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Chapter 1: Motivation



Distribution properties

P a collection of discrete distributions

« P = Ay all distributions over | k] = {1, ..., k}

» A,: distributions over [6] G

Property

[P ->R
*p(3) =7
* Isitfair? Isp(i) = 1/6 forall i?



Property estimation

p unknown distribution in P
Given independent samples X" = X;,X,,...,X,, ~p
Estimate f(p)
Sample complexity S(f,P,&,0)
Minimum 71 necessary to
Estimate f(p) + ¢

With error probability < 6 (usually constant)



Symmetric properties

[ symmetric if unchanged under input permutations

1
Entropy H(p) £ XY p(x) 108@ G

Support size S(p) £ Y Lo, ()>0)

Many others: Renyi entropy, support coverage, ...

Coins with bias 0.4, and with bias 0.6 have same entropy!



Entropy

Hp) £ — ) p(x)logp(x)

* Most popular measure of randomness
* Central quantity in information theory [Shannon’48]

How many samples to estimate H(p) to +¢7?

Long line of work: [Empirical, Miller-Maddow, Jackknifed, Coverage
adjusted, BUB (paninski’03), ...]



Estimating entropy

 Randomness of neural spike trains
 Feature selection in decision trees

e Graphical models (Chow-Liu)

Traditional setting for property estimation:
P = Aj: distributions on [ k] (small k)
Obtain many samples (large n)

Genetics, neural spikes, text, computer vision, ecology:
k large, possibly infinite, perhaps unknown



Estimating the unseen: Corbet’s
butterflies

2 years trapping butterflies in Malay peninsula:

Frequency | 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Species 118 74 44 24 29 22 20 19 20 15 12 14 6 12 6

Asked Fisher:

how many new species if he goes for two more years?



Estimating the unseen: formulation

p: unknown discrete distribution

Sm(p) £ E[#distinct symbols in m ind. samples ~ p]

Sm@) = ) (1= (1= p(x)™

. S
Normalized coverage: mngp)
. Sm®)
How many samples to estimate to +&°?




Estimating the unseen: applications

e Estimating vocabulary size
* Ecological diversity
* Microbial diversity on skin

Well studied [Good Toulmin, Efron Thisted] For constant &:

. m
Requires > samples

More recently, [Zou Valiant ValiantChan ...”16, Orlitsky Suresh Wu ’16]:
m

Requires samples

logm



Chapter 2: Methods



Plug-in estimation

Using X', find an estimate p of p

Estimate f(p) by f(p)

How to estimate p?



Sequence maximum likelihood (SML)

sml A

pyn =argmax p(x")=argmax |[[;p(x;)
p p
X3 =hnht
p*™ =argmax p“(h) - p(t)

psml(h) — %} psml(t) — §
Same as the empirical-frequency distribution

Multiplicity N, - # times x appears in X/

N
sml __*
p>™ (x) -



SML for entropy

Sample complexity of SML to estimate H(») over A, :

k
SSMYH, A, e) =0 (E)

In the asymptotic n — oo, SML is optimal



Sample complexity of entropy

Sample complexity of H(p):

S(H, A, 2) = 0 ‘ )
S €)= e-logk

[..., Paninski’03, Valiant Valiant’11, Han Jiao Venkat Weissman’15, Wu Yang’15]

[Valiant Valiant "11]: plug-in, sub-optimal in &

optimal in € by tweaking VV’'11



Optimal estimators

General recipe:

1. Approximate H(p) with a polynomial in p
2. Estimate the polynomial

Different non-plug-in estimator for each property

Sophisticated approximation theory results



Prior work

For several important properties

Optimal is a logarithmic factor better than empirical

Valiant Valiant ‘11, Han Jiao Venkat

H(p) A - log k Weissman ‘15, Wu Yang ‘15

M| &



Prior work

For several important properties

Optimal is a logarithmic factor better than empirical

H( ) A k Valiant Valiant ‘11, Han Jiao Venkat
p k g - log k Weissman ‘15, Wu Yang ‘15
S m 1
m(p) A, m log—  Orlitsky Suresh Wu’16

m logm



Prior work

For several important properties

Optimal is a logarithmic factor better than empirical

k Valiant Valiant ‘11, Han Jiao Venkat
H(p) Ay - s log k Weissman ‘15, Wu Yang ‘15
m 1
Sm(P) A, m log—  Orlitsky Suresh Wu’16
m log m €
S(p) 1 k 1 wuvYang’16
- A — log? —
k f 20 log k e €
k k
Il p—ully A, — Han Jiao Weissman ‘16

g2 c2-logk



Our results [Acharya Das Orlitsky Suresh ’17]

