Information theoretic perspectives on learning algorithms

Varun Jog

University of Wisconsin - Madison
Departments of ECE and Mathematics

Shannon Channel Hangout!
May 8, 2018
Jointly with Adrian Tovar-Lopez (Math), Ankit Pensia (CS), Po-Ling Loh (Stats)

Curve fitting

Figure: Given N points in \mathbb{R}^{2}, fit a curve

Curve fitting

Figure: Given N points in \mathbb{R}^{2}, fit a curve

- Forward problem: From dataset to curve

Finding the right "fit"

Finding the right "fit"

- Left is fit, right is overfit

Finding the right "fit"

- Left is fit, right is overfit
- Too wiggly

Finding the right "fit"

- Left is fit, right is overfit
- Too wiggly
- Not stable

Guessing points from curve

Guessing points from curve

Figure: Given curve, find N points

Guessing points from curve

Figure: Given curve, find N points

- Backward problem: From curve to dataset

Guessing points from curve

Figure: Given curve, find N points

- Backward problem: From curve to dataset
- Backward problem easier for overfitted curve!

Guessing points from curve

Figure: Given curve, find N points

- Backward problem: From curve to dataset
- Backward problem easier for overfitted curve!
- Curve contains more information about dataset

This talk

- Explore information and overfitting connection (Xu \& Raginsky, 2017)

This talk

- Explore information and overfitting connection (Xu \& Raginsky, 2017)
- Analyze generalization error in a large and general class of learning algorithms (Pensia, J., Loh, 2018)

This talk

- Explore information and overfitting connection (Xu \& Raginsky, 2017)
- Analyze generalization error in a large and general class of learning algorithms (Pensia, J., Loh, 2018)
- Measuring information via optimal transport theory (Tovar-Lopez, J., 2018)

This talk

- Explore information and overfitting connection (Xu \& Raginsky, 2017)
- Analyze generalization error in a large and general class of learning algorithms (Pensia, J., Loh, 2018)
- Measuring information via optimal transport theory (Tovar-Lopez, J., 2018)
- Speculations, open problems, etc.

Learning algorithm as a channel

- Input: Dataset S with N i.i.d. samples $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim \mu^{\otimes n}$
- Output: W

Learning algorithm as a channel

- Input: Dataset S with N i.i.d. samples $\left(X_{1}, X_{2}, \ldots, X_{n}\right) \sim \mu^{\otimes n}$
- Output: W
- Algorithm equivalent to designing $\mathbb{P}_{W \mid S}$. Very different from channel coding!

Goal of $\mathbb{P}_{W \mid S}$

- Loss function: $\ell: \mathcal{W} \times \mathcal{X} \rightarrow \mathbb{R}$

Goal of $\mathbb{P}_{W \mid S}$

- Loss function: $\ell: \mathcal{W} \times \mathcal{X} \rightarrow \mathbb{R}$
- Best choice is w^{\star}

$$
w^{\star}=\operatorname{argmin}_{w \in \mathcal{W} \mathbb{E}_{X \sim \mu}[\ell(w, X)]}
$$

Goal of $\mathbb{P}_{W \mid S}$

- Loss function: $\ell: \mathcal{W} \times \mathcal{X} \rightarrow \mathbb{R}$
- Best choice is w^{\star}

$$
w^{\star}=\operatorname{argmin}_{w \in \mathcal{W} \mathbb{E}_{X \sim \mu}[\ell(w, X)]}
$$

- Can't always get what we want...

Goal of $\mathbb{P}_{W \mid S}$

- Loss function: $\ell: \mathcal{W} \times \mathcal{X} \rightarrow \mathbb{R}$
- Best choice is w^{\star}

$$
w^{\star}=\operatorname{argmin}_{w \in \mathcal{W} \mathbb{E}_{X \sim \mu}[\ell(w, X)]}
$$

- Can't always get what we want...
- Minimize empirical loss instead

$$
\ell_{N}(w, S)=\frac{1}{N} \sum_{i=1}^{N} \ell\left(w, X_{i}\right)
$$

Generalization error

- Define expected loss $=\underset{\substack{x \sim \mu \\ \mathbb{P}_{W \mid S} \mathbb{P}_{S}}}{ } \ell(W, X)$ (test error)

Generalization error

- Define expected loss $=\underset{\mathbb{P}_{W \mid S \mathbb{P}_{S}}^{x \sim \mu}}{ } \ell(W, X)$ (test error)
- Expected empirical loss $=\mathbb{E}_{\mathbb{P}_{w S}} \ell_{N}(W, S)$ (train error)

Generalization error

- Define expected loss $=\underset{\mathbb{P}_{\mathcal{W} \mid S^{\mathbb{P}_{S}}}^{x \sim \mu}}{ } \ell(W, X)$ (test error)
- Expected empirical loss $=\mathbb{E}_{\mathbb{P}_{w S}} \ell_{N}(W, S)$ (train error)
- Loss has two parts:

Expected loss
$=($ Expected loss - Expected empirical loss $)+$ Expected empirical loss
$=($ test error - train error $)+$ train error

Generalization error

- Define expected loss $=\underset{\mathbb{P}_{W \mid S} \times \sim \mu}{ } \ell(W, X)$ (test error)
- Expected empirical loss $=\mathbb{E}_{\mathbb{P}_{w S}} \ell_{N}(W, S)$ (train error)
- Loss has two parts:

