Coded and Uncoded Trace Reconstruction

Joao Ribeiro
Imperial College London

0

1

0 O

1

1

Deletion channel

Deletion channel

0O 1 0 0 1 1

'

O 1 0 0 1 1

Deletion channel

0O 1 0 0 1 1

'

O 1 0 0 1 1

'

0 1 1

Deletion channel

O 1 O O 1 1 g;rne; ;Ij:zﬂ:n patterns that lead to
' O 1 0 0 1 1
O 1 0 0 1 1
| O 1 0 O 1 1
O 1 O O I 1

0 1 1

Deletion channel

O 1 O O 1 1 S;?ne; ;Ij:zﬂ:n patterns that lead to
' O 1 0 0 1 1
O 1 0 0 1 1
| O 1 0 O 1 1
0 1 1 O 1 O O 1 1

I.I.d. deletions: each bit deleted independently with fixed probability d

Deletion channel

O 1 O O 1 1 S;?neer ;Ij:zﬂ:n patterns that lead to
' O 1 0 0 1 1
O 1 0 0 1 1
| O 1 0 O 1 1
0 1 1 O 1 O O 1 1

I.I.d. deletions: each bit deleted independently with fixed probability d

Many open problems! E.g., capacity is still unknown...

X

unknown
/\/ -bit string

Trace reconstruction

[Levenshtein01, BatuKannanKhannaMcGregor04]

i.i.d. deletion ch | — (1) Goal
1.1.4. deietion chnanne
y Reconstruct X from traces
1 t .

i.i.d. deletion channel —l y(z) y(), co oo y() such that:

. * We succeed with high

. probability] — O(1/N)
1.i.d. deletion channel —l y(t) * We use as few traces as

possible

Original motivation for trace reconstruction
[BatuKannanKhannaMcGregor04]

Ancestor DNA
mutations
(deletions, insertions, substitutions) l

D t 1 DNA D
escenden Descendent 2 DNA escendent 3 DNA

Multiple sequence alignment: Deduce common ancestor DNA from descendants DNA.

Main settings for

uncoded trace X
reconstruction T
/\/ -bit string

Worst-case trace reconstruction

Reconstruction algorithm &£ must
succeed with high probability
simultaneously for all input strings.

Vx: Pr (B, .., yD)=x] =~ 1
yD L yW—Del(x)

1.I.d. deletion channel

1.I.d. deletion channel

i.i.d. deletion channel —l y (t)

Average-case trace reconstruction

Average error probability of reconstruction
algorithm R over all input strings is small.

Pr [(9?((1), s (t)) _ .X] ~ 1
x—{0,1}¥,y0,....y"Del(x) ¢ Y

Worst-case trace reconstruction

Recall: Reconstruction algorithm must succeed for all strings with high probability.

Reconstruction
algorithms

#traces deletion probability

Batu, Kannan, Khanna, McGregor
2004 N logN d = 1/N1/2+€

Holenstein, Mitzenmacher, exp(N1/2)

Panigrahy, Wieder 2008 any constant < 1

De, O’Donnell, Servedio 2017
€XP(N1/3)

Nazarov, Peres 2017 any constant < 1

Mean-based algorithms &
worst-case trace reconstruction

X — i.i.d. deletions —_— Y (padded with 0’s)

e {—-1,1}¥ e {-1,0,1}V

Mean-based algorithms &
worst-case trace reconstruction

X — i.i.d. deletions —_— Y (padded with 0’s)

e {—-1,1}¥ e {-1,0,1}V

Mean trace: //l(.X) — (E[Yl], E[Yz], e oo E[YN]) (real-linear function of x)

Mean-based algorithms &
worst-case trace reconstruction

X — i.i.d. deletions —_— Y (padded with 0’s)

e {—-1,1}¥ e {-1,0,1}V

Mean trace: //l(X) — (E[Yl], E[Yz], ceos E[YN]) (real-linear function of x)

Mean-based algorithm:
» Compute estimate [of mean trace U(X) from T traces;
* Find X such that ,u(x) IS closest to /’j

[DeO’DonnellServedio17, NazarovPeres17]:
There exist mean-based algorithms using 7' = exp(/N l 3) traces. Moreover,

this is optimal for mean-based algorithms.

