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Chapter	1:	Motivation



Distribution	properties
𝒫:	a	collection	of	discrete	distributions
• 𝒫 = Δ$ :	all	distributions	over	 𝑘 = {1,… , 𝑘}
• Δ+:	distributions	over	[6]

Property
𝑓:𝒫 → ℝ

• 𝑝 3 =	?
• Is	it	fair?	Is	𝑝 𝑖 = 1/6 for	all	𝑖?



Property	estimation

𝑝 unknown distribution	in	𝒫

Given	independent	samples	𝑋:; = 	𝑋:, 𝑋<,… , 𝑋; ∼ 𝑝

Estimate	𝑓 𝑝

Sample	complexity 𝑆 𝑓,𝒫, 𝜀, 𝛿

Minimum	𝑛 necessary	to

Estimate	𝑓 𝑝 ± 𝜀

With	error	probability		< 𝛿 (usually	constant)



Symmetric	properties
𝑓 symmetric if	unchanged	under	input	permutations

Entropy											𝐻 𝑝 ≜ ∑ 𝑝(𝑥) log :
M(N)N

Support	size			S 𝑝 ≜ ∑ 𝕀 M N QRS

Many	others:	Renyi entropy,	support	coverage,	…

Coins	with	bias	0.4,	and	with	bias	0.6	have	same	entropy!



Entropy

𝐻 𝑝 ≜ −U𝑝(𝑥) log 𝑝(𝑥)
𝒙

• Most	popular	measure	of	randomness
• Central	quantity	in	information	theory	[Shannon’48]

How	many	samples	to	estimate	𝐻(𝑝) to	±𝜀?

Long	line	of	work:	[Empirical,	Miller-Maddow,	Jackknifed,	Coverage	
adjusted,	BUB	(paninski’03),	…]



Estimating	entropy
• Randomness	of	neural	spike	trains
• Feature	selection	in	decision	trees
• Graphical	models	(Chow-Liu)

Traditional	setting	for	property	estimation:	
𝒫 = Δ$:	distributions	on	[𝑘] (small	𝑘)
Obtain	many	samples	(large	𝑛)

Genetics,	neural	spikes,	text,	computer	vision,	ecology:	
𝒌 large,	possibly	infinite,	perhaps	unknown



Estimating	the	unseen:	Corbet’s
butterflies

2	years	trapping	butterflies	in	Malay	peninsula:

Asked	Fisher:

how	many	new	species	if	he	goes	for	two	more	years?

Frequency 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Species 118 74 44 24 29 22 20 19 20 15 12 14 6 12 6 



Estimating	the	unseen:	 formulation
𝑝: unknown discrete	distribution

𝑆X 𝑝 ≜ 𝔼[#𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭	𝐬𝐲𝐦𝐛𝐨𝐥𝐬	in	𝑚	ind. samples ∼ 𝑝]

𝑆X 𝑝 =U 1 − 1 − 𝑝(𝑥) X

N

Normalized	coverage:	pq M
X

How	many	samples	to	estimate	pq M
X

to	±𝜀?



Estimating	the	unseen:	applications
• Estimating	vocabulary	size
• Ecological	diversity
• Microbial	diversity	on	skin

Well	studied	[Good	Toulmin,	Efron Thisted]	For	constant	𝜀:
Requires 𝒎

𝟐
samples

More	recently,	[Zou Valiant	Valiant	Chan	…’16,	Orlitsky	Suresh	Wu	’16]:

Requires 𝒎
𝐥𝐨𝐠	𝒎	

samples



Chapter	2:	Methods



Plug-in	estimation

Using	𝑋:;,	find	an	estimate	�̂� of	𝑝

Estimate	𝑓 𝑝 	by	𝑓 �̂�

How	to	estimate	𝑝?