Expected loss

$=($ Expected loss - Expected empirical loss $)+$ Expected empirical loss
$=($ test error - train error $)+$ train error

- Generalization error $=$ test error - train error

$$
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)=\mathbb{E}_{\mathbb{P}_{S} \times \mathbb{P}_{W}} \ell_{N}(W, S)-\mathbb{E}_{\mathbb{P}_{w s}} \ell_{N}(W, S)
$$

Generalization error

- Define expected loss $=\underset{\mathbb{P}_{W \mid S} \times \sim \mu}{ } \ell(W, X)$ (test error)
- Expected empirical loss $=\mathbb{E}_{\mathbb{P}_{w S}} \ell_{N}(W, S)$ (train error)
- Loss has two parts:

Expected loss
$=($ Expected loss - Expected empirical loss $)+$ Expected empirical loss
$=($ test error - train error $)+$ train error

- Generalization error $=$ test error - train error

$$
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)=\mathbb{E}_{\mathbb{P}_{s} \times \mathbb{P}_{w}} \ell_{N}(W, S)-\mathbb{E}_{\mathbb{P}_{w s}} \ell_{N}(W, S)
$$

- Ideally, we want both small. Often, both are analyzed separately.

Basics of mutual information

- Mutual information $I(X ; Y)$ precisely quantifies information between $(X, Y) \sim \mathbb{P}_{X Y}$:

$$
I(X ; Y)=K L\left(\mathbb{P}_{X Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)
$$

Basics of mutual information

- Mutual information $I(X ; Y)$ precisely quantifies information between $(X, Y) \sim \mathbb{P}_{X Y}$:

$$
I(X ; Y)=K L\left(\mathbb{P}_{X Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)
$$

- Satisfies two nice properties-

Basics of mutual information

- Mutual information $I(X ; Y)$ precisely quantifies information between $(X, Y) \sim \mathbb{P}_{X Y}$:

$$
I(X ; Y)=K L\left(\mathbb{P}_{X Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)
$$

- Satisfies two nice properties-
- Data processing inequality:

Figure: If $X \rightarrow Y \rightarrow Z$ then $I(X ; Y) \geq I(X ; Z)$

Basics of mutual information

- Mutual information $I(X ; Y)$ precisely quantifies information between $(X, Y) \sim \mathbb{P}_{X Y}$:

$$
I(X ; Y)=K L\left(\mathbb{P}_{X Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)
$$

- Satisfies two nice properties-
- Data processing inequality:

Figure: If $X \rightarrow Y \rightarrow Z$ then $I(X ; Y) \geq I(X ; Z)$

- Chain rule:

$$
I\left(X_{1}, X_{2} ; Y\right)=I\left(X_{1} ; Y\right)+I\left(X_{2} ; Y \mid X_{1}\right)
$$

Bounding generalization error using I(W; S)

Theorem (Xu \& Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$
\begin{equation*}
\left|\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)\right| \leq \sqrt{\frac{2 R^{2}}{n} I(S ; W)} \tag{1}
\end{equation*}
$$

Bounding generalization error using I(W; S)

Theorem (Xu \& Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$
\begin{equation*}
\left|\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)\right| \leq \sqrt{\frac{2 R^{2}}{n} I(S ; W)} \tag{1}
\end{equation*}
$$

- Data-dependent bounds on generalization error

Bounding generalization error using I(W; S)

Theorem (Xu \& Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$
\begin{equation*}
\left|\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)\right| \leq \sqrt{\frac{2 R^{2}}{n} I(S ; W)} \tag{1}
\end{equation*}
$$

- Data-dependent bounds on generalization error
- If $I(W ; S) \leq \epsilon$, then call $\mathbb{P}_{W \mid S}$ as (ϵ, μ) stable

Bounding generalization error using I(W; S)

Theorem (Xu \& Raginsky (2017))

Assume that $\ell(w, X)$ is R-subgaussian for every $w \in \mathcal{W}$. Then the following bound holds:

$$
\begin{equation*}
\left|\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)\right| \leq \sqrt{\frac{2 R^{2}}{n} I(S ; W)} \tag{1}
\end{equation*}
$$

- Data-dependent bounds on generalization error
- If $I(W ; S) \leq \epsilon$, then call $\mathbb{P}_{W \mid S}$ as (ϵ, μ) stable
- Notion of stability different from traditional notions

Proof sketch

Proof sketch

Lemma (Key Lemma in Raginsky \& Xu (2017))

If $f(X, Y)$ is σ-subgaussian under $\mathbb{P}_{X} \times \mathbb{P}_{Y}$, then

$$
|\mathbb{E} f(X, Y)-\mathbb{E} f(\bar{X}, \bar{Y})| \leq \sqrt{2 \sigma^{2} I(X ; Y)}
$$

where $(X, Y) \sim \mathbb{P}_{X Y}$ and $(\bar{X}, \bar{Y}) \sim \mathbb{P}_{X} \times \mathbb{P}_{Y}$.

Proof sketch

Lemma (Key Lemma in Raginsky \& Xu (2017))

If $f(X, Y)$ is σ-subgaussian under $\mathbb{P}_{X} \times \mathbb{P}_{Y}$, then

$$
|\mathbb{E} f(X, Y)-\mathbb{E} f(\bar{X}, \bar{Y})| \leq \sqrt{2 \sigma^{2} I(X ; Y)}
$$

where $(X, Y) \sim \mathbb{P}_{X Y}$ and $(\bar{X}, \bar{Y}) \sim \mathbb{P}_{X} \times \mathbb{P}_{Y}$.

