Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Personalized PageRank dimensionality and algorithmic implications

Vijay G. Subramanian

ECE, University of Michigan

Jan 31st 2020, Shannon Channel, Rutgers Univ.

Joint work with Dr. Daniel Vial, ECE, UT Austin & UIUC

Introduction
•000000

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors and vulnerabilities

Introduction
•000000

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors and vulnerabilities

Social networks

Internet

Power grid

Introduction
•000000

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors and vulnerabilities

Jon Kleinberg (Allerton 2014 plenary): "In the battle of ideas for metaphors for explaining these phenomena, graphs are doing pretty well for themselves."

Introduction
000000

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors and vulnerabilities

Jon Kleinberg (Allerton 2014 plenary): "In the battle of ideas for metaphors for explaining these phenomena, graphs are doing pretty well for themselves."

Questions of interest in this talk:

- Which nodes are most important/influential, globally and locally?
- Which nodes are similar/relevant to a given node?

Introduction
000000

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors and vulnerabilities

Jon Kleinberg (Allerton 2014 plenary): "In the battle of ideas for metaphors for explaining these phenomena, graphs are doing pretty well for themselves."

Questions of interest in this talk:

- Which nodes are most important/influential, globally and locally?
- Which nodes are similar/relevant to a given node?

One metric used to answer these questions: Personalized PageRank (PPR)

Quantifying dimensionality 0000000 Bounding dimensionality 00000000 Dimensionality and algorithms 000000

PPR definition

Given directed graph G = (V, E), let $v \in V$ and $\alpha \in (0, 1)$

Introduction
000000

Bounding dimensionality 00000000

Dimensionality and algorithms 000000

PPR definition

Given directed graph G = (V, E), let $v \in V$ and $\alpha \in (0, 1)$

Define Markov chain $\{X_t^v\}_{t\in\mathbb{N}}$ as follows: given X_t^v ,

- W.p. (1α) , sample X_{t+1}^{ν} from out-neighbors of X_t^{ν} (random walk)
- W.p. α , set $X_{t+1}^{\nu} = \nu$ (jump to ν)

Introduction	
0000000	

Bounding dimensionality

Dimensionality and algorithms 000000

PPR definition

Given directed graph G = (V, E), let $v \in V$ and $\alpha \in (0, 1)$

Define Markov chain $\{X_t^v\}_{t\in\mathbb{N}}$ as follows: given X_t^v ,

• W.p. $(1 - \alpha)$, sample X_{t+1}^{ν} from out-neighbors of X_t^{ν} (random walk)

• W.p.
$$\alpha$$
, set $X_{t+1}^{\nu} = v$ (jump to v)

Stationary distribution $\pi_v = {\pi_v(w)}_{w \in V}$ called *PPR vector*

Introduction		
000000		

PPR definition

Given directed graph G = (V, E), let $v \in V$ and $\alpha \in (0, 1)$

Define Markov chain $\{X_t^v\}_{t\in\mathbb{N}}$ as follows: given X_t^v ,

W.p. (1 - α), sample X^v_{t+1} from out-neighbors of X^v_t (random walk)
 W.p. α, set X^v_{t+1} = v (jump to v)

Stationary distribution $\pi_v = {\pi_v(w)}_{w \in V}$ called *PPR vector*

Matrix $\Pi = {\pi_v}_{v \in V}$ called *PPR matrix*

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

PPR interpretation

 $\pi_v(w)$ large when w frequently visited on short walks from v

 \Rightarrow Interpret $\pi_v(w)$ as measure of w's importance/relevance to v

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

PPR interpretation

 $\pi_v(w)$ large when w frequently visited on short walks from v

 \Rightarrow Interpret $\pi_v(w)$ as measure of w's importance/relevance to v

(Global) PageRank and PPR

PPR interpretation

 $\pi_v(w)$ large when w frequently visited on short walks from v

 \Rightarrow Interpret $\pi_v(w)$ as measure of w's importance/relevance to v

(Global) PageRank and PPR

Proposed to rank websites (Page et al. 1999); many uses since

- Recommendation (Baluja et al. 2008; Gupta et al. 2013)
- Bioinformatics (Morrison et al. 2005; Freschi 2007)
- Community detection (Andersen, Chung, Lang 2006, Kloumann, Ugander, Kleinberg 2017)
- Graph similarity (Koutra, Vogelstein, Faloutsos 2013)

...

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Definitions

Directed graph
$$G = (V, E)$$
, $V = \{1, 2, \dots, n\}$, $m = |E|$

Adjacency A, diagonal out-degree D, $P = D^{-1}A$ (row stochastic)

PPR: Perron-Frobenius eigenvector π_{σ} of non-negative matrix

$$P_{\sigma} = (1 - \alpha)P + \alpha \mathbf{1}_{n} \sigma^{T} \tag{1}$$

where $\alpha \in (0, 1)$, $\sigma \in \mathbb{R}^n_+$ s.t. $\sum_{v \in V} \sigma(v) = 1$ (distribution on V)

When $\sigma = e_s$ (1 in s-th position, 0 elsewhere), denote as π_s

(Global) PageRank: $\sigma = \frac{1}{n} \mathbf{1}_n$

Computation of PPR

Linear algebraic method

- Non-negative matrix, so Perron-Frobenius theorem
- Power method variants, $O(n^2)$ for each source
- Directed Laplacian variants, almost linear time; Miller, Spielman, Teng, Peng.

