Coded and Uncoded Trace Reconstruction

João Ribeiro Imperial College London

0 1 0 1 1

Other deletion patterns that lead to same output

0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1

i.i.d. deletions: each bit deleted independently with fixed probability d

Other deletion patterns that lead to same output

0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1

i.i.d. deletions: each bit deleted independently with fixed probability d

Many open problems! E.g., capacity is still unknown...

Other deletion patterns that lead to same output

 0
 1
 0
 0
 1
 1

 0
 1
 0
 0
 1
 1

 0
 1
 0
 0
 1
 1

 0
 1
 0
 0
 1
 1

Trace reconstruction [Levenshtein01, BatuKannanKhannaMcGregor04]

y⁽¹⁾

 $y^{(2)}$

 $v^{(t)}$

Reconstruct X from traces $y^{(1)}, ..., y^{(t)}$ such that:

- We succeed with high probability 1 - O(1/N)
- We use as few traces as possible

Original motivation for trace reconstruction [BatuKannanKhannaMcGregor04]

mutations (deletions, insertions, substitutions)

Multiple sequence alignment: Deduce common ancestor DNA from descendants DNA.

Main settings for uncoded trace reconstruction

Worst-case trace reconstruction

Reconstruction algorithm \mathscr{R} must succeed with high probability simultaneously for all input strings.

 $\forall x: \Pr_{y^{(1)}, \dots, y^{(t)} \leftarrow \mathsf{Del}(x)} \left[\mathscr{R}(y^{(1)}, \dots, y^{(t)}) = x \right] \approx 1$

Average error probability of reconstruction algorithm \mathscr{R} over all input strings is small.

 $\Pr_{x \leftarrow \{0,1\}^N, y^{(1)}, \dots, y^{(t)} \leftarrow \mathsf{Del}(x)} \left[\mathscr{R}(y^{(1)}, \dots, y^{(t)}) = x \right] \approx 1$

Worst-case trace reconstruction

Recall: Reconstruction algorithm must succeed for all strings with high probability.

Reconstruction algorithms	#traces	deletion probability
Batu, Kannan, Khanna, McGregor 2004	N log N	$d = 1/N^{1/2 + \epsilon}$
Holenstein, Mitzenmacher, Panigrahy, Wieder 2008	$\exp(N^{1/2})$	any constant < 1
De, O'Donnell, Servedio 2017 Nazarov, Peres 2017	$\exp(N^{1/3})$	any constant < 1

Mean-based algorithms & worst-case trace reconstruction

$\longrightarrow Y \quad \text{(padded with 0's)} \\ \in \{-1,0,1\}^N$

Mean-based algorithms & worst-case trace reconstruction

Mean trace: $\mu(x) = (E[Y_1], E[Y_2], ..., E[Y_N])$

$\longrightarrow Y \quad \text{(padded with 0's)} \\ \in \{-1,0,1\}^N$

 $[2], \ldots, E[Y_N])$ (real-linear function of x)

Mean trace: $\mu(x) = (E[Y_1], E[Y_2])$

Mean-based algorithm:

- Compute estimate $\hat{\mu}$ of mean trace $\mu(x)$ from T traces;
- Find \mathcal{X} such that $\mu(x)$ is closest to $\hat{\mu}$.

[DeO'DonnellServedio17, NazarovPeres17]: this is optimal for mean-based algorithms.

$$\longrightarrow Y \quad \text{(padded with 0's)} \\ \in \{-1,0,1\}^N$$

$$[2], \ldots, E[Y_N])$$
 (real-linear function of x)

1 17 There exist mean-based algorithms using $T = \exp(N^{1/3})$ traces. Moreover,

Mean-based algorithms & complex analysis

- Mean trace: $\mu(x) = (E[Y_1], E[Y_2], ..., E[Y_N])$ (real-linear function of x)
- #traces required for accurate estimate $\hat{\mu}$ is dictated by

 $\min_{x \neq x'} ||\mu(x) - \mu(x')||_1 = 2 \times \min_{x \in \{-1, 0, 1\}^N} ||\mu(x)||_1$

Mean-based algorithms & complex analysis

Mean trace: $\mu(x) = (E[Y_1], E[Y_2], \dots, E[Y_N])$ (real-linear function of x)

