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Motivation

Graphs arise in many domains, and are used to understand processes, behaviors
and vulnerabilities

Social networks Internet Power grid

Jon Kleinberg (Allerton 2014 plenary): “In the battle of ideas for
metaphors for explaining these phenomena, graphs are doing pretty well
for themselves.”

Questions of interest in this talk:

Which nodes are most important/influential, globally and locally?

Which nodes are similar/relevant to a given node?

One metric used to answer these questions: Personalized PageRank (PPR)



Introduction Quantifying dimensionality Bounding dimensionality Dimensionality and algorithms

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors
and vulnerabilities

Social networks Internet Power grid

Jon Kleinberg (Allerton 2014 plenary): “In the battle of ideas for
metaphors for explaining these phenomena, graphs are doing pretty well
for themselves.”

Questions of interest in this talk:

Which nodes are most important/influential, globally and locally?

Which nodes are similar/relevant to a given node?

One metric used to answer these questions: Personalized PageRank (PPR)



Introduction Quantifying dimensionality Bounding dimensionality Dimensionality and algorithms

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors
and vulnerabilities

Social networks Internet Power grid

Jon Kleinberg (Allerton 2014 plenary): “In the battle of ideas for
metaphors for explaining these phenomena, graphs are doing pretty well
for themselves.”

Questions of interest in this talk:

Which nodes are most important/influential, globally and locally?

Which nodes are similar/relevant to a given node?

One metric used to answer these questions: Personalized PageRank (PPR)



Introduction Quantifying dimensionality Bounding dimensionality Dimensionality and algorithms

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors
and vulnerabilities

Social networks Internet Power grid

Jon Kleinberg (Allerton 2014 plenary): “In the battle of ideas for
metaphors for explaining these phenomena, graphs are doing pretty well
for themselves.”

Questions of interest in this talk:

Which nodes are most important/influential, globally and locally?

Which nodes are similar/relevant to a given node?

One metric used to answer these questions: Personalized PageRank (PPR)



Introduction Quantifying dimensionality Bounding dimensionality Dimensionality and algorithms

Motivation

Graphs arise in many domains, and are used to understand processes, behaviors
and vulnerabilities

Social networks Internet Power grid

Jon Kleinberg (Allerton 2014 plenary): “In the battle of ideas for
metaphors for explaining these phenomena, graphs are doing pretty well
for themselves.”

Questions of interest in this talk:

Which nodes are most important/influential, globally and locally?

Which nodes are similar/relevant to a given node?

One metric used to answer these questions: Personalized PageRank (PPR)



Introduction Quantifying dimensionality Bounding dimensionality Dimensionality and algorithms

PPR definition

Given directed graph G = (V ,E), let v ∈ V and α ∈ (0, 1)

Define Markov chain {X v
t }t∈N as follows: given X v

t ,

W.p. (1− α), sample X v
t+1 from out-neighbors of X v

t (random walk)

W.p. α, set X v
t+1 = v (jump to v)

Stationary distribution πv = {πv (w)}w∈V called PPR vector

Matrix Π = {πv}v∈V called PPR matrix
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PPR interpretation

πv (w) large when w frequently visited on short walks from v

⇒ Interpret πv (w) as measure of w ’s importance/relevance to v

(Global) PageRank and PPR

Proposed to rank websites (Page et al. 1999); many uses since

Recommendation (Baluja et al. 2008; Gupta et al. 2013)

Bioinformatics (Morrison et al. 2005; Freschi 2007)

Community detection (Andersen, Chung, Lang 2006,
Kloumann, Ugander, Kleinberg 2017)

Graph similarity (Koutra, Vogelstein, Faloutsos 2013)

. . .
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Definitions

Directed graph G = (V ,E), V = {1, 2, . . . , n}, m = |E |

Adjacency A, diagonal out-degree D, P = D−1A (row stochastic)

PPR: Perron-Frobenius eigenvector πσ of non-negative matrix

Pσ = (1− α)P + α1nσ
T (1)

where α ∈ (0, 1), σ ∈ Rn
+ s.t.