Probabilistic method

- P is the transition kernel of simple random walk on G
- Use Monte Carlo (random walks) to estimate PPR
- O(n log(n)) complexity for (Global) PageRank: Avrachenkov et al. 2007, Sarma et al. 2015

Variational method

- View eigenvector computation as a Bellman equation
- Use value iteration: Andersen, Chung, Lang 2006, Andersen et al. 2008

Hybrid schemes

- Monte Carlo + Variational method
- For a single entry of Π Lofgren, Banerjee, Goel 2016

Key properties

P_{σ} is a Doeblin chain: Athreya, Stenflo 2003

 $\pi_s(t) = \mathbb{P}[\text{random walk from } s \text{ of length } \sim \operatorname{geom}(\alpha) \text{ ends at } t]$ (2)

 \Rightarrow Can sample from π_s using random walks

To estimate π_{σ} , suffices to estimate π_s , because

$$\pi_{\sigma} = \sum_{s \in V} \sigma(s) \pi_s \tag{3}$$

Renewal reward interpretation: $\pi_s(t)$ importance of t for s, as

 $\pi_s(t) \propto \mathbb{E}[\text{number of visits to } t \text{ on geom}(\alpha)\text{-length walk from } s]$ (4)

Quantifying dimensionality 0000000 Bounding dimensionality 00000000 Dimensionality and algorithms 000000

PPR dimensionality question

Using Perron-Frobenius theorem, can show rank(Π) = |V| =: n

Bounding dimensionality

Dimensionality and algorithms 000000

PPR dimensionality question

Using Perron-Frobenius theorem, can show $rank(\Pi) = |V| =: n$

However, PPR exhibits transitive structure

- $\pi_{v_1}(v_2), \pi_{v_2}(v_3)$ large $\Rightarrow \pi_{v_1}(v_3)$ large ("friend of my friend is my friend")
- Suggests Π has small "effective dimension"

PPR dimensionality question

Using Perron-Frobenius theorem, can show $rank(\Pi) = |V| =: n$

However, PPR exhibits transitive structure

- $\pi_{v_1}(v_2), \pi_{v_2}(v_3)$ large $\Rightarrow \pi_{v_1}(v_3)$ large ("friend of my friend is my friend")
- Suggests Π has small "effective dimension"

Also, for many real-world graphs G = (V, E), |E| = O(n)

- Suggests G is O(n)-dimensional, but Π (derived from G) is n^2 -dimensional
- Is this gap actually present?

Dimensionality and algorithms 000000

PPR dimensionality question

Using Perron-Frobenius theorem, can show $rank(\Pi) = |V| =: n$

However, PPR exhibits transitive structure

- $\pi_{v_1}(v_2), \pi_{v_2}(v_3)$ large $\Rightarrow \pi_{v_1}(v_3)$ large ("friend of my friend is my friend")
- Suggests Π has small "effective dimension"

Also, for many real-world graphs G = (V, E), |E| = O(n)

- Suggests G is O(n)-dimensional, but Π (derived from G) is n^2 -dimensional
- Is this gap actually present?

Outline of talk:

- **1** How to quantify effective dimension of Π ?
- 2 Can we bound this measure of dimensionality?
- If bound "small", can we leverage it algorithmically?

Quantifying dimensionality ••••••• Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Quantifying PPR dimensionality

Natural measure of effective dimension of Π :

$$\Delta(\epsilon) = \min_{\hat{\Pi}} \operatorname{rank}(\hat{\Pi}) \text{ s.t. } \|\Pi - \hat{\Pi}\| < \epsilon$$
(5)

Intuitively, Π low dimensional if close to low-rank matrix

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms 000000

Quantifying PPR dimensionality

Natural measure of effective dimension of Π :

$$\Delta(\epsilon) = \min_{\hat{\Pi}} \operatorname{rank}(\hat{\Pi}) \text{ s.t. } \|\Pi - \hat{\Pi}\| < \epsilon$$
(5)

Intuitively, Π low dimensional if close to low-rank matrix

Can also view (5) as dual of low-rank approximation:

$$\inf_{\hat{\Pi}} \|\Pi - \hat{\Pi}\| \text{ s.t. rank}(\hat{\Pi}) \leq k$$

Quantifying dimensionality •000000 Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Quantifying PPR dimensionality

Natural measure of effective dimension of Π :

$$\Delta(\epsilon) = \min_{\hat{\Pi}} \operatorname{rank}(\hat{\Pi}) \text{ s.t. } \|\Pi - \hat{\Pi}\| < \epsilon$$
(5)

Intuitively, Π low dimensional if close to low-rank matrix

Can also view (5) as dual of low-rank approximation:

$$\inf_{\hat{\Pi}} \|\Pi - \hat{\Pi}\|$$
 s.t. $\operatorname{rank}(\hat{\Pi}) \leq k$

We take $\|\cdot\| = \|\cdot\|_{\infty}$ in (5), where for matrix A with rows a_1, \ldots, a_n ,

$$||A||_{\infty} = \max_{i \in \{1, \dots, n\}} ||a_i||_1$$

(Natural choice, since $\|\cdot\|_{TV} = \|\cdot\|_1/2$ and each row of Π is a distribution)

Bounding dimensionality

Dimensionality and algorithms 000000

Modified dimensionality measure

For analytical/algorithmic reasons, we let $\mathcal{K}\subset \mathcal{V}$ and upper bound $\Delta(\epsilon)$ as

$$\Delta(K,\epsilon) = |K| + \left| \left\{ \mathbf{v} \notin K : \min_{\mu_{v}(k)} \left\| \pi_{v} - \sum_{k \in K} \mu_{v}(k) \pi_{k} \right\|_{1} > \epsilon \right\} \right|$$

$$\mathcal{D}(k,\epsilon) = K \cup \left\{ \mathbf{v} \notin K : \min_{\mu_{v}(k)} \left\| \pi_{v} - \sum_{k \in K} \mu_{v}(k) \pi_{k} \right\|_{1} > \epsilon \right\}$$
(6)