Mean-based algorithms & complex analysis

Mean trace: //t(X) — (E[Yl], E[Yz], cees E[YN]) (real-linear function of x)

traces required for accurate estimate /’j Is dictated by

min | [p(x) —p@x) ||, =2Xx min ||u@)]],
x;éx' XE{—I,O,I}N

Mean-based algorithms & complex analysis

Mean trace: Il/t(X) — (E[Yl], E[Yz], cees E[YN]) (real-linear function of x)

traces required for accurate estimate /’j Is dictated by

min | [p(x) —p@x) ||, =2Xx min ||u@)]],
x;éx' XE{—I,O,I}N

N
Deletion channel polynomial Pd X(W) = Z //t(x)j -w, weCl

j=1

Mean-based algorithms & complex analysis

Mean trace: Il/t()C) — (E[Yl], E[Yz], cees E[YN]) (real-linear function of x)

traces required for accurate estimate /’j Is dictated by

min | [p(x) —p@x) ||, =2Xx min ||u@)]],
x;éx')CE{—I,O,I}N

N
Deletion channel polynomial Pd X(W) = Z //t(x)j -w, weCl

j=1

Maximizing special polynomial

Bounding min | |u(x) ||, = over arc of complex circle

(can use powerful complex analytic tools!)

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j . Wj , weClC
j=1

INn terms of x

N
Pd,x(w) — (1 — d)ij . Zj z=d+ (1 - d)w Easy to write
j=1

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j -w, wel

j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Py(w) = (1 = d e=d+(l=dw
j=1

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j . Wj , weClC

j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Pyw)=(1-d e=d+(l=dw
j=1

[BorweinErdélyi97]

T
Z A(7) Littlewood polynomial

~| S

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j . Wj , weClC

j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Pyw)=(1-d e=d+(l=dw
j=1

[BorweinErdélyi97]

A(Z) Littlewood polynomial

10 —cL
>/ max |A(e") | > e

Mean-based algorithms & Littlewood polynomials
N .
Deletion channel polynomial Pd,x(w) — Z ,u(x)j -w/, wel

j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Pyw)=(1-d e=d+(l=dw
j=1

w suchthat z=¢" O¢&[—x/L,n/L]

[BorweinErdélyi97]

A(Z) Littlewood polynomial

10 —cL
>/ max |A(e") | > e

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j . Wj , weClC
j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Piw)=(1-d]) x-7
=]

_ - Easy to write
z=d+ (1 -dw in terms of x

w suchthat z=¢" O¢&[—x/L,n/L]

[BorweinErdélyi97]
A(Z) Littlewood polynomia M 1@ - lwl > (1= d)|A@?) (A-ineq)

10 —cL J
>/ max |A(e") | > e

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j -w, wel
j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Piw)=(1-d]) x-7
=]

_ - Easy to write
z=d+ (1 -dw in terms of x

— i(9 —
P [BorweinErdélyio7] W suchthat z =¢ € [—n/L,n/L]
A(7) Littlewood polynomial 2 \,u](x)\ |w V > (1 —d) ‘A(ele)‘ (A-ineq)
) > max |A(ele) | > e~ => [u) ||, > e — . |A(e")] (simple trig)

L

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,u(x)j . Wj , weClC
j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Piw)=(1-d]) x-7
=]

_ - Easy to write
z=d+ (1 -dw in terms of x

w suchthat z=¢" O¢&[—x/L,n/L]

[BorweinErdélyi97]
A(Z) Littlewood polynomia M 1@ - lwl > (1= d)|A@?) (A-ineq)

B J
)/’ max |A(e)| 2 e —], > e - [AE)] (simple trig

_cN :
= [|u)||,=e 2+ max |A(e")
oc|—n/L,7/L]

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,l/t(x)j . Wj , weClC
j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Piw)=(1-d]) x-7
=]

_ - Easy to write
z=d+ (1 -dw in terms of x

w suchthat z=¢" O¢&[—x/L,n/L]

[BorweinErdélyi97]
A(Z) Littlewood polynomial 2 Wj(x)‘ w V > (1 —d) ‘A(eie)‘ (A-ineq)
J
I max |A(€le)‘ > e —cL —> || ux)] \1 > e L2 \A(ele)\ (simple trig)
= [[u@], 2 e max |A@e")]
oc|—n/L,7/L]

_CN1/3
> e ([BE97] + Max wrt L)

Mean-based algorithms & Littlewood polynomials

N
Deletion channel polynomial Pd x(w) = Z ,l/t(x)j . Wj , weClC
j=1
Littlewood polynomial A(Z), X; e {—-1,0,1)}

N
Piw)=(1-d]) x-7
=]

_ - Easy to write
z=d+ (1 -dw in terms of x

hthat 7 = % =
[BorweinErdeélyio7] w suchthat z=e", 0€|-n/L,n/L]
J 0 .
A(Z) Littlewood polynomial 2 ‘/’tj(x)‘ wl >0 —=d)|Ae”)] (A-ineq)
J .
9 . n
— max |A(e™)] 2 e e = [|u)|], = e e . |A(e™)] (simple trig)
_ N .
= [|u) ||, Z e »- max |A(e'?) |
N3y oc|—x/L,z/L]
ON
traces suffice to —cNB3
>
dlstlngwsh mean traces : = € ([BE97] + Max wrt L)

Average-case trace reconstruction
Recall: Average error probability of reconstruction algorithm must be O(1/N).