Sequence	maximum	likelihood	 (SML)

𝑝Nv
wxy ≜ argmax

M
		 𝑝(𝑥;)= arg max

M
		∏ 𝑝(𝑥})}

𝑋:~ = ℎ, ℎ, 𝑡
𝑝�X� = arg	max			𝑝< ℎ · 𝑝 𝑡

𝑝�X� ℎ = <
~
, 𝑝�X� 𝑡 = :

~

Same	as	the	empirical-frequency distribution

Multiplicity	𝑁N - #	times	𝑥 appears	in	𝑋:;

𝑝wxy 𝑥 =
𝑁N
𝑛



SML	for	entropy

Sample	complexity	of	SML	to	estimate	𝐻 𝑝 over	𝚫$ :

𝑆�X� 𝐻, 𝚫$, 𝜀 = Θ
𝑘
𝜀

In	the	asymptotic	𝑛 → ∞,	SML	is	optimal



Sample	complexity	of	entropy

Sample	complexity	of	𝐻(𝑝):

𝑆 𝐻, 𝚫$, 𝜀 = 	Θ
𝑘

𝜀 ⋅ log 𝑘

[…,	Paninski’03,	Valiant	Valiant’11,	Han	Jiao	VenkatWeissman’15,	Wu	Yang’15]

[Valiant	Valiant	’11]:	plug-in,	sub-optimal	 in	𝜀

[Han	Jiao	Weissman ’18]:	optimal	in	𝜀 by	tweaking	VV’11



Optimal	estimators

General	recipe:

1. Approximate	𝐻(𝑝) with	a	polynomial	in	𝑝
2. Estimate	the	polynomial

Different	non-plug-in estimator	for	each	property

Sophisticated	approximation	theory	results



Prior	work
For	several	important	properties	

Optimal	is	a	logarithmic	 factor better	than	empirical

Property 𝒫 SML Optimal References

𝐻 𝒑 𝚫$
𝑘
𝜀

𝑘
𝜀 ⋅ log 𝑘

Valiant	Valiant	 ‘11,	Han	Jiao	Venkat
Weissman ‘15,Wu	Yang	‘15
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𝑆 𝒑
𝑘

𝚫$ 𝑘 log
1
𝜀

𝑘
log 𝑘	

log<
1
𝜀

Wu	Yang	’16

∥ 𝒑 − 𝑢 ∥: 𝚫$
𝑘
𝜀<

𝑘
𝜀< ⋅ log 𝑘

Han Jiao	Weissman ‘16



Our	results	 [Acharya	Das	Orlitsky Suresh	’17]
Unified,	simple,	sample-optimal	
approach	for	all	above	problems

• Plug-in	estimator	
• Maximum	likelihood	principle:

sequence	maximum	likelihood	(SML)		
profile	maximum	likelihood	(PML)



Chapter	3:	PML



Profiles
Profile	is	the multi-set	of	multiplicities

Φ 𝑋:; ≜ {𝑁N: 𝑥 ∈ 𝑋:;}

Φ(ℎ, ℎ, 𝑡) = Φ(𝑡, ℎ, 𝑡) = {1,2}

Φ(𝛼, 𝛾, 𝛽, 𝛾) = {1,1,2}



Probability	multiset
Symmetric	properties	determined	by

• Probability	multiset:	{𝑝(1), 𝑝(2),… }

𝑝 ℎ = 0.4 ⟹ {0.4,0.6}

𝑝 ℎ = 0.6 ⟹ {0.4,0.6}

Profiles	are	sufficient	statistic	for	symmetric	properties

ℎ, ℎ, 𝑡,	OR	𝑡, ℎ, 𝑡 ⟹ same	estimate



Estimating	probability	multiset
Orlitsky Santhanam Viswanathan Zhang ‘04:

“On	modeling	profiles	instead	of	values”,	UAI

More	extensively:

OSVZ:	“On	estimating	a	probability	multiset”,	online



Profile	maximum	likelihood	(PML)
Profile probability

𝑝 Φ = U 𝑝(𝑥;)
Nv:	� Nv ��

	

Distribution	maximizing	 the	profile	probability

𝑝�
MX� = argmax

M∈𝒫
𝑝(Φ)



PML	example
𝑋:~ = ℎ, ℎ, 𝑡
Φ ℎ, ℎ, 𝑡 = 1,2

𝑝 Φ = 1,2

= 𝑝 𝑠, 𝑠, 𝑑 + 𝑝 𝑠, 𝑑, 𝑠 + 𝑝 𝑑, 𝑠, 𝑠

= 3 ⋅ 𝑝 𝑠, 𝑠, 𝑑

= 3 ⋅ ∑ 𝑝< 𝑥 𝑝(𝑦)N��

Symmetric	polynomial



SML	of	{1,2}

𝑝 Φ = 1,2 = 3 U 𝑝< 𝑥 𝑝(𝑦)
N��

𝑝�X� ℎ = <
~
, 𝑝�X� 𝑡 = :

