#### Estimating Symmetric Distribution Properties Maximum Likelihood Strikes Back!

Jayadev AcharyaHirakendu DasAlon OrlitskyAnanda SureshCornellYahooUCSDGoogle

Shannon Channel March 5, 2018 Based on:

A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions, International Conference on Machine Learning (ICML), 2017

http://proceedings.mlr.press/v70/acharya17a.html

Slides available at:

https://people.ece.cornell.edu/acharya/talks/shannon-18acharya.pdf

# Outline

- 1. Motivation
- 2. Methods
- 3. Proofs
- 4. Future directions

#### Chapter 1: Motivation

# Distribution properties

 $\mathcal{P}$ : a collection of discrete distributions

- $\mathcal{P} = \Delta_k$ : all distributions over  $[k] = \{1, ..., k\}$
- $\Delta_6$ : distributions over [6]



Property

$$f:\mathcal{P}\to\mathbb{R}$$

- p(3) = ?
- Is it fair? Is p(i) = 1/6 for all i?

#### **Property estimation**

p unknown distribution in  ${\mathcal P}$ 

Given independent samples  $X_1^n = X_1, X_2, ..., X_n \sim p$ 

Estimate f(p)

Sample complexity  $S(f, \mathcal{P}, \varepsilon, \delta)$ 

Minimum *n* necessary to

Estimate  $f(p) \pm \varepsilon$ 

With error probability  $< \delta$  (usually constant)

# Symmetric properties

*f* **symmetric** if unchanged under input permutations

Entropy 
$$H(p) \triangleq \sum_{x} p(x) \log \frac{1}{p(x)}$$



Support size  $S(p) \triangleq \sum_{i} \mathbb{I}_{\{p(x)>0\}}$ 

Many others: Renyi entropy, support coverage, ...

Coins with bias 0.4, and with bias 0.6 have same entropy!

# Entropy

$$H(p) \triangleq -\sum_{x} p(x) \log p(x)$$

- Most popular measure of randomness
- Central quantity in information theory [Shannon'48]

How many samples to estimate H(p) to  $\pm \varepsilon$ ?

Long line of work: [Empirical, Miller-Maddow, Jackknifed, Coverage adjusted, BUB (paninski'03), ...]

# Estimating entropy

- Randomness of neural spike trains
- Feature selection in decision trees
- Graphical models (Chow-Liu)

Traditional setting for property estimation:  $\mathcal{P} = \Delta_k$ : distributions on [k] (small k) Obtain many samples (large n)

Genetics, neural spikes, text, computer vision, ecology: *k* large, possibly infinite, perhaps unknown

# Estimating the unseen: Corbet's butterflies

2 years trapping butterflies in Malay peninsula:

| Frequency | 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-----------|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Species   | 118 | 74 | 44 | 24 | 29 | 22 | 20 | 19 | 20 | 15 | 12 | 14 | 6  | 12 | 6  |

Asked Fisher:

how many new species if he goes for two more years?

# Estimating the unseen: formulation

*p*: **unknown** discrete distribution

 $S_m(p) \triangleq \mathbb{E}[\#$ **distinct symbols** in *m* ind. samples ~ *p*]

$$S_m(p) = \sum_x (1 - (1 - p(x))^m)$$

Normalized coverage: 
$$\frac{S_m(p)}{m}$$
  
How many samples to estimate  $\frac{S_m(p)}{m}$  to  $\pm \varepsilon$ ?

# Estimating the unseen: applications

- Estimating vocabulary size
- Ecological diversity
- Microbial diversity on skin

Well studied [Good Toulmin, Efron Thisted] For constant  $\varepsilon$ : Requires  $\frac{m}{2}$  samples

More recently, [Zou Valiant Valiant Chan ...'16, Orlitsky Suresh Wu '16]:

Requires 
$$\frac{m}{\log m}$$
 samples

#### Chapter 2: Methods

## Plug-in estimation

Using  $X_1^n$ , find an estimate  $\hat{p}$  of p

Estimate f(p) by  $f(\hat{p})$ 

How to estimate *p*?