- Recall $I(X ; Y)=K L\left(\mathbb{P}_{X Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)$

Proof sketch

Lemma (Key Lemma in Raginsky \& Xu (2017))

If $f(X, Y)$ is σ-subgaussian under $\mathbb{P}_{X} \times \mathbb{P}_{Y}$, then

$$
|\mathbb{E} f(X, Y)-\mathbb{E} f(\bar{X}, \bar{Y})| \leq \sqrt{2 \sigma^{2} l(X ; Y)}
$$

where $(X, Y) \sim \mathbb{P}_{X Y}$ and $(\bar{X}, \bar{Y}) \sim \mathbb{P}_{X} \times \mathbb{P}_{Y}$.

- Recall $I(X ; Y)=K L\left(\mathbb{P}_{X Y} \| \mathbb{P}_{X} \times \mathbb{P}_{Y}\right)$
- Follows directly by alternate characterization of $K L(\mu \| \nu)$ as

$$
K L(\mu \| \nu)=\sup _{F}\left(\int F d \mu-\log \int e^{F} d \nu\right)
$$

How to use it: key insight

How to use it: key insight

Figure: Update W_{t} using some update rule to generate W_{t+1}

- Many learning algorithms are iterative

How to use it: key insight

Figure: Update W_{t} using some update rule to generate W_{t+1}

- Many learning algorithms are iterative
- Generate $W_{0}, W_{1}, W_{2}, \ldots, W_{T}$, and output $W=f\left(W_{0}, \ldots, W_{T}\right)$. For example, $W=W_{T}$ or $W=\frac{1}{T} \sum_{i} W_{i}$

How to use it: key insight

Figure: Update W_{t} using some update rule to generate W_{t+1}

- Many learning algorithms are iterative
- Generate $W_{0}, W_{1}, W_{2}, \ldots, W_{T}$, and output $W=f\left(W_{0}, \ldots, W_{T}\right)$. For example, $W=W_{T}$ or $W=\frac{1}{T} \sum_{i} W_{i}$
- Bound $I(W ; S)$ by controlling information at each iteration

Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_{t} \subseteq S$ and compute a direction $F\left(W_{t-1}, Z_{t}\right) \in \mathbb{R}^{d}$

Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_{t} \subseteq S$ and compute a direction $F\left(W_{t-1}, Z_{t}\right) \in \mathbb{R}^{d}$
- Move in the direction after scaling by a stepsize η_{t}

Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_{t} \subseteq S$ and compute a direction $F\left(W_{t-1}, Z_{t}\right) \in \mathbb{R}^{d}$
- Move in the direction after scaling by a stepsize η_{t}
- Perturb it by isotropic Gaussian noise $\xi_{t} \sim N\left(0, \sigma_{t}^{2} I_{d}\right)$

Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_{t} \subseteq S$ and compute a direction $F\left(W_{t-1}, Z_{t}\right) \in \mathbb{R}^{d}$
- Move in the direction after scaling by a stepsize η_{t}
- Perturb it by isotropic Gaussian noise $\xi_{t} \sim N\left(0, \sigma_{t}^{2} l_{d}\right)$
- Overall update equation:

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}, \quad \forall t \geq 1
$$

Noisy, iterative algorithms

- For $t \geq 1$, sample $Z_{t} \subseteq S$ and compute a direction $F\left(W_{t-1}, Z_{t}\right) \in \mathbb{R}^{d}$
- Move in the direction after scaling by a stepsize η_{t}
- Perturb it by isotropic Gaussian noise $\xi_{t} \sim N\left(0, \sigma_{t}^{2} I_{d}\right)$
- Overall update equation:

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}, \quad \forall t \geq 1
$$

- Run for T steps, output $W=f\left(W_{0}, \ldots, W_{T}\right)$

Main assumptions

Update equation:

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}, \quad \forall t \geq 1
$$

Main assumptions

Update equation:

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}, \quad \forall t \geq 1
$$

- Assumption 1: $\ell(w, Z)$ is R-subgaussian

Main assumptions

Update equation:

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}, \quad \forall t \geq 1
$$

- Assumption 1: $\ell(w, Z)$ is R-subgaussian
- Assumption 2: Bounded updates; i.e.

$$
\sup _{w, z}\|F(w, z)\| \leq L
$$

Main assumptions

Update equation:

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}, \quad \forall t \geq 1
$$

- Assumption 1: $\ell(w, Z)$ is R-subgaussian
- Assumption 2: Bounded updates; i.e.

$$
\sup _{w, z}\|F(w, z)\| \leq L
$$

- Assumption 3: Sampling is done without looking at W_{t} 's; i.e.,

$$
\mathbb{P}\left(Z_{t+1} \mid Z^{(t)}, W^{(t)}, S\right)=\mathbb{P}\left(Z_{t+1} \mid Z^{(t)}, S\right)
$$

Graphical model

Figure: Graphical model illustrating Markov properties among random variables in the algorithm

Main result

Main result

Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

$$
I(S ; W) \leq \sum_{t=1}^{T} \frac{d}{2} \log \left(1+\frac{\eta_{t}^{2} L^{2}}{d \sigma_{t}^{2}}\right)
$$

Main result

Theorem (Pensia, J., Loh (2018))