∑
v∈V σ(v) = 1 (distribution on V )

When σ = es (1 in s-th position, 0 elsewhere), denote as πs

(Global) PageRank: σ = 1
n

1n
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Computation of PPR

Linear algebraic method
Non-negative matrix, so Perron-Frobenius theorem
Power method variants, O(n2) for each source
Directed Laplacian variants, almost linear time; Miller, Spielman, Teng,
Peng.

Probabilistic method
P is the transition kernel of simple random walk on G
Use Monte Carlo (random walks) to estimate PPR
O(n log(n)) complexity for (Global) PageRank: Avrachenkov et al. 2007,
Sarma et al. 2015

Variational method
View eigenvector computation as a Bellman equation
Use value iteration: Andersen, Chung, Lang 2006, Andersen et al. 2008

Hybrid schemes
Monte Carlo + Variational method
For a single entry of Π - Lofgren, Banerjee, Goel 2016
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Key properties

Pσ is a Doeblin chain: Athreya, Stenflo 2003

πs(t) = P[random walk from s of length ∼ geom(α) ends at t] (2)

⇒ Can sample from πs using random walks

To estimate πσ, suffices to estimate πs , because

πσ =
∑
s∈V

σ(s)πs (3)

Renewal reward interpretation: πs(t) importance of t for s, as

πs(t) ∝ E [number of visits to t on geom(α)-length walk from s] (4)
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PPR dimensionality question

Using Perron-Frobenius theorem, can show rank(Π) = |V | =: n

However, PPR exhibits transitive structure

πv1 (v2), πv2 (v3) large ⇒ πv1 (v3) large (“friend of my friend is my friend”)

Suggests Π has small “effective dimension”

Also, for many real-world graphs G = (V ,E), |E | = O(n)

Suggests G is O(n)-dimensional, but Π (derived from G) is n2-dimensional

Is this gap actually present?

Outline of talk:

1 How to quantify effective dimension of Π?

2 Can we bound this measure of dimensionality?

3 If bound “small”, can we leverage it algorithmically?
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Quantifying PPR dimensionality

Natural measure of effective dimension of Π:

∆(ε) = min
Π̂

rank(Π̂) s.t. ‖Π− Π̂‖ < ε (5)

Intuitively, Π low dimensional if close to low-rank matrix

Can also view (5) as dual of low-rank approximation:

inf
Π̂
‖Π− Π̂‖ s.t. rank(Π̂) ≤ k

We take ‖ · ‖ = ‖ · ‖∞ in (5), where for matrix A with rows a1, . . . , an,

‖A‖∞ = max
i∈{1,...,n}

‖ai‖1

(Natural choice, since ‖ · ‖TV = ‖ · ‖1/2 and each row of Π is a distribution)
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Modified dimensionality measure

For analytical/algorithmic reasons, we let K ⊂ V and upper bound ∆(ε) as

∆(K , ε) = |K |+

∣∣∣∣∣
{
v /∈ K : min

µv (k)

∥∥∥∥∥πv −
∑
k∈K

µv (k)πk

∥∥∥∥∥
1

> ε

}∣∣∣∣∣
D(k, ε) = K ∪

{
v /∈ K : min

µv (k)

∥∥∥∥∥πv −
∑
k∈K

µv (k)πk

∥∥∥∥∥
1

> ε

} (6)

Think of K as hub nodes (located “centrally” in graph)

Will argue that for most non-hubs, PPR close to linear combo of hub PPR

Second term in (6) accounts for other non-hubs (typically “far” from hubs)
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Brief discussion

Modified dimensionality measure

Collecting πv for v ∈ D(K , ε) and weights µv for v ∈ V gives a
factorization of Π as H,W
What are the dimensions? Can this be generated fast?

Would like K to be easily identified too
Can we take nodes that will be visited “first” by random walks?
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Graph model

∆(K , ε) highly dependent on local graph structure – hard to bound in general

We analyze directed configuration model (DCM) due to “nice” local structure1

DCM construction:

1 Realize degree sequence {dout(v), din(v)}v∈V
2 Attach dout(v) (din(v), resp.) outgoing (incoming, resp.) half-edges to v

3 Randomly pair half-edges to form edges via breadth-first-search

1“Nice” = well-approximated by a certain branching process, e.g. Chen, Olvera-Cravioto 2013;
Chen, Litvak, Olvera-Cravioto 2017
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Jump probability and dimensionality

Choice of α = P(jump to v) impacts dimensionality:

α ≈ 0⇒ πv ≈ random walk stationary distribution ⇒ ∆(K , ε) ≈ 1

α ≈ 1⇒ πv ≈ point mass on v ⇒ ∆(K , ε) ≈ n

How to make this precise?

