Proof of Proposition 1 in
“A Joint Design Approach for Spectrum Sharing between Radar and Communication Systems”

We state Proposition 1 in [1] as follows:

Proposition 1 ([1]). Suppose that \(\{ R_{xl} \} \) is initialized by \(\{ R_{xl} \} \equiv R_{x}^{0} \). Then, the optimal value of (P) in every iteration of the proposed algorithm could be achieved by \(\{ R_{xl}^{n} \} \) such that for any \(l, l' \in N_{L}^{+} \) (or \(l, l' \in N_{L}^{+} \setminus N_{L}^{+} \)), it holds that \(R_{xl}^{n} = R_{xl}^{n\prime} \).

Proof: The proposition can be proved using induction. We focus on the proof for \(l, l' \in N_{L}^{+} \) in the following. The proof for \(l, l' \in N_{L}^{+} \setminus N_{L}^{+} \) is similar.

From the proposition, we know that \(\{ R_{xl} \} \) is initialized such that \(R_{xl}^{0} = R_{xl}^{0\prime} = R_{x}^{0} \), \(\forall l, l' \in N_{L}^{+} \). We need to show that the optimal value of (P) in the \(n \)-th iteration is also achieved by \(\{ R_{xl}^{n} \} \) such that \(R_{xl}^{n} = R_{xl}^{n\prime} \), \(\forall l, l' \in N_{L}^{+} \). Because \(\{ R_{xl}^{n} \} \) is obtained via several inner iterations of solving (P) in [1], it suffices to show that the above property could be passed on between the iterations of solving (P).

Suppose that, in the \((i - 1) \)-th inner iteration, the optimal value of (P) is achieved by \(\{ R_{xl}^{n(i-1)} \} \) such that \(R_{xl}^{n(i-1)} = R_{xl}^{n(i-1)} \), \(\forall l, l' \in N_{L}^{+} \). During the \(i \)-th iteration, \(\{ R_{xl}^{n(i)} \} \) is obtained by solving (P) with \(\{ R_{xl} \} = \{ R_{xl}^{n(i-1)} \} \). We will show that \(R_{xl}^{n(i)} \equiv 1/L \sum_{l=1}^{L} R_{xl}^{n(i-1)} \equiv R_{xl}^{n(i)} \), \(\forall l \in N_{L}^{+} \) is also feasible and achieves the same radar SINR as \(\{ R_{xl}^{n(i)} \} \). Based on the concavity of \(C_{l}(R_{xl}, \cdot) \), we have

\[
\sum_{l=1}^{L} C_{l}(R_{xl}^{n(i)}, \cdot) \leq LC_{l}(R_{xl}^{n(i)}, \cdot).
\]

For the communication transmission power, it trivially holds that \(\sum_{l=1}^{L} \text{Tr}(R_{xl}^{n(i-1)}) = L \text{Tr}(R_{xl}^{n(i)}) \). Therefore, \(\{ R_{xl}^{n(i)} \} \) is also feasible. The objective \(f(R_{xl}) \) of (P) in the \(i \)-th iteration is affine w.r.t. \(R_{xl} \) with coefficient depending on \(R_{xl} = R_{xl}^{n(i-1)} \). Given that \(R_{xl}^{n(i-1)} = R_{xl}^{n(i-1)} \), \(\forall l, l' \in N_{L}^{+} \), the affine functions \(f(\cdot) \) for are identical for any \(l \in N_{L}^{+} \). Therefore, \(\{ R_{xl}^{n(i-1)} \} \) achieves the same objective value as \(\{ R_{xl}^{n(i-1)} \} \) does.

Proposition 1 is proved.

REFERENCES