The mutual information satisfies the bound

$$
I(S ; W) \leq \sum_{t=1}^{T} \frac{d}{2} \log \left(1+\frac{\eta_{t}^{2} L^{2}}{d \sigma_{t}^{2}}\right)
$$

- Depends on T - longer you optimize, higher the risk of overfitting

Implications for gen $\left(\mu, \mathbb{P}_{W \mid S}\right)$

Implications for $\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)$

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

$$
\left|\operatorname{gen}\left(\mu, P_{W \mid S}\right)\right| \leq \sqrt{\frac{R^{2}}{n} \sum_{t=1}^{T} \frac{\eta_{t}^{2} L^{2}}{\sigma_{t}^{2}}}
$$

Implications for gen $\left(\mu, \mathbb{P}_{W \mid S}\right)$

Corollary (Bound on expectation)

The generalization error of our class of iterative algorithms is bounded by

$$
\left|\operatorname{gen}\left(\mu, P_{W \mid S}\right)\right| \leq \sqrt{\frac{R^{2}}{n} \sum_{t=1}^{T} \frac{\eta_{t}^{2} L^{2}}{\sigma_{t}^{2}}} .
$$

Corollary (High-probability bound)

Let $\epsilon=\sum_{t=1}^{T} \frac{d}{2} \log \left(1+\frac{\eta_{t}^{2} L^{2}}{d \sigma_{t}^{2}}\right)$. For any $\alpha>0$ and $0<\beta \leq 1$, if $n>\frac{8 R^{2}}{\alpha^{2}}\left(\frac{\epsilon}{\beta}+\log \left(\frac{2}{\beta}\right)\right)$, we have

$$
\begin{equation*}
\mathbb{P}_{S, W}\left(\left|L_{\mu}(W)-L_{S}(W)\right|>\alpha\right) \leq \beta \tag{2}
\end{equation*}
$$

where the probability is with respect to $S \sim \mu^{\otimes n}$ and W.

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

- Common experimental practices for SGLD [Welling \& Teh, 2011]:

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

- Common experimental practices for SGLD [Welling \& Teh, 2011]:
(1) the noise variance $\sigma_{t}^{2}=\eta_{t}$,

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

- Common experimental practices for SGLD [Welling \& Teh, 2011]:
(1) the noise variance $\sigma_{t}^{2}=\eta_{t}$,
(2) the algorithm is run for K epochs; i.e., $T=n K$,

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

- Common experimental practices for SGLD [Welling \& Teh, 2011]:
(1) the noise variance $\sigma_{t}^{2}=\eta_{t}$,
(2) the algorithm is run for K epochs; i.e., $T=n K$,
(3) for a constant $c>0$, the stepsizes are $\eta_{t}=\frac{c}{t}$.

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

- Common experimental practices for SGLD [Welling \& Teh, 2011]:
(1) the noise variance $\sigma_{t}^{2}=\eta_{t}$,
(2) the algorithm is run for K epochs; i.e., $T=n K$,
(3) for a constant $c>0$, the stepsizes are $\eta_{t}=\frac{c}{t}$.
- Expectation bounds: Using $\sum_{t=1}^{T} \frac{1}{t} \leq \log (T)+1$

$$
\left|\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)\right| \leq \frac{R L}{\sqrt{n}} \sqrt{\sum_{t=1}^{T} \eta_{t}} \leq \frac{R L}{\sqrt{n}} \sqrt{c \log T+c}
$$

Applications: SGLD

- SGLD iterates are

$$
W_{t+1}=W_{t}-\eta_{t} \nabla \ell\left(W_{t}, Z_{t}\right)+\sigma_{t} Z_{t}
$$

- Common experimental practices for SGLD [Welling \& Teh, 2011]:
(1) the noise variance $\sigma_{t}^{2}=\eta_{t}$,
(2) the algorithm is run for K epochs; i.e., $T=n K$,
(3) for a constant $c>0$, the stepsizes are $\eta_{t}=\frac{c}{t}$.
- Expectation bounds: Using $\sum_{t=1}^{T} \frac{1}{t} \leq \log (T)+1$

$$
\left|\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)\right| \leq \frac{R L}{\sqrt{n}} \sqrt{\sum_{t=1}^{T} \eta_{t}} \leq \frac{R L}{\sqrt{n}} \sqrt{c \log T+c}
$$

- Best known bounds by Mou et al. (2017) are $O(1 / n)$ —but our bounds more general

Application: Perturbed SGD

- Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)

Application: Perturbed SGD

- Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)
- Similar to SGLD, but different noise distribution:

$$
W_{t}=W_{t-1}-\eta\left(\nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}\right)
$$

where $\xi_{t} \sim \operatorname{Unif}\left(\mathcal{B}_{d}\right)$ (unit ball in \mathbb{R}^{d})

Application: Perturbed SGD

- Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)
- Similar to SGLD, but different noise distribution:

$$
W_{t}=W_{t-1}-\eta\left(\nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}\right)
$$

where $\xi_{t} \sim \operatorname{Unif}\left(\mathcal{B}_{d}\right)$ (unit ball in \mathbb{R}^{d})

- Our bound:

$$
I(W ; S) \leq T d \log (1+L)
$$

Application: Perturbed SGD

- Noisy versions of SGD proposed to escape saddle points Ge et al. (2015), Jin et al. (2017)
- Similar to SGLD, but different noise distribution:

$$
W_{t}=W_{t-1}-\eta\left(\nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}\right)
$$

where $\xi_{t} \sim \operatorname{Unif}\left(\mathcal{B}_{d}\right)$ (unit ball in \mathbb{R}^{d})