#traces required for accurate estimate $\hat{\mu}$ is dictated by

Deletion channel polynomial P_{λ}

 $\min_{x \neq x'} ||\mu(x) - \mu(x')||_1 = 2 \times \min_{x \in \{-1, 0, 1\}^N} ||\mu(x)||_1$

$$d_{d,x}(w) = \sum_{j=1}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

Mean-based algorithms & complex analysis

Mean trace: $\mu(x) = (E[Y_1], E[Y_2], ..., E[Y_N])$

#traces required for accurate estimate $\hat{\mu}$ is dictated by

Deletion channel polynomial P_{λ}

Bounding $\min ||\mu(x)||_1$ \approx

- (real-linear function of x)

 $\min_{x \neq x'} ||\mu(x) - \mu(x')||_1 = 2 \times \min_{x \in \{-1, 0, 1\}^N} ||\mu(x)||_1$

$$_{d,x}(w) = \sum_{j=1}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

(can use powerful complex analytic tools!)

$$P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$$

Deletion channel polynomial $P_{d,x}(w) = \sum_{j=1}^{\infty} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$ j=1

$$z = d + (1 - d)w$$

Easy to write in terms of x

Deletion channel polynomial $P_{d,x}(w)$

Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

Deletion channel polynomial $P_{d,x}(w)$

Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

$$\sum_{j} |\mu_j(x)| \cdot |w|^j \ge (1-d) |A(e^{i\theta})| \qquad (\triangle-ine)$$

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

$$\sum_{j} |\mu_{j}(x)| \cdot |w|^{j} \ge (1-d) |A(e^{i\theta})| \qquad (\triangle-ine)$$

$$\implies ||\mu(x)||_{1} \ge e^{-\frac{c'N}{L^{2}}} \cdot |A(e^{i\theta})| \qquad (simple)$$

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z) $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

$$\sum_{i} |\mu_{j}(x)| \cdot |w|^{j} \ge (1-d) |A(e^{i\theta})| \qquad (\triangle-ine)$$

$$\implies ||\mu(x)||_1 \ge e^{-\frac{c'N}{L^2}} \cdot |A(e^{i\theta})| \qquad \text{(simple})$$

$$\implies ||\mu(x)||_1 \ge e^{-\frac{cN}{L^2}} \cdot \max_{\theta \in [-\pi/L, \pi/L]} |A(e^{i\theta})|$$

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

w such that $z = e^{i\theta}$, $\theta \in [-\pi/L, \pi/L]$

$$\sum |\mu_j(x)| \cdot |w|^j \ge (1-d) |A(e^{i\theta})| \qquad (\triangle-ineq)$$

$$\implies ||\mu(x)||_1 \ge e^{-\frac{c'N}{L^2}} \cdot |A(e^{i\theta})| \qquad \text{(simple})$$

$$\implies ||\mu(x)||_1 \ge e^{-\frac{cN}{L^2}} \cdot \max_{\theta \in [-\pi/L, \pi/L]} |A(e^{i\theta})|$$

 $\geq e^{-cN^{1/3}}$ ([BE97] + Max wrt L)

 $P_{d,x}(w)$ **Deletion channel polynomial**

> Littlewood polynomial A(z $P_{d,x}(w) = (1 - d) \sum_{j=1}^{N} x_j \cdot z^j$

[BorweinErdélyi97]

A(z) Littlewood polynomial max $|A(e^{i\theta})| \ge e^{-cL}$

⁾ traces suffice to distinguish mean traces

$$= \sum_{\substack{j=1 \\ x_j \in \{-1,0,1\}}}^{N} \mu(x)_j \cdot w^j, \quad w \in \mathbb{C}$$

$$z = d + (1 - d)w$$

Easy to write in terms of x

$$\sum_{i} |\mu_{j}(x)| \cdot |w|^{j} \ge (1-d) |A(e^{i\theta})| \qquad (\triangle-ineq)$$

$$\implies ||\mu(x)||_1 \ge e^{-\frac{c'N}{L^2}} \cdot |A(e^{i\theta})| \qquad \text{(simple})$$

$$\implies ||\mu(x)||_{1} \ge e^{-\frac{cN}{L^{2}}} \cdot \max_{\theta \in [-\pi/L, \pi/L]} |A(e^{i\theta})|$$

$$\stackrel{\longleftarrow}{\longleftarrow} \ge e^{-cN^{1/3}} \qquad ([BES])$$

Average-case trace reconstruction

Recall: Average error probability of reconstruction algorithm must be O(1/N).