Reconstruction
algorithms

#traces deletion probability

Batu, Kannan, Khanna, McGregor _
5004 log N d=1/logN

Holenstein, Mitzenmacher, poly(N) d<c
Panigrahy, Wieder 2008 for small absolute constant C

Peres, Zhai 2017 exp(log!? N) d<1/2

Holden, Pemantle, Peres 2018 exp(logm N) d<1

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

X (N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)

Suppose we know Xy, X, ..., X;_j X;
Goal: Find X,

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)

Suppose we know X, X5, ..., X;_; X;

l_
Goal: Find X,
2) Trace alignment: Align by anchor close to X;

“If X Is random, whp anchor in trace comes
from anchor in X.”

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)

Suppose we know X, X5, ..., X;_; X;

i—
Goal: Find X,

2) Trace alignment: Align by anchor close to X;

“If X Is random, whp anchor in trace comes
from anchor in X.”

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)
Suppose we know Xy, X, ..., X;_j X;
Goal: Find X,

2) Trace alignment: Align by anchor close to X;

[
“If X Is random, whp anchor in trace comes
from anChOI’ in X 7J]

3) Reconstruction: Estimate special bit

Y = distribution of “trace after anchor” 1
“There is special position Y -x that is decently
influenced by X ”

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)

Suppose we know X, X5, ..., X;_; X;

i—
Goal: Find X,

\ Use to estimate

—— ﬂ distribution of
Y.

| ———————— ’

2) Trace alignment: Align by anchor close to X;

“If X Is random, whp anchor in trace comes
from anchor in X.”

3) Reconstruction: Estimate special bit

Y = distribution of “trace after anchor” 1
“There is special position Y -x that is decently
influenced by X ”

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

1) Bootstrapping: Learn first bits of X “for free” X (N-bit string)

Suppose we know X, X5, ..., X;_; X;

i—
Goal: Find X,

\ Use to estimate

— ﬂ distribution of
Y

2) Trace alignment: Align by anchor close to X;

“If X Is random, whp anchor in trace comes
from anchor in X.”

3) Reconstruction: Estimate special bit

Y = distribution of “trace after anchor” 1
“There is special position Y -x that is decently

influenced by X ”
Recover X; whp using poly(N) traces!

| ower bounds for trace reconstruction

General recipe for lower bounds:

 Worst-case: Show it is hard to distinguish between two specific strings with few traces;

log N to show up ~ \/N times in
2

 Average-case: Worst-case LB + we expect bad string of length

random N-bit string.

Lower bounds
#traces

Worst-case Average-case

McGregor, Price, Vorotnikova
2014

Holden, Lyons 2018 N12 log>%> N

Chase 2019 NS log*> N

| ower bounds for trace reconstruction

[McGregorPriceVorotnikovail4] [HoldenLyons18, Chase19]
N traces necessary and sufficient to distinguish N L5 traces necessary and sufficient to distinguish
oN-1107V vs. QN10MN-! ODN1100DY vs. (0ODHN10(01)N!

000C
000C

V000 010110010101
V000 010101100101

Summing up...

Worst-case Average-case

trace reconstruction trace reconstruction

1/3 1/3
Upper bounds CXp (O(N)) eXP(O(IOg N))

#traces [DeO’DonnellServediol7, [HoldenPemantlePeres18]
NazarovPeres17]
5/2
Lower bounds ~ N 3/2 ~ lOg N

#traces

[HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

Summing up...

Worst-case Average-case

trace reconstruction trace reconstruction

exp(O(N'")) exp(O(log'™” N))

| — almost
fitraces [DeO’DonnellServediol7, [HoldenPemantlePeres18]

NazarovPeres17] / exponential gap
Lower bounds ~ N 3/2 ~ 10g5/2 N

Upper bounds

#traces

[HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

Summing up...

Worst-case Average-case

trace reconstruction trace reconstruction

exp(O(N'7)) exp(O(log'” N))

. — almost
wtraces [DeO’DonnellServediol7, [HoldenPemantlePeres18]

NazarovPeres17] / exponential gap
Lower bounds ~ N 3/2 ~ 10g5/2 N

Upper bounds

#traces

[HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

*All results over {0,1 }N,
as It is the hardest setting

Trace reconstruction and portable DNA-based storage
[YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.

Trace reconstruction and portable DNA-based storage
[YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.

Read from DNA via nanopores

nanopore sequencers I
ATCGACTCAAGCGTAGAC...
<= ATCGACTCAAGCGTAGAC... NoISy

ATCGACTCAAGCGTAGARC...

traces

ATCGACTCAAGCGTAGARC...