Unified, simple, sample-optimal
approach for all above problems

* Plug-in estimator
 Maximum likelihood principle:

. ikeHhood-SML

profile maximum likelihood (PML)



Chapter 3: PML



Profiles

Profile is the multi-set of multiplicities

d(XM) 2 {N,:x € X1

®(h h,t) = Ot ht) ={1,2)
O(a,y,6,v) ={1,1,2}



Probability multiset

Symmetric properties determined by
* Probability multiset: {p(1),p(2), ...}
p(h) =04 = {0.4,0.6}
p(h) = 0.6 = {0.4,0.6}
Profiles are sufficient statistic for symmetric properties

h,h,t,ORt, h,t = same estimate



Estimating probability multiset

Orlitsky Santhanam Viswanathan Zhang ‘04
“On modeling profiles instead of values”, UAI
More extensively:

OSVZ: “On estimating a probability multiset”, online



Profile maximum likelihood (PML)

Profile probability
p(P) = z p(x™)

x: d(x")=P

Distribution maximizing the profile probability

pml _
Pp = argmaxp(®P)



PML example

X3 =hnht
®(h,h, t) ={1,2}
p(® ={1,2})
=p(s,s,d) +p(s,d,s) +pd,s,s)
=3-p(s,s,d)

=3 (iny pz (X)p(Y))

Symmetric polynomial



SML of {1,2}

p(@ = (12D =3( ), P

XEY

P () =5 p () =5

pS({1,2}) = 3((%) (

2

1

3

)+

1

3



PML of {1,2}

p(@ = (12D =3( ), P W)

XEY

> P@p0) = z HOICETIE)

XEY

1
= ) PG p(O(1 —p() <3

3
pP™({1,2}) = 7



PML of {1,1,2}

O(a,y,B,v) =1{1,1,2}

pP™ ({1,1,2}) = U[5]

Maximize:

> @@,

X+EY+Z

subject to:

Zp(x) =1,p(x) =0



Uniform [500], 700 samples

3x6, 2x5, 19x4, 62x3, 114x2, 182x1, 118x0

== Underlying 4
— SML |,
PML

10 °}

200 400 600 800 1000



U[500], 700x,

1x86, 10x5, 16x4, 47x3, 136x2, 167x1, 123x0

= Underlying
ML
PML

200 400 600 800 1000
1x6, 5x5, 15x4, 66x3, 124x2, 163x1, 126x0

= Underlying |
ML
PML

200 400 600 800 1000

, 1x7, 1x6, 8x5, 16x4, 56x3, 123x2, 169x1, 126x0

— Undertying |
ML
PML

-

200 400 600 800 1000

1x7, 4x5, 17x4, 59x3, 129x2, 170x1, 120x0

10° , _
= Underlying
- ML
— PML
107
1 0-‘ A A A A
200 400 600 800 1000
1x6, 9x5, 13x4, 61x3, 127x2, 160x1, 129x0
= Underlying
—_ ML
J— PML
107
1 0“ A A A A J
200 400 600 800 1000
1x7, 10x5, 16x4, 60x3, 122x2, 155x1, 136x0
107
= Underlying
— ML
— PML|
107
107 ~ , ~
200 400 600 800 1000

7x5, 19x4, 62x3, 124x2, 155x1, 133x0

--Undonwng‘
—_— ML
_ PML
107
0™
200 400 600 800 1000
. 97, 5x5, 23x4, 50x3, 126x2, 160x1, 133x0
10
2 w— Underlying
—_ ML
— PML
‘0 3
10°
200 400 600 800 1000
,  1x7,2x5, 18x4, 60x3, 115x2, 201x1, 103x0
10"
2 w— Underlying
—_— ML
— PML
‘0 3
L
200 400 600 800 1000

12 experiments

3x6, 2x5, 19x4, 62x3, 114x2, 182x1, 118x0

w— Undertying
— ML
—_ PML
107
10°
200 400 600 800 1000
1x6, 6x5, 20x4, 62x3, 117x2, 164x1, 130x0
w— Underlying
—_ ML
_ PML
10 3
10°
200 400 600 800 1000
1x6, 4x5, 24x4, 53x3, 116x2, 187x1, 115x0
w— Underlying
—_— ML
—_— PML
10 3
107 \\\\
200 400 600 800 1000



PML plug-in

To estimate symmetric f(p):
* Find p?™! (® (X))

* Output f(pP™)

Advantages:
* No tuning parameters

* Not function specific

Rooted in the maximum likelihood principle



Ingredient 1: Goodness of ML



General ML plugin estimation

P: collection of distributions over an abstract domain 2
f:P = R any property
Given z € Z estimate [

ML estimator:

Determine p* 2 arg maxp(z)
peP

Output f (p;"")
How good is MLE?