#### Sequence maximum likelihood (SML)

$$p_{x^{n}}^{\text{sml}} \triangleq \arg \max_{p} p(x^{n}) = \arg \max_{p} \prod_{i} p(x_{i})$$
$$X_{1}^{3} = h, h, t$$
$$p^{sml} = \arg \max p^{2}(h) \cdot p(t)$$
$$p^{sml}(h) = \frac{2}{3}, p^{sml}(t) = \frac{1}{3}$$

Same as the *empirical-frequency* distribution

Multiplicity  $N_x$  - # times x appears in  $X_1^n$ 

$$p^{\rm sml}(x) = \frac{N_x}{n}$$

# SML for entropy

Sample complexity of SML to estimate H(p) over  $\Delta_k$ :

$$S^{sml}(H, \mathbf{\Delta}_k, \varepsilon) = \Theta\left(\frac{k}{\varepsilon}\right)$$

In the asymptotic  $n \rightarrow \infty$ , SML is optimal

# Sample complexity of entropy

Sample complexity of H(p):

$$S(H, \Delta_k, \varepsilon) = \Theta\left(\frac{k}{\varepsilon \cdot \log k}\right)$$

[..., Paninski'03, Valiant Valiant'11, Han Jiao Venkat Weissman'15, Wu Yang'15]

#### [Valiant Valiant '11]: plug-in, sub-optimal in $\varepsilon$

[Han Jiao Weissman '18]: optimal in  $\varepsilon$  by tweaking VV'11

# **Optimal estimators**

General recipe:

- 1. Approximate H(p) with a polynomial in p
- 2. Estimate the polynomial

Different non-plug-in estimator for each property

Sophisticated approximation theory results

### Prior work

For several important properties

Optimal is a logarithmic factor better than empirical

| Property      | $\mathcal{P}$       | SML                     | Optimal                              | References                                                        |
|---------------|---------------------|-------------------------|--------------------------------------|-------------------------------------------------------------------|
| H( <b>p</b> ) | $\mathbf{\Delta}_k$ | $\frac{k}{\varepsilon}$ | $\frac{k}{\varepsilon \cdot \log k}$ | Valiant Valiant '11, Han Jiao Venkat<br>Weissman '15, Wu Yang '15 |

### Prior work

For several important properties

Optimal is a logarithmic factor better than empirical

| Property                        | ${\mathcal P}$      | SML                     | Optimal                                     | References                                                        |  |  |  |
|---------------------------------|---------------------|-------------------------|---------------------------------------------|-------------------------------------------------------------------|--|--|--|
| H( <b>p</b> )                   | $\mathbf{\Delta}_k$ | $\frac{k}{\varepsilon}$ | $\frac{k}{\varepsilon \cdot \log k}$        | Valiant Valiant '11, Han Jiao Venkat<br>Weissman '15, Wu Yang '15 |  |  |  |
| $\frac{S_m(\boldsymbol{p})}{m}$ | $\Delta_{\infty}$   | т                       | $\frac{m}{\log m}\log\frac{1}{\varepsilon}$ | Orlitsky Suresh Wu'16                                             |  |  |  |

### Prior work

For several important properties

Optimal is a logarithmic factor better than empirical

| Property                                                | ${\mathcal P}$      | SML                            | Optimal                                       | References                                                        |  |  |  |
|---------------------------------------------------------|---------------------|--------------------------------|-----------------------------------------------|-------------------------------------------------------------------|--|--|--|
| H( <b>p</b> )                                           | $\mathbf{\Delta}_k$ | $\frac{k}{\varepsilon}$        | $\frac{k}{\varepsilon \cdot \log k}$          | Valiant Valiant '11, Han Jiao Venkat<br>Weissman '15, Wu Yang '15 |  |  |  |
| $\frac{S_m(\boldsymbol{p})}{m}$                         | $\Delta_{\infty}$   | m                              | $\frac{m}{\log m}\log\frac{1}{\varepsilon}$   | Orlitsky Suresh Wu'16                                             |  |  |  |
| $\frac{S(p)}{k}$                                        | $\mathbf{\Delta}_k$ | $k \log \frac{1}{\varepsilon}$ | $\frac{k}{\log k}\log^2\frac{1}{\varepsilon}$ | Wu Yang '16                                                       |  |  |  |
| $\parallel \boldsymbol{p} - \boldsymbol{u} \parallel_1$ | $\mathbf{\Delta}_k$ | $\frac{k}{\varepsilon^2}$      | $\frac{k}{\varepsilon^2 \cdot \log k}$        | Han Jiao Weissman '16                                             |  |  |  |

Our results [Acharya Das Orlitsky Suresh'17]

Unified, simple, sample-optimal approach for all above problems

- Plug-in estimator
- Maximum likelihood principle:

- sequence maximum likelihood (SML) profile maximum likelihood (PML)

#### Chapter 3: PML

### Profiles

Profile is the multi-set of multiplicities

$$\Phi(X_1^n) \triangleq \{N_x \colon x \in X_1^n\}$$

$$\Phi(h, h, t) = \Phi(t, h, t) = \{1, 2\}$$
$$\Phi(\alpha, \gamma, \beta, \gamma) = \{1, 1, 2\}$$