Namely, for a sequence {Gn}n∈N of DCMs, how should α = αn scale with n?
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Jump probability and mixing times

Suppose αn log n→ 0, e.g. αn = 1/(log n)2

Since αn = P(jump to v), E[random walk length] = Θ((log n)2)

Bordenave, Caputo, Salez 2018: random walk on DCM mixes in Θ(log n) steps

Mixing occurs before jump to v ! Allows us to show ∆(K , ε) = 1 with high prob.

Hence, we set αn = Θ(1/ log n) (just outside the trivial regime)
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Brief discussion

Random walk and PPR properties

1 If αn = constant, then fixed PPR set around any node is constant-sized.

2 If αn = Θ(1/ log n), then fixed PPR set around any node increases as nγ .

3 Scaling also related to the Cheeger number/isoperimetric number of graph
family.

4 Recent results of Caputo and Quattroppani also suggest that dimension
will be degenerate for any other scaling.

5 Bordenave, Caputo, Salez 2018: Random walk stationary distribution
unknown but close in a strong-sense to normalized in-degree distribution.

6 Using high in-degree nodes as hubs will be good.

7 Other choices: high (Global) PageRank but needs a computation.
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Main result

Main result concerns sequence of DCMs {Gn}n∈N, where Gn has n nodes

From Gn, define ∆n(Kn, ε) for specific Kn (random variable, as Gn is random)

Our main result says ∆n(Kn, ε) = o(n) with high probability as n→∞:

Theorem

Assume degree sequence satisfies certain assumptions (details to come), and
assume αn = Θ(1/ log n). Then for any ε > 0, some cε ∈ (0, 1), and any
C > 0, all independent of n,

lim
n→∞

P (∆n(Kn, ε) > Cncε) = 0.
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Proof of main result

Main result follows almost immediately from key lemma:

Lemma

Under assumptions of theorem, we have for s ∼ V uniformly and some c̃ε > 0,

P

min
µs (k)

∥∥∥∥∥πs −
∑
k∈K

µs(k)πk

∥∥∥∥∥
1︸ ︷︷ ︸

?

> ε

 = O
(
n−c̃ε

)
.

Outline for proof of lemma:

1 Show ? depends only on neighborhood of s for certain µs(k)

2 Approximate neighborhood construction with branching process (using
Chen, Litvak, Olvera-Cravioto 2017) to study ? on tree

3 Recursive nature of branching process → ? on tree is martingale-like →
analyze similar to method of bounded differences
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Choice of µv (k)

By considering first step of PPR Markov chain, can show

πv (w) = α1(w = v)︸ ︷︷ ︸
first step is jump to v

+
∑

k:v→k

(1− α)

|{k : v → k}|πk(w)︸ ︷︷ ︸
first step follows random walk

For any K ⊂ V , Jeh, Widom 2003 proves decomposition of same form:

πv (w) =
α1(w /∈ K)π̃v (w)

α + (1− α)π̃v (K)
+
∑
k∈K

π̃v (k)

α + (1− α)π̃v (K)
πk(w)

where π̃v is PPR on graph with outgoing edges from K removed

In proof (and later, in algorithm), we let µv (k) = π̃v (k)
α+(1−α)π̃v (K)
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Assumptions (1/2)

Recall: DCM randomly pairs edges from degree sequence {dout(v), din(v)}v∈V

We assume {dout(v), din(v)}v∈V satisfies two properties with high probability

Property 1: {dout(v), din(v)}v∈V is sparse (e.g. O(n) total edges)

⇒ Needed for branching process approximation; possible artifact of analysis

Property 2: |K | = o(n) but K contains non-vanishing fraction of edges, i.e.∑
k∈K din(k)∑
v∈V din(v)

−−−→
n→∞

p > 0

⇒ We believe this assumption is fundamentally necessary
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Assumptions (2/2)

