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Cloud Storage: Very Large Scale Storage!

Google data center at Council Bluffs, Iowa

We want cloud systems to be reliable, efficient, and available
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Coding for Distributed Storage
Two metrics have received primary research attention

I Repair bandwidth
Dimakis et al. ’10,
Suh-Ramachandran ’10,
Cadambe et al. ’10,
Rashmi et al. ’11,
Tamo et al. ’13,
Ye-Barg ’16, ..., ..., ...

I Locality
Huang et al. 07,
Oggier-Datta ’11,
Gopalan et al. ’12,
Papailiopoulos-Dimakis ’14,
Goparaju-Calderbank ’14,
Tamo-Barg ’14, ..., ..., ...

dβ

Regenerating Codes

r

Locally Repairable Codes
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Mixed and Correlated Failure Patterns
I Coding has predominantly focused on following type of failures

I The unit of failure is entire disk
I Failures occur independently

I Storage systems suffer from a large number of mixed and correlated
failures

I Mixed failures: entire drive (node) plus a few blocks fail
I Correlated failures: a bunch of nodes fail simultaneously

SSD 2 SSD 3 SSD 4

SSD Array

SSD 1

X

Rack 2 Rack 3 Rack 4

Data center

Rack 1

Example: Mixed failure in a solid state drive (SSD) array, and a correlated

failure in a data center
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Mixed and Correlated Failure Patterns: Related Work

I Cooperative or centralized regeneration, cooperative local recovery
[Shum-Hu ’13, Rawat-Mazumdar-Vishwanath ’14, Wang-Tamo-Bruck ’16]

I Local error correction [Prakash-Kamath-Lalitha-Kumar ’12,

Song-Dau-Yuen-Li ’14]

I Maximally recoverable codes [Gopalan-Huang-Jenkins-Yekhanin ’14,

Gopalan-Hu-Saraf-Wang-Yekhanin ’16]

I Sector-Disk codes, partial MDS codes [Blaum-Hafner-Hetzler ’13,

Blaum-Plank-Schwartz-Yaakobi ’14, Plank-Blaum ’14]

We are interested in codes that allow local recoverability from mixed
and/or correlated erasures and errors
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Crisscross Failure Patterns
I We focus on crisscross failures that form a subclass of mixed and

correlated failures
I A crisscross failure pattern affects a limited number of number of

rows or columns (or both)
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I Codes for crisscross errors (with no locality) have been studied
previously [Roth ’91, Blaum-Bruck ’00]

I We construct codes that allow local recovery from small weight
crisscross failures. We take a rank-metric approach for code design.
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Our Contributions

1. We consider the notion of rank-locality

2. We establish a Singleton-like upper bound on the minimum
rank-distance for codes with rank-locality

3. We present an optimal code construction
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Rank-Metric Codes

I A rank-metric code C is a non-empty subset of Fm×nq of size qmk

endowed with rank-distance metric
dR (A,B) = rank (A− B) [Delsarte ’78, Gabidulin ’85, Roth ’91]

C1 C2 Cqmk

C =

I Maximum rank-distance (MRD) codes are analogues of the
maximum distance separable (MDS) codes in the Hamming metric

I MRD codes achieve the Singleton bound for the rank-metric codes

|C| 6 qmax{n,m}(min{n,m}−d+1)
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Gabidulin Codes
Rank-metric analogues of Reed-Solomon codes

I Let P = {p1, · · · ,pn} be a set of n elements in Fqm that are linearly
independent over Fq (m > n)

I Let Gm(x) ∈ Fqm [x] denote the linearized polynomial of q-degree at
most k− 1 with coefficients m as follows.

Gm(x) =

k−1∑
j=0

mjx
qj , G =



p1 p2 · · · pn

pq1 pq2 · · · pqn

pq
2

1 pq
2

2 · · · pq
2

n

...
...