Trace reconstruction for the coding schemes in [YGM17, OAC+18] is based on heuristics.

Coded trace reconstruction
[CheraghchiGabrysMilenkovicRibeiro19]

i.i.d. deletion channel —p y(l) % g {O,l}N with ‘ %‘ — 2RN

1.i.d. deletion channel —l y (2)

x o o ®
o o o
unknown
codeword of

151

1.i.d. deletion channel — y (t)

Coded trace reconstruction
[CheraghchiGabrysMilenkovicRibeiro19]

I.i.d. deletion channel —l y(l) % g {O,l}N Wlth ‘ %‘ — 2RN
i.i.d. deletion channel —_— y(Z) ¢ hlgh rate R =1 — €, € = ON(l)
x ® ® ®

unknown
codeword of

151

1.i.d. deletion channel — y (t)

X

unknown
codeword of

151

Coded trace reconstruction
[CheraghchiGabrysMilenkovicRibeiro19]

i.i.d. deletion channel —p y(l) % g {O,l}N with ‘ %‘ — 2RN

I.i.d. deletion channel —_— y(z) ° hlgh rate R — 1 — €, €= ON(l)

e reconstructed from few traces
(t = 1(1/€) slow-growing) with
probability 1 — O(1/N)

1.i.d. deletion channel — y (t)

X

unknown
codeword of

151

Coded trace reconstruction
[CheraghchiGabrysMilenkovicRibeiro19]

i.i.d. deletion channel —p y(l) % g {O,l}N with ‘ %‘ — 2RN

I.i.d. deletion channel —_— y(z) ° hlgh rate R — 1 — €, €= ON(l)

e reconstructed from few traces

° ° (t = t(1/€) slow-growing) with
probability 1 — O(1/N)
- | () o efficiently encodable and
I.1.d. deletion channel — y reCOnStrUCtable (tlme poly(N))

Some related work

Haeupler, Mitzenmacher First-order capacity for small deletion probability
2014 (constant number of traces only)

Abroshan, Venkataramanan, Coding for multiple deletion channels with constant number of deletions only.

Uses VT codes. Builds up on work about file synchronization.

Dolecek, Guillén i Fabregas
2019

Average-case Implies existence of large codes reconstructable from few traces.
trace reconstruction No efficient encoding + we want to use even fewer traces.

PART I:
Markers + worst-case trace reconstruction

Basic construction

X N-bitstring S

Basic construction

X N-bitstring S

split into blocks with
m = O(log” N) bits

X /\-bit string

split into blocks with
m = O(log” N) bits

encode each block
using appropriate
sub-code % a

Basic construction

L7 T T

Basic construction

X N-bitstring -

split into blocks with
m = O(log” N) bits
encode each block C[gb l l l l

using appropriate

sub-code ¢,

{J = 0000...00

Oy D9 . N B
between blocks — 111111 -
O(log N) bits

Reconstruction

o = 0000...00 = 1111...11
O(log N) bits ~ Oflog N) bits

M < G,

Reconstruction

o = 0000...00 — 1111...11
O(log N) bits O(log N) bits

NI \“\ PII-

deletions

Ml € G,

Reconstruction

o = 0000...00 = 1111...11
O(log N) bits O(log N) bits

M € G,
Trace of codeword

e et IAIAIDIAIN

Reconstruction

o = 0000...00 = 1111...11
O(log N) bits O(log N) bits

M € G,
Trace of codeword

e et IAIAIDIAIN

|f %b IS chosen appropriately, long runs
of O’s in trace only come from markers

Reconstruction

o = 0000...00 = 1111...11
O(log N) bits O(log N) bits

M € G,
Koy observaton:par of wace comis Ay
f

|f %b IS chosen appropriately, long runs look for first 1
of 0’s in trace only come from markers after long run of O’s

Reconstruction

o = 0000...00 = 1111...11
O(log N) bits O(log N) bits

M € G,
Trace of codeword

Koy observaton:pat of race coming il

trace splitting
into sub-traces

|f %b IS chosen appropriately, long runs
of O’s in trace only come from markers

Reconstruction

o = 0000...00 — 1111...11
O(log N) bits O(log N) bits

Ml € G,

Trace of codeword
oo e o mmmmeammom

trace splitting
into sub-traces

| | worst-case trace | |

|f %b IS chosen appropriately, long runs
of O’s in trace only come from markers

Reconstruction

M € G,
Trace of codeword

Key observation: part of trace coming %//////A %/////A %/////A W

from a marker still looks like a marker.

o = 0000...00 = 1111...11
O(log N) bits O(log N) bits

trace splitting

If %b Is chosen appropriately, long runs Into sub-traces

of 0’s in trace only come from markers W WI ml W////%

Efficiently encodable/reconstructable l l worst-case trace l l
_ reconstruction
code withrate 1 — O(1/log N)

using exp(log'**7 N) traces for B B B

any constant deletion prob.