- Our bound:

$$
I(W ; S) \leq T d \log (1+L)
$$

- Bounds in expectation and high probability follow directly from this bound

Application: Noisy momentum

- A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

$$
\begin{aligned}
V_{t} & =\gamma_{t} V_{t-1}+\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime} \\
W_{t} & =W_{t-1}-\gamma_{t} V_{t-1}-\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime \prime}
\end{aligned}
$$

Application: Noisy momentum

- A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

$$
\begin{aligned}
V_{t} & =\gamma_{t} V_{t-1}+\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime} \\
W_{t} & =W_{t-1}-\gamma_{t} V_{t-1}-\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime \prime}
\end{aligned}
$$

- Difference is addition of noise to the "velocity" term V_{t}

Application: Noisy momentum

- A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

$$
\begin{aligned}
V_{t} & =\gamma_{t} V_{t-1}+\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime} \\
W_{t} & =W_{t-1}-\gamma_{t} V_{t-1}-\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime \prime}
\end{aligned}
$$

- Difference is addition of noise to the "velocity" term V_{t}
- Treat $\left(V_{t}, W_{t}\right)$ as single parameter, to get

$$
I(S ; W) \leq \sum_{t=1}^{T} \frac{2 d}{2} \log \left(1+\frac{\eta_{t}^{2} 2 L^{2}}{2 d \sigma_{t}^{2}}\right)
$$

Application: Noisy momentum

- A modified version of stochastic gradient Hamiltonian Monte-Carlo, Chen et al. (2014):

$$
\begin{aligned}
V_{t} & =\gamma_{t} V_{t-1}+\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime} \\
W_{t} & =W_{t-1}-\gamma_{t} V_{t-1}-\eta_{t} \nabla_{w} \ell\left(W_{t-1}, Z_{t}\right)+\xi_{t}^{\prime \prime}
\end{aligned}
$$

- Difference is addition of noise to the "velocity" term V_{t}
- Treat $\left(V_{t}, W_{t}\right)$ as single parameter, to get

$$
I(S ; W) \leq \sum_{t=1}^{T} \frac{2 d}{2} \log \left(1+\frac{\eta_{t}^{2} 2 L^{2}}{2 d \sigma_{t}^{2}}\right)
$$

- Same bound also holds for "noisy" Nesterov's accelerated gradient descent method (1983)

Proof sketch

Lots of Markov chains!

Proof sketch

Lots of Markov chains!

- $I(W ; S) \leq I\left(W_{0}^{T} ; Z_{1}^{T}\right)$ because

$$
S \rightarrow Z_{1}^{T} \rightarrow W_{0}^{T} \rightarrow W
$$

Figure: Data processing inequality

Proof sketch

Lots of Markov chains!

- $I(W ; S) \leq I\left(W_{0}^{T} ; Z_{1}^{T}\right)$ because

$$
S \rightarrow Z_{1}^{T} \rightarrow W_{0}^{T} \rightarrow W
$$

Figure: Data processing inequality

- Iterative structure means

$$
W_{0} \rightarrow Z_{1} W_{1} \rightarrow Z_{2} W_{2} \rightarrow Z_{3} W_{3} \cdots \rightarrow W_{T}
$$

Proof sketch

Lots of Markov chains!

- $I(W ; S) \leq I\left(W_{0}^{T} ; Z_{1}^{T}\right)$ because

$$
S \rightarrow Z_{1}^{T} \rightarrow W_{0}^{T} \rightarrow W
$$

Figure: Data processing inequality

- Iterative structure means

$$
W_{0} \rightarrow Z_{1} W_{1} \rightarrow Z_{2} W_{2} \rightarrow Z_{3} W_{3} \cdots \rightarrow W_{T}
$$

- Use Markovity with chain rule to get

$$
I\left(Z_{1}^{T} ; W_{0}^{T}\right)=\sum_{t=1}^{T} I\left(Z_{t} ; W_{t} \mid W_{t-1}\right)
$$

Proof sketch

Lots of Markov chains!

- $I(W ; S) \leq I\left(W_{0}^{T} ; Z_{1}^{T}\right)$ because

$$
S \rightarrow Z_{1}^{T} \rightarrow W_{0}^{T} \rightarrow W
$$

Figure: Data processing inequality

- Iterative structure means

$$
W_{0} \rightarrow Z_{1} W_{1} \rightarrow Z_{2} W_{2} \rightarrow Z_{3} W_{3} \cdots \rightarrow W_{T}
$$

- Use Markovity with chain rule to get

$$
I\left(Z_{1}^{T} ; W_{0}^{T}\right)=\sum_{t=1}^{T} I\left(Z_{t} ; W_{t} \mid W_{t-1}\right)
$$

- Bottom line: Bound "one step" information between W_{t} and Z_{t}

Proof sketch

- Recall

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}
$$

Proof sketch

- Recall

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}
$$

- Using the entropy form of mutual information,

$$
I\left(W_{t} ; Z_{t} \mid W_{t-1}\right)=\underbrace{h\left(W_{t} \mid W_{t-1}\right)}_{\operatorname{Variance}\left(W_{t} \mid W_{t-1}\right) \leq \eta_{t}^{2} L^{2}+\sigma_{t}^{2}}-\underbrace{h\left(W_{t} \mid W_{t-1}, Z_{t}\right)}_{=h\left(\xi_{t}\right)}
$$