Reconstruction algorithms	#traces	deletion probability
Batu, Kannan, Khanna, McGregor 2004	$\log N$	$d = 1/\log N$
Holenstein, Mitzenmacher, Panigrahy, Wieder 2008	poly (<i>N</i>)	d < c for small absolute constant c
Peres, Zhai 2017	$\exp(\log^{1/2} N)$	<i>d</i> < 1/2
Holden, Pemantle, Peres 2018	$\exp(\log^{1/3} N)$	d < 1

1) Bootstrapping: Learn first bits of X "for free"

1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_1, X_2, \ldots, X_{i-1}$ Goal: Find X_i

1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_1, X_2, \ldots, X_{i-1}$ Goal: Find X_i

2) Trace alignment: Align by **anchor** close to X_i

"If X is random, whp anchor in trace comes from anchor in X."

1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_1, X_2, \ldots, X_{i-1}$ Goal: Find X_i

2) Trace alignment: Align by **anchor** close to X_i

"If X is random, whp anchor in trace comes from anchor in X."

1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_1, X_2, \ldots, X_{i-1}$ **Goal:** Find X_i

2) Trace alignment: Align by **anchor** close to X_i

"If X is random, whp anchor in trace comes" from anchor in X."

3) **Reconstruction:** Estimate special bit

Y = distribution of "trace after anchor"

"There is special position $Y_{i\star}$ that is decently influenced by X_i "

$|\Pr[Y_{j^*} = 1 | X_i = 1] - \Pr[Y_{j^*} = 1 | X_i = 0]| \ge \frac{1}{NC}$

1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_1, X_2, \ldots, X_{i-1}$ **Goal:** Find X_i

2) Trace alignment: Align by **anchor** close to X_i

"If X is random, whp anchor in trace comes" from anchor in X."

3) **Reconstruction:** Estimate special bit

Y = distribution of "trace after anchor"

"There is special position $Y_{i\star}$ that is decently influenced by X_i "

 $|\Pr[Y_{j^{\star}} = 1 | X_i = 1] - \Pr[Y_{j^{\star}} = 1 | X_i = 0]| \ge \frac{1}{NC}$

1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_1, X_2, \ldots, X_{i-1}$ Goal: Find X_i

2) Trace alignment: Align by **anchor** close to X_i

"If X is random, whp anchor in trace comes from anchor in X."

3) Reconstruction: Estimate special bit

Y = distribution of "trace after anchor"

"There is special position $Y_{j\star}$ that is decently influenced by X_i "

$$|\Pr[Y_{j^{\star}} = 1 | X_i = 1] - \Pr[Y_{j^{\star}} = 1 | X_i = 0]| \ge -\frac{1}{N}$$

Recover X_i whp using **poly**(N) traces!

Lower bounds for trace reconstruction

General recipe for lower bounds:

- Worst-case: Show it is hard to distinguish between two specific strings with few traces;
- random *N*-bit string.

Average-case: Worst-case LB + we expect bad string of length $\frac{\log N}{1}$ to show up $\approx \sqrt{N}$ times in

orst-case	Average-case
N	$\log^2 N$
$N^{1.25}$	$\log^{2.25} N$
$N^{1.5}$	$\log^{2.5} N$

Lower bounds for trace reconstruction

[McGregorPriceVorotnikova14]

N traces **necessary and sufficient** to distinguish $0^{N-1}10^N$ vs. 0^N10^{N-1}

0000100000

[HoldenLyons18, Chase19]

 $N^{1.5}$ traces **necessary and sufficient** to distinguish $(01)^{N-1}10(01)^N$ vs. $(01)^N10(01)^{N-1}$

010110010101 010101100101

Summing up...

Worst-case trace reconstruction

Upper bounds #traces

$$\exp(O(N^{1/3}))$$

[DeO'DonnellServedio17, NazarovPeres17]

Lower bounds #traces

 $\approx N^{3/2}$

[HoldenLyons18, Chase19]

Average-case trace reconstruction

$$\exp(O(\log^{1/3} N))$$

[HoldenPemantlePeres18]

$$\approx \log^{5/2} N$$

[HoldenLyons18, Chase19]

Summing up...