A tool for designing the sub-code:
Almost k-wise independent strings

¢-almost k-wise independent distribution: X € {0,] }"

Vil’ ...,ik,xl, ...,Xk : ‘PI‘[Xl-l — Xl, ...,Xik — xk] — 2_k| S €

A tool for designing the sub-code:
Almost k-wise independent strings

¢-almost k-wise independent distribution: X € {0,] }"

Vil’ ...,ik,xl, ...,Xk : ‘PI‘[Xl-l — Xl, ...,Xik — xk] — 2_k| S €

[AlonGoldreichHastadPeralta92]:
“For decent parameters, can efficiently generate such strings from few uniformly random bits”

A tool for designing the sub-code:
Almost k-wise independent strings

¢-almost k-wise independent distribution: X € {0,] }"

Vil’ ...,ik,xl, ...,.xk : ‘PI‘[Xl-l — Xl, ...,Xik — xk] — 2_k| S €

[AlonGoldreichHastadPeralta92]:
“For decent parameters, can efficiently generate such strings from few uniformly random bits”

1
Forevery m, k= O(logm) and € = there is a poly(m)-computable function

poly(m)
g+ {0,1} = {0,1}"

with ¢ = O(logm) such that g(U,) is €-almost k-wise independent.

Designing the sub-code

Desired property: No long runs of O’s in trace of C & %b — allows for trace splitting

Designing the sub-code

Desired property: No long runs of O’s in trace of C & %b — allows for trace splitting

g {O,l}t —> {O,l}m generator from [AGHP92] with 7 = O(IOg m)

: g (U t) satisfies property with high probability

Designing the sub-code

Desired property: No long runs of O’s in trace of C & %b — allows for trace splitting

g {O,l}t —> {O,l}m generator from [AGHP92] with [= O(IOg n)

: g (U t) satisfies property with high probability

To encode x € {0,1}"™:

Designing the sub-code

g . {0,1 }t —> {0,1 }m generator from [AGHP92] with 7 = O(IOg m)

: g (U t) satisfies property with high probability

To encode x € {0,1}":

D
)

g(U)

Designing the sub-code

g . {0,1 }t —> {0,1 }m generator from [AGHP92] with 7 = 0(log m)

: g (U t) satisfies property with high probability

To encode x € {0,1}":

g(U)

Designing the sub-code

g . {0,1 }t —> {0,1 }m generator from [AGHP92] with 7 = 0(log m)

: g (U t) satisfies property with high probability

To encode x € {0,1}":

satisfies property whp

@ So there is good fixing U, = 7

that enforces property
g()

Designing the sub-code

Desired property: No long runs of O’s in trace of C & %b — allows for trace splitting

g {O,l}t —> {O,l}m generator from [AGHP92] with [= O(IOg n)

: g (U t) satisfies property with high probability

To encode x € {0,1}":

Enc(x) = (Z chosen so that property is satisfied)

log m

PART II:
Markers +
modified average-case trace reconstruction

Subseguence-unigue strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string X Iis w-subsequence-unique if no substring of length w can be obtained by deleting
bits of another substring of length 1.1w (except for trivial containment).

Subseguence-unigue strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string X Iis w-subsequence-unique if no substring of length w can be obtained by deleting
bits of another substring of length 1.1w (except for trivial containment).

. . Efficient trace reconstruction algorithm for all
Deletion probability . .

length m w-subsequence-unique strings
small enough constant

with w = O(log m) using poly(m) traces.

Subseguence-unigue strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string X Iis w-subsequence-unique if no substring of length w can be obtained by deleting
bits of another substring of length 1.1w (except for trivial containment).

. . Efficient trace reconstruction algorithm for all
Deletion probability . .

length m w-subsequence-unique strings
small enough constant

with w = O(log m) using poly(m) traces.

Key observation: an €-almost k-wise independent string is w-subsequence-unique
with high probability for decent parameters k and ¢.

Better codes for small deletion probabillity

Use masking to encode T
blocks into “almost” X)
.] = {O 1 }m encoded as _ o
subsequence-unique strings) log m w-subsequence-unigue
w = O(log m)

Better codes for small deletion probability

Use masking to encode > T
blocks into “almost” X

= {O 1}m encoded as

subseqgquence-unique strings log m w-subsequence-unigue
w = O(log m)
O(log m)
x @D g(2) 000...000
O(/m) m = O(log> N) O(/m)

HMPW trace reconstruction algorithm doesn’t work for strings like this...