Proof sketch

- Recall

$$
W_{t}=W_{t-1}-\eta_{t} F\left(W_{t-1}, Z_{t}\right)+\xi_{t}
$$

- Using the entropy form of mutual information,

$$
I\left(W_{t} ; Z_{t} \mid W_{t-1}\right)=\underbrace{h\left(W_{t} \mid W_{t-1}\right)}_{\operatorname{Variance}\left(W_{t} \mid w_{t-1}\right) \leq \eta_{t}^{2} L^{2}+\sigma_{t}^{2}}-\underbrace{h\left(W_{t} \mid W_{t-1}, Z_{t}\right)}_{=h\left(\xi_{t}\right)}
$$

- Gaussian distribution maximizes entropy for fixed variance, giving

$$
I\left(W_{t} ; Z_{t} \mid W_{t-1}\right) \leq \frac{d}{2} \log \left(1+\frac{\eta_{t}^{2} L^{2}}{d \sigma_{t}^{2}}\right)
$$

What's wrong with mutual information

- Mutual information is great, but ...

What's wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $K L(\mu \| \nu)=+\infty$

What's wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $K L(\mu \| \nu)=+\infty$
- Many cases when mutual information $I(W ; S)$ shoots to infinity

What's wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $K L(\mu \| \nu)=+\infty$
- Many cases when mutual information $I(W ; S)$ shoots to infinity
- Cannot use bounds for stochastic gradient descent (SGD) :(

What's wrong with mutual information

- Mutual information is great, but ...
- If μ is not absolutely continuous w.r.t. ν, then $K L(\mu \| \nu)=+\infty$
- Many cases when mutual information $I(W ; S)$ shoots to infinity
- Cannot use bounds for stochastic gradient descent (SGD) :(
- "Noisy" algorithms are essential for using mutual information based bounds

Wasserstein metric

Wasserstein metric

- Wasserstein distance given by

$$
W_{p}(\mu, \nu)=\left(\inf _{\mathbb{P}_{X Y} \in \Pi(\mu, \nu)} \mathbb{E}\|X-Y\|^{p}\right)^{1 / p}
$$

where $\Pi(\mu, \nu)$ is the set of coupling such that marginals are μ and ν

W_{p} for $p=1$ and 2

- W_{1} also called "Earth Mover distance" or Kantorovich-Rubinstein distance

$$
W_{1}(\mu, \nu)=\sup \left\{\int f(d \mu-d \nu) \mid f \text { continuous and } 1-\text { Lipschitz }\right\}
$$

- W_{1} also called "Earth Mover distance" or Kantorovich-Rubinstein distance

$$
W_{1}(\mu, \nu)=\sup \left\{\int f(d \mu-d \nu) \mid f \text { continuous and } 1-\text { Lipschitz }\right\}
$$

- Lots of fascinating theory ${ }^{1}$ for W_{2}

W_{p} for $p=1$ and 2

- W_{1} also called "Earth Mover distance" or Kantorovich-Rubinstein distance

$$
W_{1}(\mu, \nu)=\sup \left\{\int f(d \mu-d \nu) \mid f \text { continuous and } 1-\text { Lipschitz }\right\}
$$

- Lots of fascinating theory ${ }^{1}$ for W_{2}
- Optimal coupling in $\Pi(\mu, \nu)$ is a function T such that $T_{\# \mu}=\nu$

W_{p} for $p=1$ and 2

- W_{1} also called "Earth Mover distance" or Kantorovich-Rubinstein distance

$$
W_{1}(\mu, \nu)=\sup \left\{\int f(d \mu-d \nu) \mid f \text { continuous and } 1-\text { Lipschitz }\right\}
$$

- Lots of fascinating theory ${ }^{1}$ for W_{2}
- Optimal coupling in $\Pi(\mu, \nu)$ is a function T such that $T_{\# \mu}=\nu$
- For μ and ν in \mathbb{R},

$$
W_{2}^{2}(\mu, \nu)=\int\left|F^{-1}(x)-G^{-1}(x)\right|^{2} d x
$$

where F and G are cdf's of μ and ν

Wasserstein bounds on $\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)$

- Assumption: $\ell(w, x)$ is Lipschitz in x for each fixed w; i.e.

$$
\left|\ell\left(w, x_{1}\right)-\ell\left(w, x_{2}\right)\right| \leq L\left\|x_{1}-x_{2}\right\|_{p}
$$

Wasserstein bounds on $\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)$

- Assumption: $\ell(w, x)$ is Lipschitz in x for each fixed w; i.e.

$$
\left|\ell\left(w, x_{1}\right)-\ell\left(w, x_{2}\right)\right| \leq L\left\|x_{1}-x_{2}\right\|_{p}
$$

Theorem (Tovar-Lopez \& J., (2018))

If $\ell(w, \cdot)$ is L-Lipschitz in $\|\cdot\|_{p}$, generalization error satisfies the following bound:

$$
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right) \leq \frac{L}{n^{\frac{1}{p}}}\left(\int_{W} W_{p}^{p}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid w}\right) d \mathbb{P}_{W}(w)\right)^{\frac{1}{p}}
$$

Wasserstein bounds on gen $\left(\mu, \mathbb{P}_{W \mid S}\right)$

- Assumption: $\ell(w, x)$ is Lipschitz in x for each fixed w; i.e.