Worst-case trace reconstruction

Upper bounds #traces

$$\exp(O(N^{1/3}))$$

[DeO'DonnellServedio17, NazarovPeres17]

Lower bounds #traces

 $\approx N^{3/2}$

[HoldenLyons18, Chase19]

Average-case trace reconstruction

$$\exp(O(\log^{1/3} N))$$

[HoldenPemantlePeres18]

$$\approx \log^{5/2} N$$

[HoldenLyons18, Chase19]

almost

Summing up...

Worst-case trace reconstruction

Upper bounds #traces

 $\exp(O(N^{1/3}))$

[DeO'DonnellServedio17, NazarovPeres17]

Lower bounds #traces $\approx N^{3/2}$

[HoldenLyons18, Chase19]

*All results as it is the

Average-case trace reconstruction

$$\exp(O(\log^{1/3} N))$$

[HoldenPemantlePeres18]

$$\approx \log^{5/2} N$$

[HoldenLyons18, Chase19]

s over
$$\{0,1\}^N$$
, hardest setting

almost

Trace reconstruction and portable DNA-based storage [YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.

Trace reconstruction and portable DNA-based storage [YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.

Read from DNA via

Trace reconstruction for the coding schemes in [YGM17, OAC+18] is based on heuristics.

 $y^{(1)}$ $v^{(2)}$

- $\mathscr{C} \subseteq \{0,1\}^N$ with $|\mathscr{C}| = 2^{RN}$
 - high rate $R = 1 \epsilon$, $\epsilon = o_N(1)$
 - reconstructed from few traces $(t = t(1/\epsilon) \text{ slow-growing})$ with probability 1 - O(1/N)

 $v^{(1)}$ $v^{(2)}$

- $\mathscr{C} \subseteq \{0,1\}^N$ with $|\mathscr{C}| = 2^{RN}$
 - high rate $R = 1 \epsilon$, $\epsilon = o_N(1)$
 - reconstructed from few traces $(t = t(1/\epsilon) \text{ slow-growing})$ with probability 1 - O(1/N)
 - efficiently encodable and reconstructable (time poly(N))

Some related work

Haeupler, Mitzenmacher 2014	First-
Abroshan, Venkataramanan, Dolecek, Guillén i Fàbregas 2019	Coding for multiple o Uses VT co
Average-case trace reconstruction	Implies existe No efficien

-order capacity for small deletion probability (constant number of traces only)

deletion channels with **constant number of deletions only**. odes. Builds up on work about file synchronization.

ence of large codes reconstructable from few traces. It encoding + we want to use even fewer traces.

PART I: Markers + worst-case trace reconstruction

\mathcal{X} *N*-bit string

\mathcal{X} *N*-bit string

split into blocks with $m = O(\log^2 N)$ bits

$${\mathcal X}$$
 N-bit string

split into blocks with $m = O(\log^2 N)$ bits

encode each block using appropriate sub-code \mathcal{C}_b

$${\mathcal X}$$
 N-bit string

split into blocks with $m = O(\log^2 N)$ bits

```
encode each block
using appropriate
sub-code \mathscr{C}_b
```

add markers **between blocks**

$$\begin{array}{l} \bullet = 0000...00 \\ \bullet (\log N) \text{ bits} \\ \bullet = 1111...11 \\ \bullet (\log N) \text{ bits} \end{array}$$

= 0000...00O(log N) bits

= 1111...11O(log N) bits

= 0000...00O(log N) bits

= 1111...11 O(log N) bits

= 1111...11 O(log N) bits

Key observation: part of trace coming from a marker still looks like a marker.

Trace of codeword

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_b is chosen appropriately, long runs of 0's in trace **only** come from markers

= 1111...11O(log N) bits

Trace of codeword

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_b is chosen appropriately, long runs of 0's in trace **only** come from markers

= 1111...11O(log N) bits

Trace of codeword

look for first 1 after long run of 0's

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_b is chosen appropriately, long runs of 0's in trace **only** come from markers

= 1111...11O(log N) bits

Trace of codeword

trace splitting into sub-traces

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_b is chosen appropriately, long runs of 0's in trace **only** come from markers

= 1111...11O(log N) bits

Trace of codeword

trace splitting into sub-traces

worst-case trace reconstruction

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_b is chosen appropriately, long runs of 0's in trace **only** come from markers

Efficiently encodable/reconstructable code with rate $1 - O(1/\log N)$ using $\exp(\log^{1/3+\gamma} N)$ traces for any constant deletion prob.