Better codes for small deletion probability

O(log m)
O(/m) m = O(log® N) O(/m)

First barrier: HMPW algorithm needs to know first log m bits of x @ g(z) “for free”
Original bootstrapping procedure requires 2\% = poly(N) traces in this case...

Better codes for small deletion probabillity

O(log m)
O(/m) m = O(log® N) O(/m)

First barrier: HMPW algorithm needs to know first log m bits of x @ g(z) “for free”
Original bootstrapping procedure requires 2\% = poly(N) traces in this case...

Exploit properties of masking:

x'=00...00[|lx =—d» z||C"D g(2))

encoded as

Better codes for small deletion probabillity

O(log m)
O(/m) m = O(log® N) O(/m)

First barrier: HMPW algorithm needs to know first log m bits of x @ g(z) “for free”
Original bootstrapping procedure requires 2\/E = poly(N) traces in this case...

Exploit properties of masking:

x'=00...00||x = z||(XDg))

encoded as

, __ systematic encoding of ()| | z robust against
~ constant fraction of deletions+insertions

Better codes for small deletion probabillity

O(log m)
O(/m) m = O(log® N) O(/m)

First barrier: HMPW algorithm needs to know first log m bits of x @ g(z) “for free”
Original bootstrapping procedure requires 2\/E = poly(N) traces in this case...

Exploit properties of masking:

x'=00...00||x = Z'|]("D g2))

encoded as

, __ systematic encoding of ()| | z robust against
~ constant fraction of deletions+insertions

Better codes for small deletion probabillity

O(log m)
O(/m) m’ =~ m = O(log> N) O(/m)

First barrier: HMPW algorithm needs to know first log m bits of x @ g(z) “for free”
Original bootstrapping procedure requires 2\/E = poly(N) traces in this case...

Exploit properties of masking:

x'=00...00||x = Z'|]("D g2))

encoded as

, __ systematic encoding of ()| | z robust against
~ constant fraction of deletions+insertions

Better codes for small deletion probabillity
O(log m)

O(/m) m’ =~ m = O(log> N) O(/m)

First barrier: HMPW algorithm needs to know first log m bits of x @ g(z) “for free”
Original bootstrapping procedure requires 2\/E = poly(N) traces in this case...

Exploit properties of masking:

x'=00...00||x =——bp [(x" D 2(2)) Bootstrapping only
encoded as requires O(m)

. . . traces now!
, _ systematic encoding of () | | Z robust against

constant fraction of deletions+insertions

Better codes for small deletion probabillity

A few more things:
e Actually need a stronger property than subsequence-uniqueness because of markers;
* Need to make sure trace splitting works.

Almost k-wise independent string satisfies both of them with high probability.

There is an absolute constant d* & (0,1) such that forall d < d* there
exists an efficiently encodable/reconstructable code with rate 1 — O(1/log N)
using polylog(N) traces against i.i.d. deletions with probability d.

Coded trace reconstruction over large alphabets
|[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate 1 — € over
an alphabet of size O_.(1) using O(log,,(1/¢€)) traces.

Moreover, this is tight.

Coded trace reconstruction over large alphabets
|[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate 1 — € over
an alphabet of size O_.(1) using O(log,,(1/¢€)) traces.

Moreover, this is tight.

Lower bound:

Capacity of T-use deletion channel < Capacity of T-use erasure channel = | — g’

Coded trace reconstruction over large alphabets
|[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate 1 — € over
an alphabet of size O_.(1) using O(log,,(1/¢€)) traces.

Moreover, this is tight.

Lower bound:

Capacity of T-use deletion channel < Capacity of T-use erasure channel = | — g’

—> l-e¢<1-dT =—=> T >log,(1/e)

A tool for the upper bound: Synchronization strings
[HaeuplerShahrasbi17]

A string § is a T-synchronization string if forall | < j < k

ED(Sy; iy, Spjp) > (1 —0)(k — 1)

A tool for the upper bound: Synchronization strings
[HaeuplerShahrasbi17]

A string § is a T-synchronization string if forall | < j < k

ED(Sy; iy, Spjp) > (1 —0)(k — 1)

~

“close” to maximal edit distance everywhere

A tool for the upper bound: Synchronization strings
[HaeuplerShahrasbi17]

A string § is a T-synchronization string if forall | < j < k

ED(Sy; iy, Spjp) > (1 —0)(k — 1)

~

“close” to maximal edit distance everywhere

For every 7, can efficiently construct a 7-synch-string of length N
over an alphabet of size poly(1/7).