# Probability multiset

Symmetric properties determined by

• Probability multiset:  $\{p(1), p(2), ...\}$ 

 $p(h) = 0.4 \Longrightarrow \{0.4, 0.6\}$ 

 $p(h) = 0.6 \Longrightarrow \{0.4, 0.6\}$ 

**Profiles are sufficient statistic for symmetric properties** 

*h*, *h*, *t*, **OR** *t*, *h*, *t*  $\Rightarrow$  same estimate

# Estimating probability multiset

Orlitsky Santhanam Viswanathan Zhang '04:

"On modeling profiles instead of values", UAI

#### More extensively:

OSVZ: "On estimating a probability multiset", online

# Profile maximum likelihood (PML)

Profile probability

$$p(\Phi) = \sum_{x^n: \Phi(x^n) = \Phi} p(x^n)$$

Distribution maximizing the profile probability  $p_{\Phi}^{pml} = \arg \max_{p \in \mathcal{P}} p(\Phi)$ 

#### PML example

$$X_1^3 = h, h, t$$
  

$$\Phi(h, h, t) = \{1, 2\}$$
  

$$p(\Phi = \{1, 2\})$$
  

$$= p(s, s, d) + p(s, d, s) + p(d, s, s)$$
  

$$= 3 \cdot p(s, s, d)$$
  

$$= 3 \cdot (\sum_{x \neq y} p^2(x) p(y))$$

Symmetric polynomial

$$p(\Phi = \{1,2\}) = 3\left(\sum_{x\neq y} p^2(x)p(y)\right)$$

$$p^{sml}(h) = \frac{2}{3}, p^{sml}(t) = \frac{1}{3}$$

$$p^{sml}(\{1,2\}) = 3\left(\left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right) + \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)\right) = \frac{18}{27} = \frac{2}{3}$$

PML of  $\{1,2\}$ 

$$p(\Phi = \{1,2\}) = 3\left(\sum_{x \neq y} p^2(x)p(y)\right)$$

$$\sum_{x \neq y} p^2(x) p(y) = \sum_{x} p^2(x) (1 - p(x))$$

$$=\sum_{x} p(x) \cdot p(x)(1-p(x)) \leq \frac{1}{4}$$

$$p^{pml}(\{1,2\}) = \frac{3}{4}$$

# PML of $\{1, 1, 2\}$

 $\Phi(\alpha,\gamma,\beta,\gamma)=\{1,1,2\}$ 

 $p^{pml}(\{1,1,2\}) = U[5]$ 

#### PML can predict existence of unseen symbols

Maximize:

 $\sum p(x)^2 p(y) p(z),$  $x \neq y \neq z$ 

subject to:

 $\sum p(x) = 1, p(x) \ge 0$ 

# Uniform [500], 700 samples

3x6, 2x5, 19x4, 62x3, 114x2, 182x1, 118x0



# U[500], 700x, 12 experiments



# PML plug-in

To estimate symmetric f(p):

- Find  $p^{pml}(\Phi(X_1^n))$
- Output  $f(p^{pml})$

Advantages:

- No tuning parameters
- Not function specific

Rooted in the maximum likelihood principle

# Ingredient 1: Goodness of ML

# General ML plugin estimation

 $\mathcal{P} :$  collection of distributions over an **abstract** domain  $\mathcal{Z}$ 

```
f: \mathcal{P} \to \mathbb{R} any property
```

```
Given z \in \mathcal{Z} estimate f
```

ML estimator:

Determine  $p_z^{\text{ML}} \triangleq \arg \max_{p \in \mathcal{P}} p(z)$ Output  $f(p_z^{\text{ML}})$ How good is MLE?

### Competitiveness of ML plugin

**Theorem**: Suppose  $\hat{f}: \mathbb{Z} \to \mathbb{R}$  is such that  $\forall p \in \mathcal{P}$ ,

$$\Pr_{Z\sim p}(|\hat{f}(Z) - f(p)| > \varepsilon) < \delta,$$

then MLE plugin error bounded by

$$\Pr_{Z \sim p}(|f(p_z^{\mathrm{ML}}) - f(p)| > 2 \cdot \varepsilon) < \delta \cdot |\mathcal{Z}|$$