. . .
...

pq
k−1

1 pq
k−1

2 · · · pq
k−1

n


I Gabidulin code is obtained by the following evaluation map

Enc : Fkqm → Fnqm

m 7→ {Gm(pi),pi ∈ P}
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(r, δ)-Locality [Prakash-Lalitha-Kumar ’12]

I An (n,k) code C is said to have (r, δ) locality, if for each symbol ci,
i ∈ [n], of a codeword c = [c1 c2 · · · cn] ∈ C, there exists a set of
indices Γ (i) such that
1. i ∈ Γ (i),
2. |Γ (i) | 6 r+ δ− 1, and
3. dmin

(
C |Γ(i)

)
> δ,

where C |Γ(i) is the restriction of C on the coordinates Γ (i)

I Any δ− 1 erasures can be repaired from at most r symbols

m1 m2 m3 m4 m5 m6 m7 pg1 pg2 pg3 pg4

pl1 pl2 pl3 pl4 pl5 pl6

Example: An (17, 7) code with (4, 3)-locality containing three local codes

We are interested in locality with respect to rank-metric
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(r, δ) Rank-Locality
I An (m× n,k) rank-metric code C is said to have (r, δ) rank-locality

if for each column i ∈ [n] of the codeword matrix, there exists a set
of columns Γ (i) ⊂ [n] such that
1. i ∈ Γ (i),
2. |Γ (i) | 6 r+ δ− 1, and
3. dR

(
C |Γ(i)

)
> δ,

where C |Γ(i) is the restriction of C on the columns indexed by Γ (i)
I The code C |Γ(i) is said to be the local code associated with the i-th

column

C1 C2 C3

Rank-metric code with (4, 3) rank-locality: local codes C1, C2, and C3 are
rank-metric codes with rank-distance at least 2
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Rank-Locality: Minimum Distance Bound

Theorem: For a rank-metric code C ⊆ Fm×nq of cardinality qmk with

(r, δ) rank-locality, it holds that

dR (C) 6 n− k+ 1−

(⌈
k

r

⌉
− 1

)
(δ− 1).

Remarks:

I Above Singleton-like bound for the rank-metric coincides with the
Singleton-like bound for the Hamming metric by [Prakash et al. ’13,

Rawat et al. ’14]

I Singleton-optimal code constructions exist for the Hamming metric
[Silberstein et al. ’13, Tamo-Barg ’14]

12 / 23



Rank-Locality: Minimum Distance Bound

Theorem: For a rank-metric code C ⊆ Fm×nq of cardinality qmk with

(r, δ) rank-locality, it holds that

dR (C) 6 n− k+ 1−

(⌈
k

r

⌉
− 1

)
(δ− 1).

Remarks:

I Above Singleton-like bound for the rank-metric coincides with the
Singleton-like bound for the Hamming metric by [Prakash et al. ’13,

Rawat et al. ’14]

I Singleton-optimal code constructions exist for the Hamming metric
[Silberstein et al. ’13, Tamo-Barg ’14]

12 / 23



Rank-Locality: Minimum Distance Bound

Theorem: dR (C) 6 n− k+ 1−
(⌈
k
r

⌉
− 1
)
(δ− 1).

Proof sketch:

c ∈ Fn
qm C ∈ Fm×n

q

By fixing a basis for Fqm , we
get a bijection
φ : Fnqm → Fm×nq

I Let C = φ(c). Then, we have
rank (C) 6 weight (c)

I An (m× n,k,d) rank-metric code C

over Fq can be considered as a block
code C ′ of length n over Fqm

I Hence, we have dR (C) 6 dmin (C ′)

I The result follows from an upper
bound on the minimum Hamming
distance of an (n,k,d ′)-LRC
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Rank-Locality: Code Construction
We build upon the construction of [Tamo-Barg ’14]

!

!

! !

!

!

!

!

!
!

!

!

!

!

!!

I Intuition: What if we can interpolate low degree polynomials to
recover an erased symbol?

I For the rank-locality, we need to use linearized polynomials
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Rank-Locality: Code Construction

Assume: r | k, (r+ δ− 1) | n, n | m, µ := n/(r+ δ− 1), q > 2

I Encoding Linearized Polynomial:
I Given k information symbols mij, i = 0, . . . , r− 1; j = 0, . . . , k

r
− 1,

define the encoding polynomial as

Gm(x) =

r−1∑
i=0

k
r−1∑
j=0

mijx
q(r+δ−1)j+i

.
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r
− 1,

define the encoding polynomial as

Gm(x) =

r−1∑
i=0

k
r−1∑
j=0

mijx
q(r+δ−1)j+i

.