Recall key property:

|K | = o(n),

∑
k∈K din(k)∑
v∈V din(v)

−−−→
n→∞

p > 0 (7)

Empirically holds if din(v) follow power law, common model for e.g. Twitter
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Geometric interpretation of theorem

Theorem says for most v /∈ K and some µv (k) ≥ 0,

πv ≈
∑
k∈K

µv (k)πk

When |V | large, we also show
∑

k∈K µv (k) ≈ 1, so for most v /∈ K ,

πv ≈ convex combination of {πk}k∈K

⇒ Most of {πv}v /∈K lie near convex hull of {πk}k∈K , which shrinks relative to
|V |-dimensional simplex (a few {πv}v /∈K can be far away)
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Empirical results (1/2)

Compute bound on ‖πv −
∑

k∈K µv (k)πk‖1, averaged across v /∈ K

Set K = nodes of highest in-degree, αn = 1/ log n

For DCM with power law in-degrees,
average error decays as n grows (de-
spite |K |/n decaying too)

For variety of real graphs, average
error decays as κ grows when K =
nκ nodes of highest in-degree
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Empirical results (2/2)

Bound ∆(K , ε) for two real graphs (social network, partial web crawl)

K and αn chosen as in previous slide

For soc-Pokec, ∆(K , ε) = 0.09n when ε = 1−αn
3

; similar for web-Google2

Thus, while theorem doesn’t apply, ∆(K , ε) small relative to n for reasonable ε

2Can show worst-case error is 1− αn, so this ε reduces worst-case by factor of 3
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Baseline algorithm (Jeh, Widom 2003)

Jeh, Widom 2003 proposes (but doesn’t analyze!) the following:

1 Choose “hub” nodes, estimate PPR vectors directly

2 For other nodes, estimate PPR as linear combo of hub PPR3

Our result ⇒ linear combo good estimate for all but o(n) non-hubs if o(n) hubs

Thus, we improve Jeh, Widom 2003, but questions remain:

Can we guarantee accuracy all nodes?

Can we estimate hub PPR, and non-hub linear combo weights, with
provably good performance? (good heuristics such as Global PageRank
in Jeh, Widom 2003)

3Using decomposition shown previously
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Improving accuracy of baseline scheme

Baseline scheme: for v /∈ K , πv estimated as

π̂v =
∑
k∈K

µv (k)πk

where µv (k) from linear decomposition shown previously

We show (for a certain function f )

‖πv − π̂v‖1 < ε⇔
∑
k∈K

µv (k) > f (ε)

Intuitively, small error ⇔ v is “close” to K in graph

Key point:
∑

k∈K µv (k) is (approximately) known at runtime!

⇒ If
∑

k∈K µv (k) < f (ε), estimate πv directly
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Estimating PPR and linear combo weights (1/2)

Recall: πv = stationary distribution of chain with transition matrix

Pv = (1− α)P︸ ︷︷ ︸
Random walk

+ α1ne
T
v︸ ︷︷ ︸

Jump to v

Solving πv = πvPv yields

πv = αeT
v (In − (1− α)P)−1

Since πv is v -th row of Π,

Π = α(In − (1− α)P)−1 = α

∞∑
i=0

(1− α)iP i

Suggests power iteration: choose i∗ large and compute

α

i∗∑
i=0

(1− α)iP i ≈ Π
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Estimating PPR and linear combo weights (2/2)

Power iteration traverses all paths of length ≤ i∗

Directed Laplacian variants:

Set i∗ = Θ(log(n))

Modify power method so that dense matrices do not arise

Dynamic programming (DP) variants traverse only “important” paths

Forward DP (Andersen, Chung, Lang 2006):

Given v , traverses “important” paths out of v ; estimates v -th row of Π

Can use to estimate PPR vectors directly

Backward DP (Andersen et al. 2008):

Given v , traverses “important” paths into v ; estimates v -th column of Π

Can use (modified version) to estimate linear combo weights
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Putting it all together

Our scheme estimates πv . . .