Bounding dimensionality

Dimensionality and algorithms 000000

Modified dimensionality measure

For analytical/algorithmic reasons, we let $\mathcal{K}\subset \mathcal{V}$ and upper bound $\Delta(\epsilon)$ as

$$\Delta(K,\epsilon) = |K| + \left| \left\{ \mathbf{v} \notin K : \min_{\mu_{v}(k)} \left\| \pi_{v} - \sum_{k \in K} \mu_{v}(k) \pi_{k} \right\|_{1} > \epsilon \right\} \right|$$

$$\mathcal{D}(k,\epsilon) = K \cup \left\{ \mathbf{v} \notin K : \min_{\mu_{v}(k)} \left\| \pi_{v} - \sum_{k \in K} \mu_{v}(k) \pi_{k} \right\|_{1} > \epsilon \right\}$$
(6)

- Think of K as hub nodes (located "centrally" in graph)
- Will argue that for most non-hubs, PPR close to linear combo of hub PPR
- Second term in (6) accounts for other non-hubs (typically "far" from hubs)

Brief discussion

Modified dimensionality measure

• Collecting π_v for $v \in \mathcal{D}(K, \epsilon)$ and weights μ_v for $v \in V$ gives a factorization of Π as H, WWhat are the dimensions? Can this be generated fast?

Brief discussion

Modified dimensionality measure

■ Collecting π_v for v ∈ D(K, ε) and weights μ_v for v ∈ V gives a factorization of Π as H, W
What are the dimensions? Can this be generated fast?

Would like K to be easily identified too Can we take nodes that will be visited "first" by random walks?

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Graph model

 $\Delta(K,\epsilon)$ highly dependent on local graph structure – hard to bound in general

 1 "Nice" = well-approximated by a certain branching process, e.g. Chen, Olvera-Cravioto 2013; Chen, Litvak, Olvera-Cravioto 2017

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Graph model

 $\Delta(K,\epsilon)$ highly dependent on local graph structure – hard to bound in general

We analyze directed configuration model (DCM) due to "nice" local structure¹

 $^{^1}$ "Nice" = well-approximated by a certain branching process, e.g. Chen, Olvera-Cravioto 2013; Chen, Litvak, Olvera-Cravioto 2017

Graph model

 $\Delta(K,\epsilon)$ highly dependent on local graph structure – hard to bound in general

We analyze directed configuration model (DCM) due to "nice" local structure¹

DCM construction:

- **1** Realize degree sequence $\{d_{out}(v), d_{in}(v)\}_{v \in V}$
- **2** Attach $d_{out}(v)$ ($d_{in}(v)$, resp.) outgoing (incoming, resp.) half-edges to v
- 3 Randomly pair half-edges to form edges via breadth-first-search

 $^{^1}$ "Nice" = well-approximated by a certain branching process, e.g. Chen, Olvera-Cravioto 2013; Chen, Litvak, Olvera-Cravioto 2017

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and dimensionality

Choice of $\alpha = \mathbb{P}(\mathsf{jump to } \mathbf{v})$ impacts dimensionality:

- $\alpha \approx 0 \Rightarrow \pi_v \approx$ random walk stationary distribution $\Rightarrow \Delta(K, \epsilon) \approx 1$
- $\alpha \approx 1 \Rightarrow \pi_{\nu} \approx$ point mass on $\nu \Rightarrow \Delta(K, \epsilon) \approx n$

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and dimensionality

Choice of $\alpha = \mathbb{P}(\mathsf{jump to } \mathbf{v})$ impacts dimensionality:

- $\alpha \approx 0 \Rightarrow \pi_{\nu} \approx$ random walk stationary distribution $\Rightarrow \Delta(K, \epsilon) \approx 1$
- $\alpha \approx 1 \Rightarrow \pi_v \approx$ point mass on $v \Rightarrow \Delta(K, \epsilon) \approx n$

How to make this precise?

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and dimensionality

Choice of $\alpha = \mathbb{P}(\mathsf{jump to } \mathbf{v})$ impacts dimensionality:

- $\alpha \approx 0 \Rightarrow \pi_v \approx$ random walk stationary distribution $\Rightarrow \Delta(K, \epsilon) \approx 1$
- $\alpha \approx 1 \Rightarrow \pi_v \approx$ point mass on $v \Rightarrow \Delta(K, \epsilon) \approx n$

How to make this precise?

Namely, for a sequence $\{G_n\}_{n\in\mathbb{N}}$ of DCMs, how should $\alpha = \alpha_n$ scale with *n*?