I Evaluation Points:
I {α1, . . . ,αr+δ−1}: basis of Fqr+δ−1 as a vector space over Fq
I {β1, . . . ,βµ}: basis of Fqn as a vector space over Fqr+δ−1

I Evaluation points are P1,P2, · · · ,Pµ, where
Pj = {αiβj, 1 6 i 6 r+ δ− 1}
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I Evaluation Points:
I {α1, . . . ,αr+δ−1}: basis of Fqr+δ−1 as a vector space over Fq
I {β1, . . . ,βµ}: basis of Fqn as a vector space over Fqr+δ−1

I Evaluation points P and their partition (P1,P2, · · · ,Pµ) is given as
Pj = {αiβj, 1 6 i 6 r+ δ− 1}

I Codeword is the evaluations of Gm(x) on points in P, i.e.,
c = (Gm(γ),γ ∈ P)
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Proposed Construction: Example
n = 9,k = 4, r = 2, δ = 2. Set q = 2 and m = n

ω: primitive element of F29

I Define the encoding polynomial as

Gm(x) = m00x
20 +m01x

23 +m10x
21 +m11x

24 .

I The evaluation points P are obtained as:
I {1,ω73,ω146} as a basis for F23 over F2

I {1,ω309,ω107} forms a basis of F29 over F23

P = {{1,ω73,ω146}, {ω309,ω382,ω455}, {ω107,ω180,ω253}}.

I CLoc =
{
(Gm(γ),γ ∈ P) | m ∈ F4

29

}
, and the local codes are

Cj =
{
(Gm(γ),γ ∈ Pj) | m ∈ F4

29

}
for 1 6 j 6 3

I Cj can be obtained by evaluating the repair polynomial Rj(x) on Pj
R1(x) = (m00 +m01)x

20 + (m10 +m11)x
21 ,

R2(x) = (m00 +ω
119m01)x

20 + (m10 +ω
238m11)x

21 ,

R3(x) = (m00 +ω
238m01)x

20 + (m10 +ω
476m11)x

21
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Rank-Distance Optimality of the Proposed Construction

Theorem: The proposed construction is Singleton-optimal, i.e.,

dR (CLoc) = n− k+ 1−
(⌈
k
r

⌉
− 1
)
(δ− 1).

Proof Idea:
The proposed code CLoc is a subcode of an

(
n,k+

(
k
r
− 1
)
(δ− 1)

)
Gabidulin code

I Example:
I Recall our example, n = 9,k = 4, r = 2, δ = 2

I Gm(x) = m0x
20 +m1x

21 +m3x
23 +m4x

24

I This is a subcode of a (9, 5) Gabidulin code, dR (CLoc) = 5
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Rank-Locality of the Proposed Construction

Theorem: The proposed construction has (r, δ) rank-locality.

Proof Sketch:

I We write the encoding polynomial Gm(x) in terms of a good
polynomial H(x) := xq

r+δ−1−1 as
Gm(x) =

∑r−1
i=0 Gi(x)x

qi , where

Gi(x) = mi0 +
∑k

r
−1

j=1 mij[H(x)]
∑j−1
l=0 q

(r+δ−1)l+i
.

I Define the repair polynomial for a γ ∈ Pj as

Rj(x) =

r−1∑
i=0

Gi(γ)x
qi .

I We show that H(x) is constant on Pj, and thus, the evaluations of
the encoding polynomial Gm(x) and the repair polynomial Rj(x) on
points in Pj are identical
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Erasure Correction Capability

Proposition: A rank-metric code with (r, δ) rank-locality can locally

recover from a crisscross failure that affects at most δ− 1 rows and/or

columns.

I Follows from the rank-distance guarantee of a local code
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X

X

X

X

Rank-metric code with (2, 3) rank-locality can locally recover from crisscross
erasures affecting any two rows and/or columns
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Conclusion and Future Directions

I Rank-locality: Local codes possess good rank-distance.
We computed tight upper bound on the rank-distance of codes with
rank-locality and constructed optimal codes

I Crisscross erasures: Rank-locality ensures local recovery from small
weight crisscross failure patterns

Future Directions

I Can we construct rank-metric codes such that every column as well
as row is associated with a local code?

I Can we improve the recovery performance by combining rank-metric
decoding and Hamming-metric decoding for individual node failures?

I Recovering from a broader class of erasures?
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