Competitiveness of ML plugin

Theorem: Suppose f: Z — RissuchthatVp € P,

Prf@ - f®)| > e) <o

then MLE plugin error bounded by

Prlfd™) - f@|>2-€) <5z,

Competitive with the best f



Competitiveness of MLE plugin - proof

Considerany p € P
Zos 2{z€Z:p(z) = &}

* Z E Zzé‘:
’ ‘f(Z) - f(p)‘ < ¢ (by condition in Theorem)

+ p't(2) 2 p(2) 2 6, hence |/ (z) — f(p;'")] < ¢
» Triangle inequality: |f(py'") — f(p)| < 2¢

cz2€Z .52 1{z:n(z) < &}

» Pr(|f(p}"F) — f()| > 2¢) < Pr(Zcs) < 6 - |Z]



Ingredient 2: Error probabilities



PML performance bound

Theorem: If n = S(f, P, €, 6), then

SPl(f P 2-g |D"-8) <n

|®™|: number of profiles of length n

Profile of length n: partition of n

CI)TL

{3}, 11,2}, {1,1,1} — 3, 2+1, 1+1+1

= partition # of n

Hardy-Ramanujan: |®"] < 3V



PML performance: Try 1

Theorem: n = S(f,P,&,1/3) = SP™(f, P,2¢,1/3) < 0(n?).

Proof:

* Boost error probability:

 Take n - € independent samples, and divide them in € parts
* Estimate f for each of the samples

* Take the median of the estimates = 6 < exp(—7%)
d™| < exp(3(né)>)

Error probability of PML most exp(—¢ + 3(nf)->)

When £ > n, the error dominates # profiles



PML performance: Try 2

Recall

With twice the samples error drops exponentially

S(H, Ak, &, e_no'g) =0 (g-l(l){g k)

* Modified estimators with small bounded differences
* Stronger guarantees from McDiarmid’s inequality
Most technical part of the paper

Similar results for other properties



Combining everything

Fast error for properties we study:

ifn=S(f,P,&1/3),then S(f, P, e,e“”ﬁ) < 4n

ML plug-in result:
f S(f, P, &,e") < 4n, then SP™(f,P,2¢,e™V") < 4n

Combining, we are done!



Computing PML distribution

* EM algorithm [orlitsky Pan Sajama Santhanam Viswanathan Zhang ‘04,'13]
* Approximate PML via Bethe Permanents [vontobel’14]
e Extensions of Markov Chains [vatedka Vontobel’16]

* Approximation via relaxation [Jiao Pavlichin Weissman ‘17]:

Entropy estimation

w

N “
2 |—=—MLE
—A—VV
otr JVHW

@ approx. PML
- WY (known support)
10 Fvgiens approx. PML (known suppo

10?2 104 10° 108



Chapter 5: Directions



Approximate PML

* Perhaps finding exact PML is hard
* Can show that approximating PML enough

Question:

Compute exp(—nﬁ) approximate PML forany f < 1

Even this is optimal (for large k)



Higher dimensions

e Estimate KL divergence between discrete distributions
given samples (under assumptions of course)

[Bu Zou Liang Veeravalli ‘16, Han Jiao Weissman ’16]

[Acharya '18]: PML is optimal for KL divergence estimation

- Higher order partitions



Independent Proof Techniques

MLE good when something else is good

* ML performance independent of other results?



Other

Is PML optimal for every symmetric property?

Can we do something for continuous distributions?



Summary

* Symmetric property estimation
* PML plug-in approach

* Universal, simple to state
* Independent of particular properties



In Fisher’s words ...

Of course nobody has been able to prove that MLE is best
under all circumstances. MLE computed with all the
information available may turn out to be inconsistent.

Throwing away a substantial part of the information may
render them consistent.

R. A. Fisher



hank Youl!