Quantifying dimensionality

Bounding dimensionality 00000000 Dimensionality and algorithms 000000

Jump probability and mixing times

Suppose $\alpha_n \log n \to 0$, e.g. $\alpha_n = 1/(\log n)^2$

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and mixing times

Suppose $\alpha_n \log n \to 0$, e.g. $\alpha_n = 1/(\log n)^2$

Since $\alpha_n = \mathbb{P}(\text{jump to } v)$, $\mathbb{E}[\text{random walk length}] = \Theta((\log n)^2)$

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and mixing times

Suppose $\alpha_n \log n \to 0$, e.g. $\alpha_n = 1/(\log n)^2$

Since $\alpha_n = \mathbb{P}(\text{jump to } v)$, $\mathbb{E}[\text{random walk length}] = \Theta((\log n)^2)$

Bordenave, Caputo, Salez 2018: random walk on DCM mixes in $\Theta(\log n)$ steps

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and mixing times

Suppose $\alpha_n \log n \to 0$, e.g. $\alpha_n = 1/(\log n)^2$

Since $\alpha_n = \mathbb{P}(\text{jump to } v)$, $\mathbb{E}[\text{random walk length}] = \Theta((\log n)^2)$

Bordenave, Caputo, Salez 2018: random walk on DCM mixes in $\Theta(\log n)$ steps Mixing occurs before jump to v! Allows us to show $\Delta(K, \epsilon) = 1$ with high prob.

Bounding dimensionality

Dimensionality and algorithms 000000

Jump probability and mixing times

Suppose $\alpha_n \log n \to 0$, e.g. $\alpha_n = 1/(\log n)^2$

Since $\alpha_n = \mathbb{P}(\text{jump to } v)$, $\mathbb{E}[\text{random walk length}] = \Theta((\log n)^2)$

Bordenave, Caputo, Salez 2018: random walk on DCM mixes in $\Theta(\log n)$ steps Mixing occurs before jump to v! Allows us to show $\Delta(K, \epsilon) = 1$ with high prob. Hence, we set $\alpha_n = \Theta(1/\log n)$ (just outside the trivial regime)

Brief discussion

Random walk and PPR properties

- **1** If α_n = constant, then fixed PPR set around any node is constant-sized.
- **2** If $\alpha_n = \Theta(1/\log n)$, then fixed PPR set around any node increases as n^{γ} .
- Scaling also related to the Cheeger number/isoperimetric number of graph family.
- Recent results of Caputo and Quattroppani also suggest that dimension will be degenerate for any other scaling.
- Bordenave, Caputo, Salez 2018: Random walk stationary distribution unknown but close in a strong-sense to normalized in-degree distribution.
- **6** Using high in-degree nodes as hubs will be good.
- **2** Other choices: high (Global) PageRank but needs a computation.

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms 000000

Main result

Main result concerns sequence of DCMs $\{G_n\}_{n \in \mathbb{N}}$, where G_n has n nodes

Bounding dimensionality •0000000

Dimensionality and algorithms 000000

Main result

Main result concerns sequence of DCMs $\{G_n\}_{n\in\mathbb{N}}$, where G_n has n nodes

From G_n , define $\Delta_n(K_n, \epsilon)$ for specific K_n (random variable, as G_n is random)

Bounding dimensionality

Dimensionality and algorithms 000000

Main result

Main result concerns sequence of DCMs $\{G_n\}_{n\in\mathbb{N}}$, where G_n has n nodes

From G_n , define $\Delta_n(K_n, \epsilon)$ for specific K_n (random variable, as G_n is random)

Our main result says $\Delta_n(K_n, \epsilon) = o(n)$ with high probability as $n \to \infty$:

Theorem

Assume degree sequence satisfies certain assumptions (details to come), and assume $\alpha_n = \Theta(1/\log n)$. Then for any $\epsilon > 0$, some $c_{\epsilon} \in (0, 1)$, and any C > 0, all independent of n,

$$\lim_{n\to\infty}\mathbb{P}\left(\Delta_n(K_n,\epsilon)>Cn^{c_{\epsilon}}\right)=0.$$

Bounding dimensionality

Dimensionality and algorithms 000000

Proof of main result

Main result follows almost immediately from key lemma:

Lemma

Under assumptions of theorem, we have for $s \sim V$ uniformly and some $\tilde{c}_{\varepsilon} > 0$,

$$\mathbb{P}\left(\min_{\mu_{s}(k)} \underbrace{\left\|\pi_{s} - \sum_{k \in \mathcal{K}} \mu_{s}(k)\pi_{k}\right\|_{1}}_{\star} > \epsilon\right) = O\left(n^{-\tilde{c}_{\epsilon}}\right).$$

Bounding dimensionality

Dimensionality and algorithms 000000

Proof of main result

Main result follows almost immediately from key lemma:

Lemma

Under assumptions of theorem, we have for $s \sim V$ uniformly and some $\tilde{c}_{\varepsilon} > 0$,

$$\mathbb{P}\left(\min_{\substack{\mu_{s}(k)\\ \star}} \left\| \frac{\pi_{s} - \sum_{k \in K} \mu_{s}(k) \pi_{k}}{\star} \right\|_{1} > \epsilon \right) = O\left(n^{-\tilde{\epsilon}_{\epsilon}}\right).$$

Outline for proof of lemma:

- **I** Show \star depends only on neighborhood of *s* for certain $\mu_s(k)$
- Approximate neighborhood construction with branching process (using Chen, Litvak, Olvera-Cravioto 2017) to study * on tree
- **B** Recursive nature of branching process $\rightarrow \star$ on tree is martingale-like \rightarrow analyze similar to method of bounded differences