= 1111...11O(log N) bits

Trace of codeword

trace splitting into sub-traces

worst-case trace reconstruction

A tool for designing the sub-code: Almost k-wise independent strings

 ϵ -almost k-wise independent distribution: $X \in \{0,1\}^m$

- $\forall i_1, \dots, i_k, x_1, \dots, x_k : |\Pr[X_{i_1} = x_1, \dots, X_{i_k} = x_k] 2^{-k}| \le \epsilon$

A tool for designing the sub-code: Almost *k*-wise independent strings

 ϵ -almost k-wise independent distribution

$$\forall i_1, \dots, i_k, x_1, \dots, x_k : |\Pr[X_{i_1} = x_1, \dots, X_{i_k} = x_k] - 2^{-k}| \le \epsilon$$

[AlonGoldreichHåstadPeralta92]: "For decent parameters, can efficiently generate such strings from few uniformly random bits"

on:
$$X \in \{0,1\}^m$$

A tool for designing the sub-code: Almost k-wise independent strings

 ϵ -almost k-wise independent distributio

$$\forall i_1, \dots, i_k, x_1, \dots, x_k : |\Pr[X_{i_1} = x_1, \dots, X_{i_k} = x_k] - 2^{-k}| \le \epsilon$$

[AlonGoldreichHåstadPeralta92]: "For decent parameters, can efficiently generate such strings from few uniformly random bits"

For every *m*, $k = O(\log m)$ and $\epsilon = -$

on:
$$X \in \{0,1\}^m$$

$$\frac{1}{\log(m)}$$
 there is a $\operatorname{poly}(m)$ -computable function $\{t,t\}^{t} \rightarrow \{0,1\}^{m}$

with $t = O(\log m)$ such that $g(U_t)$ is ϵ -almost k-wise independent.

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_b \to \text{allows for trace splitting}$

Designing the sub-code

 $g: \{0,1\}^t \rightarrow \{0,1\}^m$ generator from [AGHP92] with $t = O(\log m)$

 $g(U_t)$ satisfies property with high probability

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_h \rightarrow \text{allows for trace splitting}$

$$g: \{0,1\}^t \rightarrow \{0,1\}^m$$
 generator from [A

$$\implies g(U_t)$$
 satisfies

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_h \rightarrow \text{allows for trace splitting}$

- GHP92] with $t = O(\log m)$
- sfies property with high probability

$$g: \{0,1\}^t \rightarrow \{0,1\}^m$$
 generator from [A

$$\implies g(U_t)$$
 sati

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_h \rightarrow \text{allows for trace splitting}$

- GHP92] with $t = O(\log m)$
- isfies property with high probability

$$g: \{0,1\}^t \rightarrow \{0,1\}^m$$
 generator from [A

$$\implies g(U_t)$$
 sati

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_h \rightarrow \text{allows for trace splitting}$

- GHP92] with $t = O(\log m)$
- isfies property with high probability

satisfies property whp

$$g: \{0,1\}^t \rightarrow \{0,1\}^m$$
 generator from [A

$$\implies g(U_t)$$
 sati

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_h \rightarrow \text{allows for trace splitting}$

- GHP92] with $t = O(\log m)$
- isfies property with high probability

satisfies property whp

So there is **good** fixing $U_t = z$ that enforces property

$$g: \{0,1\}^t \rightarrow \{0,1\}^m$$
 generator from [A

$$\implies g(U_t)$$

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_h \rightarrow \text{allows for trace splitting}$

- GHP92] with $t = O(\log m)$
- satisfies property with high probability

(\mathcal{Z} chosen so that property is satisfied)

PART II: Markers + modified average-case trace reconstruction
Subsequence-unique strings [HolensteinMitzenmacherPanigrahyWieder08]

A string χ is w-subsequence-unique if no substring of length w can be obtained by deleting bits of another substring of length 1.1w (except for trivial containment).

Subsequence-unique strings [HolensteinMitzenmacherPanigrahyWieder08]

A string χ is w-subsequence-unique if no substring of length w can be obtained by deleting bits of another substring of length 1.1w (except for trivial containment).