~

𝑝�X� 1	, 2 = 3
2
3

< 1
3 +

1
3

< 2
3 =

18
27 =

2
3



PML	of	{1,2}

𝑝 Φ = 1,2 = 3 U 𝑝< 𝑥 𝑝(𝑦)
N��

U 𝑝< 𝑥 𝑝(𝑦)
N��

=U𝑝< 𝑥 (1 − 𝑝 𝑥 )
N

												=U𝑝 𝑥 ⋅ 𝑝(𝑥)(1 − 𝑝 𝑥 )
N

≤
1
4

𝑝MX� 1	, 2 =
3
4



PML	of	{1,1,2}
Φ(𝛼, 𝛾, 𝛽, 𝛾) = {1,1, 2}

𝑝MX� 1,1,2 = 𝑈[5]

PML	can	predict	existence	of	unseen	symbols

Maximize:

U 𝑝 𝑥 <𝑝 𝑦 𝑝 𝑧
N���¤

,

subject	to:	

U𝑝(𝑥)
N

= 1,𝑝 𝑥 ≥ 0



Uniform	[500],	700	samples

700	samples



U[500],	700x,	12	experiments



PML	plug-in
To	estimate	symmetric	𝑓(𝑝):
• Find	𝑝MX� Φ(𝑋:;)
• Output	𝑓(𝑝MX�)

Advantages:
• No	tuning	parameters
• Not	function	specific

Rooted	in	the	maximum	likelihood	principle



Ingredient	1:	Goodness	of	ML



General	ML	plugin	estimation

𝒫: collection	of	distributions	over	an	abstract domain	𝒵

𝑓:𝒫 → ℝ any	property	

Given	𝑧 ∈ 𝒵 estimate	𝑓

ML	estimator:

Determine			𝑝¤§¨ ≜ arg max
M∈𝒫

𝑝 𝑧

Output	𝑓(𝑝¤§¨)
How	good	is	MLE?



Competitiveness	of	ML	plugin

Theorem:	Suppose	𝑓©: 𝒵 → ℝ is	such	that	∀	𝑝 ∈ 𝒫,		

Pr
¬∼M

𝑓© 𝑍 − 𝑓 𝑝 > 𝜀 < 𝛿,

then	MLE	plugin	error	bounded	by

Pr
¬∼M

𝑓 𝑝¤§¨ − 𝑓 𝑝 > 2 ⋅ 𝜀 < 𝛿 ⋅ |𝒵|.

Competitive with	the	best	𝑓©



Competitiveness	of	MLE	plugin	- proof
Consider	any	𝑝 ∈ 𝒫

𝒵°± ≜ {𝑧 ∈ 𝒵: 𝑝 𝑧 ≥ 𝛿}

• 𝑧 ∈ 𝒵°±:
• 𝑓© 𝑧 − 𝑓(𝑝) ≤ 𝜀 (by	condition	in	Theorem)

• 𝑝¤§¨ 𝑧 ≥ 𝑝 𝑧 ≥ 𝛿,	hence	 𝑓© 𝑧 − 𝑓(𝑝¤§¨) ≤ 𝜀
• Triangle	inequality:		 𝑓(𝑝¤§¨) − 𝑓 𝑝 ≤ 2𝜀	

• 𝑧 ∈ 𝒵²± ≜ {𝑧: 𝑝 𝑧 < 𝛿}

• Pr	 𝑓 𝑝¤§¨³ − 𝑓 𝑝 > 2𝜀 ≤ Pr 𝒵²± < 𝛿 ⋅ 𝒵



Ingredient	2:	Error	probabilities



PML	performance	bound

Theorem:	If	𝑛 = 𝑆 𝑓, 𝒫, 𝜀, 𝛿 ,	then	

𝑆MX� 𝑓, 𝒫, 2 ⋅ 𝜀, Φ; ⋅ 𝛿 ≤ 𝑛

|Φ;|:	number	of	profiles	of	length	𝑛

Profile	of	length	n:	partition	of	n

{3},	{1,2},	 {1,1,1}	➞ 3,	2+1,	1+1+1

|Φ;| = partition	#	of	𝑛

Hardy-Ramanujan:	 		|Φ;| < 𝑒~ ;