Choice of $\mu_v(k)$

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms 000000

By considering first step of PPR Markov chain, can show

$$\pi_{\mathbf{v}}(\mathbf{w}) = \underbrace{\alpha \mathbf{1}(\mathbf{w} = \mathbf{v})}_{\text{first step is jump to } \mathbf{v}} + \underbrace{\sum_{k: \mathbf{v} \to k} \frac{(1 - \alpha)}{|\{k : \mathbf{v} \to k\}|} \pi_{k}(\mathbf{w})}_{\text{first step is jump to } \mathbf{v}}$$

first step follows random walk

Introduction	

Choice of $\mu_v(k)$

Quantifying dimensionality 0000000

Bounding dimensionality

Dimensionality and algorithms 000000

By considering first step of PPR Markov chain, can show

$$\pi_{v}(w) = \underbrace{\alpha \mathbf{1}(w = v)}_{\text{first step is jump to } v} + \underbrace{\sum_{k:v \to k} \frac{(1 - \alpha)}{|\{k : v \to k\}|} \pi_{k}(w)}_{\text{first step follows random walk}}$$

For any $K \subset V$, Jeh, Widom 2003 proves decomposition of same form:

$$\pi_{\mathbf{v}}(\mathbf{w}) = \frac{\alpha \mathbf{1}(\mathbf{w} \notin \mathbf{K}) \tilde{\pi}_{\mathbf{v}}(\mathbf{w})}{\alpha + (1 - \alpha) \tilde{\pi}_{\mathbf{v}}(\mathbf{K})} + \sum_{k \in \mathbf{K}} \frac{\tilde{\pi}_{\mathbf{v}}(k)}{\alpha + (1 - \alpha) \tilde{\pi}_{\mathbf{v}}(\mathbf{K})} \pi_{\mathbf{k}}(\mathbf{w})$$

where $\tilde{\pi}_{v}$ is PPR on graph with outgoing edges from K removed

ln				

Bounding dimensionality

Dimensionality and algorithms 000000

Choice of $\mu_{v}(k)$

By considering first step of PPR Markov chain, can show

$$\pi_{v}(w) = \underbrace{\alpha \mathbf{1}(w = v)}_{\text{first step is jump to } v} + \underbrace{\sum_{k:v \to k} \frac{(1 - \alpha)}{|\{k : v \to k\}|} \pi_{k}(w)}_{\text{first step follows random walk}}$$

For any $K \subset V$, Jeh, Widom 2003 proves decomposition of same form:

$$\pi_{\mathbf{v}}(\mathbf{w}) = \frac{\alpha \mathbf{1}(\mathbf{w} \notin K) \tilde{\pi}_{\mathbf{v}}(\mathbf{w})}{\alpha + (1 - \alpha) \tilde{\pi}_{\mathbf{v}}(K)} + \sum_{k \in K} \frac{\tilde{\pi}_{\mathbf{v}}(k)}{\alpha + (1 - \alpha) \tilde{\pi}_{\mathbf{v}}(K)} \pi_{k}(\mathbf{w})$$

where $\tilde{\pi}_{v}$ is PPR on graph with outgoing edges from K removed

In proof (and later, in algorithm), we let $\mu_{\nu}(k) = \frac{\tilde{\pi}_{\nu}(k)}{\alpha + (1-\alpha)\tilde{\pi}_{\nu}(K)}$

00	00000	

Bounding dimensionality

Dimensionality and algorithms 000000

Assumptions (1/2)

Recall: DCM randomly pairs edges from degree sequence $\{d_{out}(v), d_{in}(v)\}_{v \in V}$

Recall: DCM randomly pairs edges from degree sequence $\{d_{out}(v), d_{in}(v)\}_{v \in V}$

We assume $\{d_{out}(v), d_{in}(v)\}_{v \in V}$ satisfies two properties with high probability

Recall: DCM randomly pairs edges from degree sequence $\{d_{out}(v), d_{in}(v)\}_{v \in V}$

We assume $\{d_{out}(v), d_{in}(v)\}_{v \in V}$ satisfies two properties with high probability

Property 1: $\{d_{out}(v), d_{in}(v)\}_{v \in V}$ is sparse (e.g. O(n) total edges)

 \Rightarrow Needed for branching process approximation; possible artifact of analysis

Recall: DCM randomly pairs edges from degree sequence $\{d_{out}(v), d_{in}(v)\}_{v \in V}$

We assume $\{d_{out}(v), d_{in}(v)\}_{v \in V}$ satisfies two properties with high probability

Property 1: $\{d_{out}(v), d_{in}(v)\}_{v \in V}$ is sparse (e.g. O(n) total edges)

 \Rightarrow Needed for branching process approximation; possible artifact of analysis

Property 2: |K| = o(n) but K contains non-vanishing fraction of edges, i.e.

$$\frac{\sum_{k\in K} d_{in}(k)}{\sum_{v\in V} d_{in}(v)} \xrightarrow[n\to\infty]{} p > 0$$

 \Rightarrow We believe this assumption is fundamentally necessary

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms 000000

Assumptions (2/2)

Recall key property:

$$|K| = o(n), \quad \frac{\sum_{k \in K} d_{in}(k)}{\sum_{v \in V} d_{in}(v)} \xrightarrow[n \to \infty]{} p > 0 \tag{7}$$

Bounding dimensionality

Dimensionality and algorithms 000000

Assumptions (2/2)

Recall key property:

$$|K| = o(n), \quad \frac{\sum_{k \in K} d_{in}(k)}{\sum_{v \in V} d_{in}(v)} \xrightarrow[n \to \infty]{} p > 0 \tag{7}$$

Empirically holds if $d_{in}(v)$ follow power law, common model for e.g. Twitter

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms 000000

Geometric interpretation of theorem

Theorem says for most $v \notin K$ and some $\mu_v(k) \ge 0$,

$$\pi_{\mathbf{v}} \approx \sum_{\mathbf{k} \in \mathcal{K}} \mu_{\mathbf{v}}(\mathbf{k}) \pi_{\mathbf{k}}$$