Deletion probability small enough constant

Efficient trace reconstruction algorithm for all length *m w*-subsequence-unique strings with $w = O(\log m)$ using **poly**(m) traces.

Subsequence-unique strings [HolensteinMitzenmacherPanigrahyWieder08]

A string χ is w-subsequence-unique if no substring of length w can be obtained by deleting bits of another substring of length 1.1w (except for trivial containment).

Deletion probability small enough constant

Key observation: an ϵ -almost k-wise independent string is w-subsequence-unique with high probability for decent parameters k and ϵ .

Efficient trace reconstruction algorithm for all length *m w*-subsequence-unique strings with $w = O(\log m)$ using **poly**(m) traces.

Better codes for small deletion probability

Use masking to encode blocks into "almost" subsequence-unique strings

 $\begin{array}{c} \chi \\ \in \{0,1\}^m \text{ encoded as} \end{array}$

Better codes for small deletion probability

HMPW trace reconstruction algorithm doesn't work for strings like this...

Exploit properties of masking:

x' = 00...00 | x

$z \mid (x' \oplus g(z))$

Exploit properties of masking:

z' = systematic encoding of 0 | | z robust againstconstant fraction of deletions+insertions

$z \mid (x' \oplus g(z))$

Exploit properties of masking:

z' = systematic encoding of 0 | | z robust againstconstant fraction of deletions+insertions

Exploit properties of masking:

z' = systematic encoding of 0 | | z robust againstconstant fraction of deletions+insertions

Exploit properties of masking:

z' = systematic encoding of <math>0 | | z robust against constant fraction of deletions+insertions

 $z' \mid (x' \oplus g(z))$

Bootstrapping only requires O(m)traces now!

Better codes for small deletion probability

A few more things:

- Actually need a stronger property than subsequence-uniqueness because of markers; Need to make sure trace splitting works.

using polylog(N) traces against i.i.d. deletions with probability d.

- Almost k-wise independent string satisfies both of them with high probability.
 - There is an absolute constant $d^{\star} \in (0,1)$ such that for all $d \leq d^{\star}$ there exists an efficiently encodable/reconstructable code with rate $1 - O(1/\log N)$

Coded trace reconstruction over large alphabets [BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate $1 - \epsilon$ over an alphabet of size $O_{\epsilon}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces.

Moreover, this is tight.

Coded trace reconstruction over large alphabets [BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate $1 - \epsilon$ over an alphabet of size $O_{\epsilon}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces.

Moreover, this is tight.

Lower bound:

Capacity of T-use deletion channel \leq Capacity of T-use erasure channel $= 1 - d^T$

Coded trace reconstruction over large alphabets [BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate $1 - \epsilon$ over an alphabet of size $O_{\epsilon}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces.

Moreover, this is tight.

Lower bound:

 $1 - \epsilon \le 1 - d^T \implies T \ge \log_{1/d}(1/\epsilon)$

Capacity of T-use deletion channel \leq Capacity of T-use erasure channel $= 1 - d^T$

A tool for the upper bound: Synchronization strings [HaeuplerShahrasbi17]

A string S is a τ -synchronization string if for all i < j < k

 $ED(S_{[i,j]}, S_{[j,k]}) > (1 - \tau)(k - i)$

A tool for the upper bound: Synchronization strings [HaeuplerShahrasbi17]

A string S is a τ -synchronization string if for all i < j < k

 $ED(S_{[i,j]}, S_{[j,k]}) > (1 - \tau)(k - i)$

"close" to maximal edit distance everywhere

A tool for the upper bound: Synchronization strings [HaeuplerShahrasbi17]

A string S is a τ -synchronization string if for all i < j < k

For every τ , can efficiently construct a τ -synch-string of length N over an alphabet of size $poly(1/\tau)$.