PML	performance:	Try	1
Theorem:		𝑛 = 𝑆 𝑓, 𝒫, 𝜀, 1/3 ⇒ 𝑆MX� 𝑓, 𝒫, 2𝜀, 1/3 ≤ 𝑂(𝑛<).

Proof:	
• Boost	error	probability:
• Take	𝑛 ⋅ ℓ independent	samples,	and	divide	them	in	ℓ parts
• Estimate	𝑓 for	each	of	the	samples
• Take	the	median	of	the	estimates	⟹ 𝛿 < exp	(−ℓ)

• Φ;ℓ < exp(3 𝑛ℓ .º)

Error	probability	of	PML	most	exp −ℓ + 3 𝑛ℓ .º

When	ℓ > 𝑛,	the	error	dominates	#	profiles



PML	performance:	Try	2
Recall

𝑆 𝐻, Δ$, 𝜀, 1/3	 = Θ
𝑘

𝜀 ⋅ log 𝑘
With	twice	the	samples	error	drops	exponentially

𝑆 𝐻, Δ$, 𝜀, 𝑒»;
¼.½ = Θ $

¾⋅y¿À $

• Modified estimators	with	small	bounded	differences
• Stronger	guarantees	from	McDiarmid’s inequality
Most	technical	part	of	the	paper
Similar	results	for	other	properties



Combining	everything

Fast	error	for	properties	we	study:	

If 𝒏 = 𝑺 𝒇,𝒫, 𝜺, 𝟏/𝟑 ,	then 𝑺 𝒇,𝒫, 𝜺, 𝒆»𝟒 𝒏 ≤ 𝟒𝒏

ML	plug-in	result:

If 𝑺 𝒇,𝒫, 𝜺, 𝒆»𝟒 𝒏 ≤ 𝟒𝒏,	then 𝑺𝒑𝒎𝒍 𝒇,𝒫, 𝟐𝜺, 𝒆» 𝒏 ≤ 𝟒𝒏

Combining,	we	are	done!



Computing	PML	distribution
• EM	algorithm	[OrlitskyPan	Sajama	SanthanamViswanathanZhang	‘04,’13]

• Approximate	PML	via	Bethe	Permanents	[Vontobel’14]
• Extensions	of	Markov	Chains	[Vatedka Vontobel’16]
• Approximation	via	relaxation	[Jiao	PavlichinWeissman ‘17]:



Chapter	5:	Directions



Approximate	PML
• Perhaps finding	exact	PML	is	hard
• Can	show	that	approximating	PML	enough

Question:	
Compute	exp(−𝑛Ê) approximate	PML	for	any	𝛽 < 1

Even	this	is	optimal	(for	large	𝑘)



Higher	dimensions
• Estimate	KL	divergence	between	discrete	distributions	
given	samples	(under	assumptions	of	course)

[Bu	Zou Liang	Veeravalli ‘16,	Han	Jiao	Weissman ’16]

[Acharya	’18]:	PML	is	optimal	for	KL	divergence	estimation
- Higher	order	partitions



Independent	Proof	Techniques
MLE	good	when	something	else	is	good

• ML	performance	independent	of	other	results?	



Other
Is	PML	optimal	for	every symmetric	property?

Can	we	do	something	for	continuous	distributions?		



Summary
• Symmetric	property	estimation
• PML	plug-in	approach
• Universal,	simple	to	state
• Independent	of	particular	properties



In	Fisher’s	words	…

Of	course	nobody	has	been	able	to	prove	that	MLE	is	best	
under	all	circumstances.	MLE	computed	with	all	the	
information	available	may	turn	out	to	be	inconsistent.	
Throwing	away	a	substantial	part	of	the	information	may	
render	them	consistent.	

R.	A.	Fisher	



Thank	You!