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms 000000

Geometric interpretation of theorem

Theorem says for most $v \notin K$ and some $\mu_v(k) \ge 0$,

$$\pi_{\mathbf{v}} pprox \sum_{k \in K} \mu_{\mathbf{v}}(k) \pi_k$$

When |V| large, we also show $\sum_{k \in K} \mu_v(k) \approx 1$, so for most $v \notin K$,

 $\pi_v \approx \text{convex combination of } \{\pi_k\}_{k \in K}$

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms 000000

Geometric interpretation of theorem

Theorem says for most $v \notin K$ and some $\mu_v(k) \ge 0$,

$$\pi_{\mathbf{v}} pprox \sum_{k \in K} \mu_{\mathbf{v}}(k) \pi_k$$

When |V| large, we also show $\sum_{k\in K} \mu_v(k) pprox 1$, so for most $v \notin K$,

 $\pi_{v} \approx \text{convex combination of } \{\pi_{k}\}_{k \in K}$

 \Rightarrow Most of $\{\pi_v\}_{v\notin K}$ lie near convex hull of $\{\pi_k\}_{k\in K}$, which shrinks relative to |V|-dimensional simplex (a few $\{\pi_v\}_{v\notin K}$ can be far away)

Bounding dimensionality

Dimensionality and algorithms 000000

Empirical results (1/2)

Compute bound on $\|\pi_v - \sum_{k \in K} \mu_v(k) \pi_k\|_1$, averaged across $v \notin K$

Set K = nodes of highest in-degree, $\alpha_n = 1/\log n$

For DCM with power law in-degrees, average error decays as n grows (despite $|\mathcal{K}|/n$ decaying too)

For variety of real graphs, average error decays as κ grows when $K = n^{\kappa}$ nodes of highest in-degree

Bounding dimensionality

Dimensionality and algorithms 000000

Empirical results (2/2)

Bound $\Delta(K, \epsilon)$ for two real graphs (social network, partial web crawl)

K and α_n chosen as in previous slide

For soc-Pokec, $\Delta(K, \epsilon) = 0.09n$ when $\epsilon = \frac{1-\alpha_n}{3}$; similar for web-Google²

Thus, while theorem doesn't apply, $\Delta(K,\epsilon)$ small relative to *n* for reasonable ϵ

 $^2 {\rm Can}$ show worst-case error is $1-\alpha_{\it n},$ so this ϵ reduces worst-case by factor of 3

Bounding dimensionality

Dimensionality and algorithms ••••••

Baseline algorithm (Jeh, Widom 2003)

Jeh, Widom 2003 proposes (but doesn't analyze!) the following:

- I Choose "hub" nodes, estimate PPR vectors directly
- 2 For other nodes, estimate PPR as linear combo of hub PPR³

³Using decomposition shown previously

Bounding dimensionality

Dimensionality and algorithms ••••••

Baseline algorithm (Jeh, Widom 2003)

Jeh, Widom 2003 proposes (but doesn't analyze!) the following:

- I Choose "hub" nodes, estimate PPR vectors directly
- 2 For other nodes, estimate PPR as linear combo of hub PPR³

Our result \Rightarrow linear combo good estimate for all but o(n) non-hubs if o(n) hubs

³Using decomposition shown previously

Baseline algorithm (Jeh, Widom 2003)

Jeh, Widom 2003 proposes (but doesn't analyze!) the following:

- Choose "hub" nodes, estimate PPR vectors directly
- **2** For other nodes, estimate PPR as linear combo of hub PPR³

Our result \Rightarrow linear combo good estimate for all but o(n) non-hubs if o(n) hubs Thus, we improve Jeh, Widom 2003, but questions remain:

- Can we guarantee accuracy *all* nodes?
- Can we estimate hub PPR, and non-hub linear combo weights, with provably good performance? (good heuristics such as Global PageRank in Jeh, Widom 2003)

³Using decomposition shown previously

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms 00000

Improving accuracy of baseline scheme

Baseline scheme: for $v \notin K$, π_v estimated as

$$\hat{\pi}_{\mathsf{v}} = \sum_{\mathsf{k}\in\mathsf{K}} \mu_{\mathsf{v}}(\mathsf{k})\pi_{\mathsf{k}}$$

where $\mu_v(k)$ from linear decomposition shown previously

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms 00000

Improving accuracy of baseline scheme

Baseline scheme: for $v \notin K$, π_v estimated as

$$\hat{\pi}_{\mathsf{v}} = \sum_{\mathsf{k}\in\mathsf{K}} \mu_{\mathsf{v}}(\mathsf{k})\pi_{\mathsf{k}}$$

where $\mu_{v}(k)$ from linear decomposition shown previously

We show (for a certain function f)

$$\|\pi_{v} - \hat{\pi}_{v}\|_{1} < \epsilon \Leftrightarrow \sum_{k \in K} \mu_{v}(k) > f(\epsilon)$$

Intuitively, small error $\Leftrightarrow v$ is "close" to K in graph

Bounding dimensionality

Dimensionality and algorithms 00000

Improving accuracy of baseline scheme

Baseline scheme: for $v \notin K$, π_v estimated as

$$\hat{\pi}_{\mathsf{v}} = \sum_{\mathsf{k}\in\mathsf{K}} \mu_{\mathsf{v}}(\mathsf{k})\pi_{\mathsf{k}}$$

where $\mu_{v}(k)$ from linear decomposition shown previously

We show (for a certain function f)

$$\|\pi_{v} - \hat{\pi}_{v}\|_{1} < \epsilon \Leftrightarrow \sum_{k \in K} \mu_{v}(k) > f(\epsilon)$$