naive

 $c = (c_1, c_2, \dots, c_N) \in \Sigma^N \xrightarrow{\text{indexing}} ((c_1, 1), (c_2, 2), \dots, (c_N, N)) \in (\Sigma \times [N])^N$

naive $c = (c_1, c_2, \dots, c_N) \in \Sigma^N \xrightarrow{\text{indexing}} ((c_1, 1), (c_2, 2), \dots, (c_N, N)) \in (\Sigma \times [N])^N$ $(c_1,1)$ $(c_2,2)$ $(c_3,3)$ $(c_4,4)$ $(c_1,1)$ $(c_2,2)$ $(c_3,3)$ $(c_4,4)$ deletions $(c_1, 1)$ $(c_3, 3)$

naive $c = (c_1, c_2, \dots, c_N) \in \Sigma^N \xrightarrow{\text{indexing}} ((c_1, 1), (c_2, 2), \dots, (c_N, N)) \in (\Sigma \times [N])^N$ $(c_1,1)$ $(c_2,2)$ $(c_3,3)$ $(c_4,4)$ $(c_1,1)$ $(c_2,2)$ $(c_3,3)$ $(c_4,4)$ deletions $(c_1, 1)$ $(c_3, 3)$

[HaeuplerShahrasbi17]: "Can efficiently transform deletions into (worst-case) erasures by indexing with synchronization string, with **constant** alphabet size blowup"

 $S \in \Sigma^N$ τ -synchronization string dN deletions

 $S' \in \Sigma^{(1-d)N}$

[HaeuplerShahrasbi17]: "Can efficiently transform deletions into (worst-case) erasures by indexing with synchronization string, with **constant** alphabet size blowup"

"Error-free" indexing algorithm:

abort and output special symbol ? (misdecoding)

dN deletions

 $S' \in \Sigma^{(1-d)N}$

[HaeuplerShahrasbi17]: "Can efficiently transform deletions into (worst-case) erasures by indexing with synchronization string, with constant alphabet size blowup"

"Error-free" indexing algorithm:

abort and output special symbol ? (misdecoding) dN deletions

$$S' \in \Sigma^{(1-d)N}$$

[HaeuplerShahrasbi17]:

There is efficient error-free indexing algorithm with at most

$$\frac{\tau dN}{1-\tau}$$

misdecodings.

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

$$S$$
 ($\tau = e^{C}$) -synchronization string over
 \mathscr{C} rate $\approx 1 - \epsilon$ code robust against \approx

Construction: Index codewords of \mathscr{C} with S

- alphabet of size $O_{\epsilon}(1)$
- $\approx \epsilon^3$ fraction of erasures

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{c}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

$$S$$
 ($\tau = e^{C}$) -synchronization string over
 \mathscr{C} rate $\approx 1 - \epsilon$ code robust against \approx

Construction: Index codewords of \mathscr{C} with S

$$(c_1, \ldots, c_N) \in \mathscr{C} \longrightarrow (c_1, S)$$

- alphabet of size $O_{\epsilon}(1)$
- $\approx \epsilon^3$ fraction of erasures

Reconstruction:

Trace of codeword

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

Reconstruction:

Trace of codeword

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{e}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

Reconstruction: (x_{11}, x_{12}) **Trace of codeword**

> run error-free indexing algorithm on second symbol

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{e}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

Reconstruction:

Trace of codeword

run error-free indexing algorithm on second symbol

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{e}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

 \leq #misdecodings + #(symbols deleted in every trace) $\leq \frac{\epsilon^3 N}{2} + d^T N \leq \epsilon^3 N$ #erasures

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{c}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

#erasures

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{c}(1)$ using $O(\log_{1/d}(1/\epsilon))$ traces

Construction: Concatenate good code over large alphabet with marker-based inner code

N-bit string X

Construction: Concatenate good code over large alphabet with marker-based inner code

χ *N*-bit string

large alphabet code correcting many substitutions

Construction: Concatenate good code over large alphabet with marker-based inner code

N-bit string

large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size O(1)

Construction: Concatenate good code over large alphabet with marker-based inner code

 ${\mathcal X}$ *N*-bit string

large alphabet code correcting many substitutions

S

1/3-synchronization string over alphabet of size O(1)

concatenate with binary code

$c \in \mathscr{C}_{out}$			
(C_1, S_1)	(c_2, S_2)	(c_3, S_3)	(c_4, S_4)

Construction: Concatenate good code over large alphabet with marker-based inner code

 ${\mathcal X}$ *N*-bit string

S

large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size O(1)

concatenate with binary code

			0	- 0		
			CE	= Øout		
c_{1}, S	(1)	(c_2, S_2)		(c_3, S_3)	(C	(A_4, S_4)
=	0	$\overline{C_i}$	1			
lc	og m	т	log n	n		