**Competitive** with the best  $\hat{f}$ 

#### Competitiveness of MLE plugin - proof

Consider any  $p \in \mathcal{P}$ 

- $\mathcal{Z}_{\geq \delta} \triangleq \{z \in \mathcal{Z} \colon p(z) \geq \delta\}$
- $z \in \mathcal{Z}_{\geq \delta}$ :
  - $|\hat{f}(z) f(p)| \le \varepsilon$  (by condition in Theorem)
  - $p_z^{\text{ML}}(z) \ge p(z) \ge \delta$ , hence  $\left| \hat{f}(z) f(p_z^{\text{ML}}) \right| \le \varepsilon$
  - Triangle inequality:  $|f(p_z^{ML}) f(p)| \le 2\varepsilon$
- $z \in \mathcal{Z}_{<\delta} \triangleq \{z: p(z) < \delta\}$ 
  - $\Pr\left(\left|f\left(p_z^{\text{MLE}}\right) f(p)\right| > 2\varepsilon\right) \le \Pr(\mathcal{Z}_{<\delta}) < \delta \cdot |\mathcal{Z}|$

#### Ingredient 2: Error probabilities

## PML performance bound

**Theorem**: If  $n = S(f, \mathcal{P}, \varepsilon, \delta)$ , then

 $S^{pml}(f, \mathcal{P}, \mathbf{2} \cdot \varepsilon, |\Phi^n| \cdot \delta) \le n$ 

 $|\Phi^n|$ : number of profiles of length n

Profile of length n: partition of n

 $\{3\}, \{1,2\}, \{1,1,1\} \rightarrow 3, 2+1, 1+1+1$ 

 $|\Phi^n|$  = partition # of n

Hardy-Ramanujan:  $|\Phi^n| < e^{3\sqrt{n}}$ 

# PML performance: Try 1

**Theorem**:  $n = S(f, \mathcal{P}, \varepsilon, 1/3) \Rightarrow S^{pml}(f, \mathcal{P}, 2\varepsilon, 1/3) \leq O(n^2).$ 

**Proof**:

- Boost error probability:
  - Take  $n\cdot\ell$  independent samples, and divide them in  $\ell$  parts
  - Estimate *f* for each of the samples
  - Take the median of the estimates  $\Rightarrow \delta < \exp(-\ell)$
- $\left| \Phi^{n\ell} \right| < \exp(3(n\ell)^{.5})$

Error probability of PML most  $\exp(-\ell + 3(n\ell)^{.5})$ 

When  $\ell > n$ , the error dominates # profiles

# PML performance: Try 2

Recall

$$S(H, \Delta_k, \varepsilon, 1/3) = \Theta\left(\frac{k}{\varepsilon \cdot \log k}\right)$$

With twice the samples error drops exponentially

$$S(H, \Delta_k, \varepsilon, e^{-n^{0.9}}) = \Theta\left(\frac{k}{\varepsilon \cdot \log k}\right)$$

- Modified estimators with small bounded differences
- Stronger guarantees from McDiarmid's inequality Most technical part of the paper
   Similar results for other properties

# Combining everything

Fast error for properties we study:

If 
$$n = S(f, \mathcal{P}, arepsilon, 1/3)$$
, then  $Sig(f, \mathcal{P}, arepsilon, e^{-4\sqrt{n}}ig) \leq 4n$ 

ML plug-in result:

If 
$$S(f,\mathcal{P},arepsilon,e^{-4\sqrt{n}}) \leq 4n$$
, then  $S^{pml}(f,\mathcal{P},2arepsilon,e^{-\sqrt{n}}) \leq 4n$ 

Combining, we are done!

# Computing PML distribution

- EM algorithm [Orlitsky Pan Sajama Santhanam Viswanathan Zhang '04,'13]
- Approximate PML via Bethe Permanents [Vontobel'14]
- Extensions of Markov Chains [Vatedka Vontobel'16]
- Approximation via relaxation [Jiao Pavlichin Weissman '17]:



#### **Entropy estimation**

#### Chapter 5: Directions

# Approximate PML

- Perhaps finding exact PML is hard
- Can show that approximating PML enough

#### Question:

Compute  $\exp(-n^{\beta})$  approximate PML for any  $\beta < 1$ 

Even this is optimal (for large k)

# Higher dimensions

• Estimate KL divergence between discrete distributions given samples (under assumptions of course)

[Bu Zou Liang Veeravalli '16, Han Jiao Weissman '16]

[Acharya '18]: PML is optimal for KL divergence estimation

- Higher order partitions

# Independent Proof Techniques

MLE good when something else is good

• ML performance independent of other results?



Is PML optimal for **every** symmetric property?

Can we do something for continuous distributions?

# Summary

- Symmetric property estimation
- PML plug-in approach
  - Universal, simple to state
  - Independent of particular properties

# In Fisher's words ...

Of course nobody has been able to prove that MLE is best under all circumstances. MLE computed with all the information available may turn out to be inconsistent. Throwing away a substantial part of the information may render them consistent.

R. A. Fisher

#### Thank You!