Why are synchronization strings useful?

naive
indexing

C = (C19 629 coos CN) = ZN EEE— ((6191)9 (62’2)’ "t (CN’ N)) = (2 X [N])N

Why are synchronization strings useful?

naive
ndexing

C = (Cla 629 coos CN) = ZN I—> ((6191)9 (62’2)’ "t (CN’ N)) = (2 X [N])N

(c,1) (62) (€3,3) (cp4)

l

(c,1) (0,2) (c3,3) (cu.4)

l deletions

(c,1) (c3,3)

Why are synchronization strings useful?

naive
indexing

C = (Cla 629 coos CN) = ZN EEE— ((6191)9 (62’2)’ "t (CN’ N)) = (2 X [N])N

(Cla 1) (6292) (6393) (6494) Cl C2 C3 C4
(Cla 1) (C292) (6333) (6494) eqUi_:,Oalent Cl Cz C3 C4
l deletions l erasures

(c,1) (€3,3) S & T

Why are synchronization strings useful?

[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by
Indexing with synchronization string, with constant alphabet size blowup”™

dN deleti
S e yN _ v deenens ¢/ e s(-dN

T -synchronization string

Why are synchronization strings useful?

[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by
Indexing with synchronization string, with constant alphabet size blowup”™

dN deleti
S e yN _ v deenens ¢/ e s(-dN

T -synchronization string

“Error-free” indexing algorithm:

find correct index l:]- such
that . is mapped to 5}.’ by
J

S / deletion process

J \ abort and output special

symbol ? (misdecoding)

Why are synchronization strings useful?

[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by
Indexing with synchronization string, with constant alphabet size blowup”™

dN deletions
/ _
S — ZN -_— S = 2(1 d)N
T -synchronization string
“Error-free” indexing algorithm: [HaeuplerShahrasbi17]:
. . . There Is efficient error-free indexing
find correct index L; such | i L o t
that Sij is mapped to 5}.’ by algorthm with at mos

W deletion process tdN

J \ abort and output special |l —7

symbol ? (misdecoding) misdecodings.

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size 06(1) using O(IOgl/d(l/ €)) traces

§ (¢ = €%) -synchronization string over alphabet of size O.(1)

% rate ~ | — € code robust against ~ e fraction of erasures

Construction: Index codewords of & with §

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size 06(1) using O(IOgl/d(l/ €)) traces

§ (¢ = €%) -synchronization string over alphabet of size O.(1)

% rate ~ | — € code robust against ~ e fraction of erasures

Construction: Index codewords of & with §

(rrenty) €6 ——

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size O (1) using O(log,,(1/€)) traces
Reconstruction:

Trace of codeword

X115 412 X215 422 X31,X37 X415 X42

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size O (1) using O(log,,(1/€)) traces

Reconstruction: / /
Trace of codeword X115 %12 X215 422 X31,X37 X415 X42

symbols from synch string

\ N

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size 06(1) using 0(10g1/d(1/ €)) traces
symbols from synch string

Reconstruction: / / \ \
Trace of codeword X115 X12 X215 %22 X315 X39 X41> X497 ¢ oo

run error-free
iIndexing algorithm
? ?

on second symbol

3

Ly

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size O (1) using O(log,,(1/€)) traces
symbols from synch string

Reconstruction: / / \ \
Trace of codeword X110 X12 X215 %22 X31> X39 X415 X402 ¢ o o

run error-free
iIndexing algorithm
on second symbol
? ?
recover treat as recover treat as

Ci, = Xq erasure Ci, = X3 erasure

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size 06(1) using O(IOgl/d(l/ €)) traces

symbols from synch string

Reconstruction: / / \ \
Trace of codeword A11> %12 215 X22 X315 X39 X41> X497 ¢ o o
run error-free

iIndexing algorithm l l l

on second symbol

recover treat as recover treat as
Ci1 = X1 erasure Ci3 = X34 erasure
e>N
erasures < #misdecodings + #(symbols deleted in every trace) < +d!'N < 3N

2

Coded trace reconstruction
from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size 06(1) using O(IOgl/d(l/ €)) traces

Reconstruction:

Trace of codeword

erasures

<

symbols from synch string

X115 412 (215422 X31,X37 X415 X42 °© oo
?

run error-free
iIndexing algorithm
)

on second symbol

% corrects this

recover treat as recover treat as '
C: = X erasure C. = X erasure many erasures!
ly 11 is 31
e’ N j
misdecodings + #(symbols deleted in every trace) < +d!'N < 3N

2

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring .

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -

% large alphabet code correcting
out many substitutions

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -
many substations 0 LT
%out many substitutions C C Cgout
1 /3-synchronization string e
5 overaiphaetof size O(1)

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -
many substations 0 LT
%out many substitutions C C Cgout
1 /3-synchronization string e
5 overalphabet of size O(1)

concatenate with
binary code

C.