Construction: Concatenate good code over large alphabet with marker-based inner code

N-bit string

S

large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size O(1)

concatenate with binary code

Construction: Concatenate good code over large alphabet with marker-based inner code

N-bit string

S

large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size O(1)

concatenate with $Enc_R(c_i)$ binary code $(C_i, C_i) \longrightarrow Enc_S(S_i) =$

Construction: Concatenate good code over large alphabet with marker-based inner code

 ${\mathcal X}$ *N*-bit string

S

large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size O(1)

concatenate with binary code $(C_i, S_i) \longrightarrow \operatorname{Enc}_S(S_i) =$

1) Trace alignment:

Long runs only come from markers

1) Trace alignment:

Long runs only come from markers

Long runs only come from markers

Long runs only come from markers

Reconstruction

Find traces of (most) synch symbols

run error-free indexing algo

Long runs only come from markers

1) Trace alignment:

Long runs only come from markers

Long runs only come from markers

Designing the (existential) inner code

Key observation: Since markers are short, nea case trace rec algorithm!

Key observation: Since markers are short, nearly all strings of this type are good for any average-

Designing the (existential) inner code

case trace rec algorithm!

If *m* is small, can brute force high-rate code $\overline{\mathscr{C}}$ to require few traces + be dense!

Key observation: Since markers are short, nearly all strings of this type are good for any average-

Designing the (existential) inner code

Key observation: Since markers are short, nearly all strings of this type are good for any averagecase trace rec algorithm!

If *m* is small, can brute force high-rate code $\overline{\mathscr{C}}$ to require few traces + be dense!

Using [HPP18], reconstruct $\overline{\mathscr{C}}$ with $\exp(\log^{1/3} m)$ traces.

Combining everything Set inner code length to $m = \frac{1}{\epsilon} \log\left(\frac{1}{\epsilon}\right)$ to ensure rate $\geq 1 - \epsilon$

[BrakensiekLiSpang19]

For any constant deletion probability and every ϵ , there exists a code of rate $1 - \epsilon$ that can be reconstructed from $\exp(\log^{1/3}(1/\epsilon))$ traces.

Combining everything Set inner code length to $m = \frac{1}{\epsilon} \log\left(\frac{1}{\epsilon}\right)$ to ensure rate $\geq 1 - \epsilon$

[BrakensiekLiSpang19]

For any constant deletion probability and every ϵ , there exists a code of rate $1 - \epsilon$ that can be reconstructed from $\exp(\log^{1/3}(1/\epsilon))$ traces.

Caveat: Inner code construction takes time exp(m).

Overall code construction only efficient for ϵ

$$\geq \frac{\log \log N}{\log N}$$

Summing up...

We can exploit worst-case and average-case trace reconstruction to design efficient high-rate codes requiring significantly fewer traces, or satisfying other nice properties.

#traces	efficient encoding & reconstruction	observations
log ^C N		Deletion probability smaller than absolute constant
$xp((\log \log N)^{1/2})$	3)	Code construction is not efficient
$xp(\log^{1/3}(1/\epsilon))$		Arbitrary constant deletion probability

Summing up...

We can exploit worst-case and average-case trace reconstruction to design efficient high-rate codes requiring significantly fewer traces, or satisfying other nice properties.

Lower bound [BLS19]:

Arbitrary code of rate

#traces	efficient encoding & reconstruction	observations
$\log^{C} N$		Deletion probability smaller than absolute constant
$xp((\log \log N)^{1/2})$	(3)	Code construction is not efficient
$xp(\log^{1/3}(1/\epsilon))$		Arbitrary constant deletion probability
$1 - \epsilon \implies$	requires $\approx \log^{5/2}$	$\frac{2}{\epsilon}\left(\frac{1}{\epsilon}\right)$ traces

Future work

- Efficient high-rate codes using even fewer traces;
- Bridge gap between bounds for (coded and uncoded) trace reconstruction;
- High-rate codes that handle deletions and random insertions with few traces;

Future work

- Efficient high-rate codes using even fewer traces;
- Bridge gap between bounds for (coded and uncoded) trace reconstruction;
- High-rate codes that handle deletions and random insertions with few traces;

Thanks!