. . . by forward DP, if v ∈ K

. . . by forward DP, if v /∈ K and linear combo determined to be inaccurate

. . . as linear combo, if v /∈ K and linear combo determined to be accurate

Forward DP provably accurate; thus, all estimates are accurate

Complexity dominated by number runs of forward DP

By design, forward DP is run ∆(K , ε) times

Each run has O(n log n) complexity (by Andersen, Chung, Lang 2006)4

Overall complexity is O(∆(K , ε)n log n) = o(n2) (when theorem applies)

4Assuming |E | = O(n), α = Θ(1/ log n)
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Comparison to existing algorithms

Best existing approach: run forward or backward DP ∀ v

l1 accuracy guarantee, O(n2 log n) complexity

Ignores structure/dependencies across rows of Π!

Our scheme accounts for structure, thus reduces complexity

Another noteworthy work: Lofgren, Banerjee, Goel 2016

Estimates single entry of Π via DP + MCMC, complexity O(
√
n log n)

Hence, O(n2.5 log n) to estimate Π; ignores dependencies across entries

Again, accounting for structure allows us to reduce complexity

Connections to other problems:

Non-negative matrix factorization: Unknown n × n Π split into
non-negative factors n × k̃ and k̃ × n factors in o(n2) time
Related work Sen et al. 2016 is in a different norm.
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Thanks!

Thanks for your attention

Paper appeared in ACM SIGMETRICS 2019

Questions?
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Sankhyā: The Indian Journal of Statistics, pp. 763–777.

Avrachenkov, Konstantin et al. (2007). “Monte Carlo methods in PageRank
computation: When one iteration is sufficient”. In: SIAM Journal on Numerical
Analysis 45.2, pp. 890–904.

Baluja, Shumeet et al. (2008). “Video suggestion and discovery for YouTube: Taking
random walks through the view graph”. In: Proceedings of the 17th international
conference on World Wide Web. ACM, pp. 895–904.

Bordenave, Charles, Pietro Caputo, Justin Salez (2018). “Random walk on sparse
random digraphs”. In: Probability Theory and Related Fields 170.3-4, pp. 933–960.

Chen, Ningyuan, Nelly Litvak, Mariana Olvera-Cravioto (2017). “Generalized
PageRank on directed configuration networks”. In: Random Structures &
Algorithms 51.2, pp. 237–274.

Chen, Ningyuan, Mariana Olvera-Cravioto (2013). “Directed random graphs with
given degree distributions”. In: Stochastic Systems 3.1, pp. 147–186.

Freschi, Valerio (2007). “Protein function prediction from interaction networks using a
random walk ranking algorithm”. In: Bioinformatics and Bioengineering, 2007. BIBE
2007. Proceedings of the 7th IEEE International Conference on. IEEE, pp. 42–48.



References II

Gupta, Pankaj et al. (2013). “WTF: The who to follow service at twitter”. In:
Proceedings of the 22nd international conference on World Wide Web. ACM,
pp. 505–514.

Jeh, Glen, Jennifer Widom (2003). “Scaling personalized web search”. In: Proceedings
of the 12th international conference on World Wide Web. ACM, pp. 271–279.

Kloumann, Isabel M, Johan Ugander, Jon Kleinberg (2017). “Block models and
personalized PageRank”. In: Proceedings of the National Academy of Sciences
114.1, pp. 33–38.

Koutra, Danai, Joshua T Vogelstein, Christos Faloutsos (2013). “Deltacon: A
principled massive-graph similarity function”. In: Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, pp. 162–170.

Lofgren, Peter, Siddhartha Banerjee, Ashish Goel (2016). “Personalized PageRank
estimation and search: A bidirectional approach”. In: Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining. ACM, pp. 163–172.

Morrison, Julie L et al. (2005). “GeneRank: Using search engine technology for the
analysis of microarray experiments”. In: BMC bioinformatics 6.1, p. 233.

Page, Lawrence et al. (1999). The PageRank citation ranking: Bringing order to the
web. Tech. rep. Stanford InfoLab.

Sarma, Atish Das et al. (2015). “Fast distributed pagerank computation”. In:
Theoretical Computer Science 561, pp. 113–121.

Sen, Rajat et al. (2016). “Contextual bandits with latent confounders: An nmf
approach”. In: arXiv preprint arXiv:1606.00119.


	Introduction
	Quantifying dimensionality
	Bounding dimensionality
	Dimensionality and algorithms
	Appendix

