding polynomial as
T—1 % 1 o
q(r+5 1)]+\.
i=0 j=0
» Evaluation Points:
> {otg, ..., %51} basis of Fqrrs 1 as a vector space over [
> {B1,..., By} basis of Fyn as a vector space over Fyris
> Evaluation points P and their partition (Py, Py, -+, P,) is given as

Pj :{Oclf)),1<1<T+6—1}
» Codeword is the evaluations of Gy (x) on points in P, i.e.,
¢=(Gm(y), Yy €P)
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Proposed Construction: Example
n=9k=4r=206=2 Setgq=2and m=n
w: primitive element of Fy
» Define the encoding polynomial as
Gm(x) = Moox® + mo1x% + migx? + myx®.

» The evaluation points P are obtained as:
» {1, w™, w'®} as a basis for Fys over I,

> {1, w3, w7} forms a basis of Fye over Fys

P = {{L (,U73, w146}' {w309, w382, w455}'{w107, w180’ (U253}}_

> Cloc = {(Gm(y),y € P)|m € F }, and the local codes are
€ ={(Gm(Yy), Yy €Pj) ImeFL} for 1 <j<3
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Proposed Construction: Example

n=9k=4r=206=2 Setgq=2and m=n
w: primitive element of Fy

» Define the encoding polynomial as
20 23 2t 24
Gm(X) = MpoX~ + Mp1X°~ + MyoXx” + Mqy1X” .

» The evaluation points P are obtained as:
» {1, w™, w'®} as a basis for Fys over I,

> {1, w3, w7} forms a basis of Fye over Fys
P — ({1, w3, w0}, (w3 w32, W) (W17, W8, W?53))

> Cloc = {(Gm(y),y € P)|m € F }, and the local codes are
€ ={(Gm(Yy), Yy €Pj) ImeFL} for 1 <j<3

> Cj can be obtained by evaluating the repair polynomial Rj(x) on P;

Ry (x) = (Mmoo + mo1)x% + (myg + my)x?,
Ro(x) = (moo + w119m01)X2° + (Mo + wBBmyy )X,
R3(x) = (Moo + w?*mey)x® + (myg + w*0my; x*
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Rank-Distance Optimality of the Proposed Construction

Theorem: The proposed construction is Singleton-optimal, i.e.,
dr (eLoc) =n—k+1— ({%—I —1) (5—1)

Proof Idea:
The proposed code Cp . is a subcode of an (n, k + (% — 1) (6 — 1))
Gabidulin code
» Example:
> Recall our example, n =9,k =4,r=2,6 =2
> Gu(x) = mox®” + mx® + max? + myx?'
» This is a subcode of a (9,5) Gabidulin code, dg (C1oc) =5
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Rank-Locality of the Proposed Construction

Theorem: The proposed construction has (1, 8) rank-locality. J

Proof Sketch:

» We write the encoding polynomial G, (x) in terms of a good

polynomial H(x) := s R
Gm(x) = ¥ {5 Gi(x)x9", where

x_ _ N

Gi(x) =myo + erzll mi; [H(x)]zll Lqlrrent

> Define the repair polynomial for a y € P; as

> We show that H(x) is constant on Pj, and thus, the evaluations of
the encoding polynomial G,,(x) and the repair polynomial Rj(x) on
points in P; are identical
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Proposed Construction: Example
n=9,k=4r=20=2 Setq=2and m=n
w: primitive element of Fy
» Define the encoding polynomial as

0 3 1 4
Gm(x) = Moox? + mo1x? + migx® + mupx?.

» The evaluation points P are:
P — ({1, "3, w0}, (w3 w32, W) (W7, W8, W?53))
> Cj can be obtained by evaluating the repair polynomial Rj(x) on P;

Ry (x) = (Moo + mo1)x> + (Mo + myy)x?,

1
8mn)X2

1
611111)7<2

Ro(x) = (moo + w119m01)x20 + (Mo + 0

8

R3(x) = (Moo + w?*mey )x® + (myo 4+ w?’
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Erasure Correction Capability

Proposition: A rank-metric code with (r, 8) rank-locality can locally

recover from a crisscross failure that affects at most 6 — 1 rows and/or

columns.

» Follows from the rank-distance guarantee of a local code

o
00 ® |0 OO [co oG]
OO0 DO O] |G G )
OOOOmOOOIIOOOO
OCOODLOOOD|ILOOOD
COODOLOOOIImOOOO

Rack 1 Rack 2 Rack 3

Rank-metric code with (2, 3) rank-locality can locally recover from crisscross
erasures affecting any two rows and/or columns
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Conclusion and Future Directions

» Rank-locality: Local codes possess good rank-distance.
We computed tight upper bound on the rank-distance of codes with
rank-locality and constructed optimal codes

» Crisscross erasures: Rank-locality ensures local recovery from small

weight crisscross failure patterns

» Can we construct rank-metric codes such that every column as well

as row is associated with a local code?

» Can we improve the recovery performance by combining rank-metric

decoding and Hamming-metric decoding for individual node failures?

» Recovering from a broader class of erasures?
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