Intuitively, small error $\Leftrightarrow v$ is "close" to K in graph

Key point: $\sum_{k \in K} \mu_v(k)$ is (approximately) known at runtime!

$$\Rightarrow$$
 If $\sum_{k \in K} \mu_{\nu}(k) < f(\epsilon)$, estimate π_{ν} directly

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms

Estimating PPR and linear combo weights (1/2)

Recall: π_v = stationary distribution of chain with transition matrix

$$P_{v} = \underbrace{(1 - \alpha)P}_{\text{Random walk}} + \underbrace{\alpha 1_{n} e_{v}^{\mathsf{T}}}_{\text{Jump to } v}$$

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms

Estimating PPR and linear combo weights (1/2)

Recall: π_v = stationary distribution of chain with transition matrix

$$P_{v} = \underbrace{(1 - \alpha)P}_{\text{Random walk}} + \underbrace{\alpha 1_{n} e_{v}^{\mathsf{T}}}_{\text{Jump to }v}$$

Solving $\pi_v = \pi_v P_v$ yields

$$\pi_{v} = \alpha e_{v}^{\mathsf{T}} (I_{n} - (1 - \alpha)P)^{-1}$$

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms

Estimating PPR and linear combo weights (1/2)

Recall: π_v = stationary distribution of chain with transition matrix

$$P_{v} = \underbrace{(1 - \alpha)P}_{\text{Random walk}} + \underbrace{\alpha 1_{n} e_{v}^{\mathsf{T}}}_{\text{Jump to }v}$$

Solving $\pi_v = \pi_v P_v$ yields

$$\pi_{v} = \alpha e_{v}^{\mathsf{T}} (I_{n} - (1 - \alpha)P)^{-1}$$

Since π_v is *v*-th row of Π ,

$$\Pi = \alpha (I_n - (1 - \alpha)P)^{-1} = \alpha \sum_{i=0}^{\infty} (1 - \alpha)^i P^i$$

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms

Estimating PPR and linear combo weights (1/2)

Recall: π_v = stationary distribution of chain with transition matrix

$$P_{v} = \underbrace{(1 - \alpha)P}_{\text{Random walk}} + \underbrace{\alpha 1_{n} e_{v}^{\mathsf{T}}}_{\text{Jump to }v}$$

Solving $\pi_v = \pi_v P_v$ yields

$$\pi_{v} = \alpha e_{v}^{\mathsf{T}} (I_{n} - (1 - \alpha)P)^{-1}$$

Since π_v is *v*-th row of Π ,

$$\Pi = \alpha (I_n - (1 - \alpha)P)^{-1} = \alpha \sum_{i=0}^{\infty} (1 - \alpha)^i P^i$$

Suggests power iteration: choose i^* large and compute

$$lpha \sum_{i=0}^{i^*} (1-lpha)^i \mathcal{P}^i pprox \mathsf{\Pi}$$

Estimating PPR and linear combo weights (2/2)

Power iteration traverses all paths of length $\leq i^*$

Directed Laplacian variants:

• Set $i^* = \Theta(\log(n))$

Modify power method so that dense matrices do not arise

Estimating PPR and linear combo weights (2/2)

Power iteration traverses all paths of length $\leq i^*$

Directed Laplacian variants:

• Set $i^* = \Theta(\log(n))$

Modify power method so that dense matrices do not arise

Dynamic programming (DP) variants traverse only "important" paths

Estimating PPR and linear combo weights (2/2)

Power iteration traverses all paths of length $\leq i^*$

Directed Laplacian variants:

Set $i^* = \Theta(\log(n))$

Modify power method so that dense matrices do not arise

Dynamic programming (DP) variants traverse only "important" paths

Forward DP (Andersen, Chung, Lang 2006):

- Given v, traverses "important" paths out of v; estimates v-th row of Π
- Can use to estimate PPR vectors directly

Estimating PPR and linear combo weights (2/2)

Power iteration traverses all paths of length $\leq i^*$

Directed Laplacian variants:

Set $i^* = \Theta(\log(n))$

Modify power method so that dense matrices do not arise

Dynamic programming (DP) variants traverse only "important" paths

Forward DP (Andersen, Chung, Lang 2006):

- Given v, traverses "important" paths out of v; estimates v-th row of Π
- Can use to estimate PPR vectors directly

Backward DP (Andersen et al. 2008):

- Given v, traverses "important" paths into v; estimates v-th column of Π
- Can use (modified version) to estimate linear combo weights
Putting it all together

Our scheme estimates $\pi_v \ldots$

- ... by forward DP, if $v \in K$
- ... by forward DP, if $v \notin K$ and linear combo determined to be inaccurate
- ... as linear combo, if $v \notin K$ and linear combo determined to be accurate

Forward DP provably accurate; thus, all estimates are accurate

Putting it all together

Our scheme estimates $\pi_v \ldots$

- ... by forward DP, if $v \in K$
- ... by forward DP, if $v \notin K$ and linear combo determined to be inaccurate
- ... as linear combo, if $v \notin K$ and linear combo determined to be accurate

Forward DP provably accurate; thus, all estimates are accurate

Complexity dominated by number runs of forward DP

• By design, forward DP is run $\Delta(K, \epsilon)$ times

Each run has $O(n \log n)$ complexity (by Andersen, Chung, Lang 2006)⁴

Overall complexity is $O(\Delta(K, \epsilon)n \log n) = o(n^2)$ (when theorem applies)