$$
\left|\ell\left(w, x_{1}\right)-\ell\left(w, x_{2}\right)\right| \leq L\left\|x_{1}-x_{2}\right\|_{p}
$$

Theorem (Tovar-Lopez \& J., (2018))

If $\ell(w, \cdot)$ is L-Lipschitz in $\|\cdot\|_{p}$, generalization error satisfies the following bound:

$$
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right) \leq \frac{L}{n^{\frac{1}{p}}}\left(\int_{W} W_{p}^{p}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid w}\right) d \mathbb{P}_{W}(w)\right)^{\frac{1}{p}}
$$

- Measure average separation of $\mathbb{P}_{S \mid W}$ from \mathbb{P}_{S} (looks like a p-th moment in the space of distributions)

Wasserstein and KL

Definition

We say μ satisfies a $T_{p}(c)$ transportation inequality with constant $c>0$ if for all ν, we have

$$
W_{p}(\mu, \nu) \leq \sqrt{2 c K L(\nu \| \mu)}
$$

Wasserstein and KL

Definition

We say μ satisfies a $T_{p}(c)$ transportation inequality with constant $c>0$ if for all ν, we have

$$
W_{p}(\mu, \nu) \leq \sqrt{2 c K L(\nu \| \mu)}
$$

- Example: standard normal satisfies $T_{2}(1)$ inequality

Wasserstein and KL

Definition

We say μ satisfies a $T_{p}(c)$ transportation inequality with constant $c>0$ if for all ν, we have

$$
W_{p}(\mu, \nu) \leq \sqrt{2 c K L(\nu \| \mu)}
$$

- Example: standard normal satisfies $T_{2}(1)$ inequality
- Transport inequalities used to show concentration phenomena

Wasserstein and KL

Definition

We say μ satisfies a $T_{p}(c)$ transportation inequality with constant $c>0$ if for all ν, we have

$$
W_{p}(\mu, \nu) \leq \sqrt{2 c K L(\nu \| \mu)}
$$

- Example: standard normal satisfies $T_{2}(1)$ inequality
- Transport inequalities used to show concentration phenomena
- For $p \in[1,2]$ this inequality tensorizes! This means $\mu^{\otimes n}$ satisfies inequality $T_{p}\left(c n^{2 / p-1}\right)$

Comparison to $I(W ; S)$

- In general, not comparable

Comparison to $I(W ; S)$

- In general, not comparable
- If μ satisfies a $T_{2}(c)$-transportation inequality, can directly compare:

Theorem (Tovar-Lopez \& J., (2018))

Suppose $p=2$, then

$$
W_{2}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid W}\right) \leq \sqrt{2 c K L\left(\mathbb{P}_{S \mid W} \| \mathbb{P}_{S}\right)}
$$

and so

$$
\frac{L}{n^{\frac{1}{2}}}\left(\int_{W} W_{2}^{2}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid W}\right) d \mathbb{P}_{W}(w)\right)^{\frac{1}{2}} \leq L \sqrt{\frac{2 c}{n} l\left(\mathbb{P}_{S} ; \mathbb{P}_{W}\right)}
$$

Comparison to $I(W ; S)$

- In general, not comparable
- If μ satisfies a $T_{2}(c)$-transportation inequality, can directly compare:

Theorem (Tovar-Lopez \& J., (2018))

Suppose $p=2$, then

$$
W_{2}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid W}\right) \leq \sqrt{2 c K L\left(\mathbb{P}_{S \mid W} \| \mathbb{P}_{S}\right)}
$$

and so

$$
\frac{L}{n^{\frac{1}{2}}}\left(\int_{W} W_{2}^{2}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid w}\right) d \mathbb{P}_{W}(w)\right)^{\frac{1}{2}} \leq L \sqrt{\frac{2 c}{n} l\left(\mathbb{P}_{S} ; \mathbb{P}_{W}\right)}
$$

- In particular, for Gaussian data, Wasserstein bound strictly stronger

Comparison to $I(W ; S)$

- If μ satisfies a $T_{1}(c)$-transportation inequality:

Comparison to $I(W ; S)$

- If μ satisfies a $T_{1}(c)$-transportation inequality:

Theorem (Tovar-Lopez \& J., (2018))

Suppose $p=1$, then

$$
W_{1}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid W}\right) \leq \sqrt{2 c n \cdot K L\left(\mathbb{P}_{S \mid W} \| \mathbb{P}_{S}\right)}
$$

and so

$$
\frac{L}{n} \int_{W} W_{1}\left(\mathbb{P}_{S}, \mathbb{P}_{S \mid w}\right) d \mathbb{P}_{W}(w) \leq L \sqrt{\frac{2 c}{n} l\left(\mathbb{P}_{S} ; \mathbb{P}_{W}\right)}
$$

Coupling based bound on gen $\left(\mu, \mathbb{P}_{W \mid S}\right)$

- Recall generalization error expression:

$$
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)=\left|\mathbb{E} \ell_{N}(\bar{S}, \bar{W})-\mathbb{E} \ell_{N}(S, W)\right|
$$

where $(\bar{S}, \bar{W}) \sim \mathbb{P}_{S} \times \mathbb{P}_{W}$ and $(S, W) \sim \mathbb{P}_{W S}$.