1° ™1

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -
many substations 0 LT
%out many substitutions C C Cgout
1 /3-synchronization string e
5 overalphabet of size O(1)

concatenate with _ n
binary code / EnCR(Cz) | 1
ogm m ogm

C-

1° ™1

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -
many substations 0 LT
%out many substitutions C C Cgout
1 /3-synchronization string e
5 overalphabet of size O(1)

concatenate with E - _
binary code / R(1) 1 1] ense” coaewor
0gm m ogm

C.

1° ™1

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -
many substations 0 LT
%out many substitutions C C Cgout
1 /3-synchronization string e
5 overalphabet of size O(1)

concatenate with
binary code

C ; “Dense” codeword TBD

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

X N-bitstring -
many substations 0 LT
%out many substitutions C C Cgout
1 /3-synchronization string e
5 overaiphaetof size O(1)

concatenate with
binary code

C ; “Dense” codeword TBD

Robust against deletions,
with two possible runlengths,
same number of runs

Reconstruction

Reconstruction

bl IR G I T

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

"%/ R

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

Y777, 18

~/

S

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

Wmnmn-ai

S; | run error-free
iIndexing algo

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

Wmnmn-ai

~ run error-free
recover § ——>p

. : —P Recover index l
iIndexing algo

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

Y

trace of C; recover S’ — : —» Recover index l
whp indexing algo

Reconstruction

Y77, 8 M. Wik

1) Trace alignment:

Long runs only come from markers : Find traces of (most) synch symbols

Y

trace of C; recover S’ —_—
whp

run error-free

. : —P Recover index l
iIndexing algo

2) Use special trace rec properties of ? + error-correction properties of qgout

Designing the (existential) inner code

00...0 C € ¢

logm m log m

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

Designing the (existential) inner code

00...0 Cc € €

log m m log m

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

: If m is small, can brute force high-rate code ? to require few traces + be dense!

Designing the (existential) inner code

00...0 Cc € €

logm m log m

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

: If m is small, can brute force high-rate code ? to require few traces + be dense!

: Using [HPP18], reconstruct ? with exp(log!’® m) traces.

Combining everything

1 1
Set inner code lengthto m = —log (—) toensurerate > 1 —¢
€ €

[BrakensiekLiSpang19]

For any constant deletion probability and every €, there exists a code of
rate 1| — € that can be reconstructed from exp(l()gl/3 (1/€)) traces.

Combining everything

1 1
Set inner code lengthto m = —log (—) toensurerate > 1 —¢
€ €

[BrakensiekLiSpang19]

For any constant deletion probability and every €, there exists a code of
rate 1 — € that can be reconstructed from exp(l()gl/3 (1/€)) traces.

Caveat: Inner code construction takes time exp(m).

| . loglog N
: Overall code construction only efficient for € >
log N

Summing up...

We can exploit worst-case and average-case trace reconstruction to design efficient high-rate
codes requiring significantly fewer traces, or satisfying other nice properties.

efficient encoding
& reconstruction

observations

rate=1-¢ #traces

Markers + modified 1

C Deletion probabillity
avg-case trace rec € = lOg N J smaller than absolute
[CGMR19] lOg N constant

Synch string + Markers + 1 -
existential trace rec € — exp((l() Y lo Y N)1/ 3) C(?de Cons?crgctlon
IBLS19] log N IS not efficient
Synch string + Markers + IQg log N 1/3 Arbitrary constant
existential trace rec € > eXp(l() g (1 / (—j)) J

[BLS19] log N deletion probability

Summing up...

We can exploit worst-case and average-case trace reconstruction to design efficient high-rate
codes requiring significantly fewer traces, or satisfying other nice properties.

efficient encoding
& reconstruction

observations

rate=1-¢ #traces

Markers + modified 1

C Deletion probabillity
avg-case trace rec € = lOg N J smaller than absolute
[CGMR19] lOg N constant

Synch string + Markers + 1 -
existential trace rec € — exp((l() Y lo Y N)1/ 3) C(?de Cons?crgctlon
IBLS19] log N IS not efficient
Synch stringl+ Markers + S lo g lOg N (1 1/3 (1/)) J Arbitrary constant
existential trace rec cX O € . .
IBLS19] €= 1o o N pUog deletion probability

1
Lower bound [BLS19]: Arbitrary code of rate 1 — ¢ ﬁ requires =~ log5/2 (—) traces

€

Future work

e Efficient high-rate codes using even fewer traces;
 Bridge gap between bounds for (coded and uncoded) trace reconstruction;

 High-rate codes that handle deletions and random insertions with few traces;

Future work

e Efficient high-rate codes using even fewer traces;
 Bridge gap between bounds for (coded and uncoded) trace reconstruction;

 High-rate codes that handle deletions and random insertions with few traces;

Thanks!