⁴Assuming $|E| = O(n), \alpha = \Theta(1/\log n)$

Quantifying dimensionality 0000000 Bounding dimensionality

Dimensionality and algorithms

Comparison to existing algorithms

Best existing approach: run forward or backward DP $\forall v$

- In accuracy guarantee, $O(n^2 \log n)$ complexity
- Ignores structure/dependencies across rows of Π!
- Our scheme accounts for structure, thus reduces complexity

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms 000000

Comparison to existing algorithms

Best existing approach: run forward or backward DP $\forall v$

- In accuracy guarantee, $O(n^2 \log n)$ complexity
- Ignores structure/dependencies across rows of Π!
- Our scheme accounts for structure, thus reduces complexity

Another noteworthy work: Lofgren, Banerjee, Goel 2016

- Estimates single entry of Π via DP + MCMC, complexity $O(\sqrt{n} \log n)$
- Hence, $O(n^{2.5} \log n)$ to estimate Π ; ignores dependencies across entries
- Again, accounting for structure allows us to reduce complexity

Quantifying dimensionality

Bounding dimensionality

Dimensionality and algorithms

Comparison to existing algorithms

Best existing approach: run forward or backward DP $\forall v$

- In accuracy guarantee, $O(n^2 \log n)$ complexity
- Ignores structure/dependencies across rows of Π!
- Our scheme accounts for structure, thus reduces complexity

Another noteworthy work: Lofgren, Banerjee, Goel 2016

- Estimates single entry of Π via DP + MCMC, complexity $O(\sqrt{n} \log n)$
- Hence, $O(n^{2.5} \log n)$ to estimate Π ; ignores dependencies across entries
- Again, accounting for structure allows us to reduce complexity

Connections to other problems:

 Non-negative matrix factorization: Unknown n × n Π split into non-negative factors n × k̃ and k̃ × n factors in o(n²) time Related work Sen et al. 2016 is in a different norm. Thanks for your attention

Paper appeared in ACM SIGMETRICS 2019

Questions?

References I

- Andersen, Reid, Fan Chung, Kevin Lang (2006). "Local graph partitioning using PageRank vectors". In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06). IEEE, pp. 475–486.
- Andersen, Reid et al. (2008). "Local computation of PageRank contributions". In: Internet Mathematics 5.1-2, pp. 23–45.
- Athreya, Krishna B, Örjan Stenflo (2003). "Perfect sampling for Doeblin chains". In: Sankhyā: The Indian Journal of Statistics, pp. 763–777.
- Avrachenkov, Konstantin et al. (2007). "Monte Carlo methods in PageRank computation: When one iteration is sufficient". In: SIAM Journal on Numerical Analysis 45.2, pp. 890–904.
- Baluja, Shumeet et al. (2008). "Video suggestion and discovery for YouTube: Taking random walks through the view graph". In: Proceedings of the 17th international conference on World Wide Web. ACM, pp. 895–904.
- Bordenave, Charles, Pietro Caputo, Justin Salez (2018). "Random walk on sparse random digraphs". In: *Probability Theory and Related Fields* 170.3-4, pp. 933–960.
- Chen, Ningyuan, Nelly Litvak, Mariana Olvera-Cravioto (2017). "Generalized PageRank on directed configuration networks". In: *Random Structures & Algorithms* 51.2, pp. 237–274.
- Chen, Ningyuan, Mariana Olvera-Cravioto (2013). "Directed random graphs with given degree distributions". In: *Stochastic Systems* 3.1, pp. 147–186.
- Freschi, Valerio (2007). "Protein function prediction from interaction networks using a random walk ranking algorithm". In: Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE International Conference on. IEEE, pp. 42–48.

References II

- Gupta, Pankaj et al. (2013). "WTF: The who to follow service at twitter". In: Proceedings of the 22nd international conference on World Wide Web. ACM, pp. 505–514.
- Jeh, Glen, Jennifer Widom (2003). "Scaling personalized web search". In: Proceedings of the 12th international conference on World Wide Web. ACM, pp. 271–279.
- Kloumann, Isabel M, Johan Ugander, Jon Kleinberg (2017). "Block models and personalized PageRank". In: *Proceedings of the National Academy of Sciences* 114.1, pp. 33–38.
- Koutra, Danai, Joshua T Vogelstein, Christos Faloutsos (2013). "Deltacon: A principled massive-graph similarity function". In: Proceedings of the 2013 SIAM International Conference on Data Mining. SIAM, pp. 162–170.
- Lofgren, Peter, Siddhartha Banerjee, Ashish Goel (2016). "Personalized PageRank estimation and search: A bidirectional approach". In: *Proceedings of the Ninth ACM International Conference on Web Search and Data Mining*. ACM, pp. 163–172.

International Conference on Web Search and Data Mining. ACM, pp. 105–172.

- Morrison, Julie L et al. (2005). "GeneRank: Using search engine technology for the analysis of microarray experiments". In: *BMC bioinformatics* 6.1, p. 233.
- Page, Lawrence et al. (1999). The PageRank citation ranking: Bringing order to the web. Tech. rep. Stanford InfoLab.
- Sarma, Atish Das et al. (2015). "Fast distributed pagerank computation". In: *Theoretical Computer Science* 561, pp. 113–121.
- Sen, Rajat et al. (2016). "Contextual bandits with latent confounders: An nmf approach". In: arXiv preprint arXiv:1606.00119.