Coupling based bound on gen $\left(\mu, \mathbb{P}_{W \mid S}\right)$

- Recall generalization error expression:

$$
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right)=\left|\mathbb{E} \ell_{N}(\bar{S}, \bar{W})-\mathbb{E} \ell_{N}(S, W)\right|
$$

where $(\bar{S}, \bar{W}) \sim \mathbb{P}_{S} \times \mathbb{P}_{W}$ and $(S, W) \sim \mathbb{P}_{\text {WS }}$.

- Key insight: Any coupling of (\bar{S}, \bar{W}, S, W) that has the "correct" marginals on (S, W) and (\bar{S}, \bar{W}) leads to the same expected value above

Proof sketch

- We have

$$
\begin{aligned}
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right) & =\left|\int \ell_{N}(s, w) d \mathbb{P}_{S W}-\int \ell_{N}(\bar{s}, \bar{w}) d \mathbb{P}_{\bar{s} \times \bar{W}}\right| \\
& =\mid \mathbb{E}_{S W \bar{s} \bar{W} \ell_{N}(S, W)-\ell_{N}(\bar{S}, \bar{W}) \mid}
\end{aligned}
$$

Proof sketch

- We have

$$
\begin{aligned}
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right) & =\left|\int \ell_{N}(s, w) d \mathbb{P}_{S W}-\int \ell_{N}(\bar{s}, \bar{w}) d \mathbb{P}_{\bar{s} \times \bar{W}}\right| \\
& =\mid \mathbb{E}_{S W \bar{s} \bar{W} \ell_{N}(S, W)-\ell_{N}(\bar{S}, \bar{W}) \mid}
\end{aligned}
$$

- Pick $W=\bar{W}$, use Lipschitz property in x

Proof sketch

- We have

$$
\begin{aligned}
\operatorname{gen}\left(\mu, \mathbb{P}_{W \mid S}\right) & =\left|\int \ell_{N}(s, w) d \mathbb{P}_{S W}-\int \ell_{N}(\bar{s}, \bar{w}) d \mathbb{P}_{\bar{S} \times \bar{W}}\right| \\
& =\mid \mathbb{E}_{S W \bar{S} \bar{W} \ell_{N}(S, W)-\ell_{N}(\bar{S}, \bar{W}) \mid}
\end{aligned}
$$

- Pick $W=\bar{W}$, use Lipschitz property in x
- Pick optimal joint distribution of $\mathbb{P}_{S, \bar{S} \mid W}$ to minimize bound

Speculations: Forward and backward channels

- Stability: How much does W change with S changes a little?

Speculations: Forward and backward channels

- Stability: How much does W change with S changes a little?
- Property of the forward channel $\mathbb{P}_{W \mid S}$

Speculations: Forward and backward channels

- Stability: How much does W change with S changes a little?
- Property of the forward channel $\mathbb{P}_{W \mid S}$
- Generalization: How much does S change when W changes a little?

Speculations: Forward and backward channels

- Stability: How much does W change with S changes a little?
- Property of the forward channel $\mathbb{P}_{W \mid S}$
- Generalization: How much does S change when W changes a little?
- Property of the backward channel $\mathbb{P}_{S \mid W}$

Speculations: Forward and backward channels

- Stability: How much does W change with S changes a little?
- Property of the forward channel $\mathbb{P}_{W \mid S}$
- Generalization: How much does S change when W changes a little?
- Property of the backward channel $\mathbb{P}_{S \mid W}$
- Pre-process data to deliberately make backward channel noisy (data augmentation, smoothing, etc.)

Speculations: Relation to rate distortion theory

- Branch of information theory dealing with lossy data compression

Speculations: Relation to rate distortion theory

- Branch of information theory dealing with lossy data compression

- Minimize distortion given by $\ell_{N}(W, S)$ subject to mutual information constraint $I(W ; S) \leq \epsilon$

Speculations: Relation to rate distortion theory

- Branch of information theory dealing with lossy data compression

- Minimize distortion given by $\ell_{N}(W, S)$ subject to mutual information constraint $I(W ; S) \leq \epsilon$
- Existing theory applies to $d\left(x^{n}, y^{n}\right)=\sum_{i} d\left(x_{i}, y_{i}\right)$; however, we have

$$
\ell\left(w, x^{n}\right):=\sum_{i} \ell\left(w, x_{i}\right)
$$

Speculations: Relation to rate distortion theory

- Branch of information theory dealing with lossy data compression

- Minimize distortion given by $\ell_{N}(W, S)$ subject to mutual information constraint $I(W ; S) \leq \epsilon$
- Existing theory applies to $d\left(x^{n}, y^{n}\right)=\sum_{i} d\left(x_{i}, y_{i}\right)$; however, we have

$$
\ell\left(w, x^{n}\right):=\sum_{i} \ell\left(w, x_{i}\right)
$$

- Essentially same problem, but connections still unclear

Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD

Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD
- Information theoretic lower bounds on generalization error?

Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD
- Information theoretic lower bounds on generalization error?
- Wasserstein bounds rely on new notion of "information"

$$
I_{W}(X, Y)=W\left(\mathbb{P}_{X} \times \mathbb{P}_{Y}, \mathbb{P}_{X Y}\right)
$$

Open problems

- Evaluating Wasserstein bounds for specific cases, in particular for SGD
- Information theoretic lower bounds on generalization error?
- Wasserstein bounds rely on new notion of "information"

$$
I_{W}(X, Y)=W\left(\mathbb{P}_{X} \times \mathbb{P}_{Y}, \mathbb{P}_{X Y}\right)
$$

- Chain rule? Data processing?

Thank you!

