Coded and Uncoded Trace Reconstruction

João Ribeiro
Imperial College London

Deletion channel

$$
\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1
\end{array}
$$

Deletion channel

$$
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & 1 \\
& & \\
\downarrow & & & & \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}
$$

Deletion channel

$$
\begin{array}{llllll}
0 & 1 & 0 & 0 & 1 & 1 \\
& & \downarrow & & \\
0 & 1 & 0 & 0 & 1 & 1 \\
& & & \downarrow & & \\
& & 0 & 1 & 1 &
\end{array}
$$

Deletion channel

$$
\begin{array}{cccccc}
0 & 1 & 0 & 0 & 1 & 1 \\
& & \downarrow & & \\
0 & 1 & 0 & 0 & 1 & 1 \\
& & & \downarrow & & \\
& & 0 & 1 & 1 &
\end{array}
$$

Other deletion patterns that lead to same output

Deletion channel

Other deletion patterns that lead to same output
$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$
i.i.d. deletions: each bit deleted independently with fixed probability d

Deletion channel

Other deletion patterns that lead to same output
$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$

$\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 1\end{array}$
i.i.d. deletions: each bit deleted independently with fixed probability d

Many open problems! E.g., capacity is still unknown...

Trace reconstruction

[Levenshtein01, BatuKannanKhannaMcGregor04]

Goal

Reconstruct \mathcal{X} from traces $y^{(1)}, \ldots, y^{(t)}$ such that:

- We succeed with high probability $1-O(1 / N)$
- We use as few traces as possible

Original motivation for trace reconstruction

[BatuKannanKhannaMcGregor04]
mutations
(deletions, insertions, substitutions)

Descendent 1 DNA

Ancestor DNA

Descendent 2 DNA

Descendent 3 DNA

Multiple sequence alignment: Deduce common ancestor DNA from descendants DNA.

Main settings for uncoded trace reconstruction

Worst-case trace reconstruction
Average-case trace reconstruction

Reconstruction algorithm \mathscr{R} must succeed with high probability simultaneously for all input strings.
$\forall x: \operatorname{Pr}_{y^{(1)}, \ldots, y^{(t)} \leftarrow \operatorname{Del}(x)}\left[\mathscr{R}\left(y^{(1)}, \ldots, y^{(t)}\right)=x\right] \approx 1$

Worst-case trace reconstruction

Recall: Reconstruction algorithm must succeed for all strings with high probability.

Reconstruction algorithms	\#traces	deletion probability
Batu, Kannan, Khanna, McGregor 2004	$N \log N$	$d=1 / N^{1 / 2+\epsilon}$
Holenstein, Mitzenmacher, Panigrahy, Wieder 2008	$\exp \left(N^{1 / 2}\right)$	any constant < 1
De, O'Donnell, Servedio 2017 Nazarov, Peres 2017	$\exp \left(N^{1 / 3}\right)$	any constant < 1

Mean-based algorithms \& worst-case trace reconstruction

$$
\begin{gathered}
X \\
\in\{-1,1\}^{N}
\end{gathered} \longrightarrow \begin{gathered}
Y \\
\\
\\
\text { i.i.d. deletions }
\end{gathered} \quad \text { (padded with 0's) }
$$

Mean-based algorithms \& worst-case trace reconstruction

$$
\begin{aligned}
& X \\
& \in\{-1,1\}^{N}
\end{aligned} \longrightarrow \begin{gathered}
Y \\
\in\{-1,0,1\}^{N}
\end{gathered}
$$

Mean trace: $\mu(x)=\left(\mathrm{E}\left[Y_{1}\right], \mathrm{E}\left[Y_{2}\right], \ldots, \mathrm{E}\left[Y_{N}\right]\right) \quad$ (real-linear function of x$)$

Mean-based algorithms \& worst-case trace reconstruction

Mean trace: $\mu(x)=\left(\mathrm{E}\left[Y_{1}\right], \mathrm{E}\left[Y_{2}\right], \ldots, \mathrm{E}\left[Y_{N}\right]\right) \quad$ (real-linear function of x$)$
Mean-based algorithm:

- Compute estimate $\hat{\mu}$ of mean trace $\mu(x)$ from T traces;
- Find X such that $\mu(x)$ is closest to $\hat{\mu}$.
[DeO'DonnellServedio17, NazarovPeres17]:
There exist mean-based algorithms using $T=\exp \left(N^{1 / 3}\right)$ traces. Moreover, this is optimal for mean-based algorithms.

Mean-based algorithms \& complex analysis

Mean trace: $\mu(x)=\left(\mathrm{E}\left[Y_{1}\right], \mathrm{E}\left[Y_{2}\right], \ldots, \mathrm{E}\left[Y_{N}\right]\right) \quad$ (real-linear function of x$)$
\#traces required for accurate estimate $\hat{\mu}$ is dictated by

$$
\min _{x \neq x^{\prime}}\left\|\mu(x)-\mu\left(x^{\prime}\right) \mid\right\|_{1}=2 \times \min _{x \in\{-1,0,1\}^{N}}\|\mu(x)\| \|_{1}
$$

Mean-based algorithms \& complex analysis

Mean trace: $\mu(x)=\left(\mathrm{E}\left[Y_{1}\right], \mathrm{E}\left[Y_{2}\right], \ldots, \mathrm{E}\left[Y_{N}\right]\right) \quad$ (real-linear function of x$)$
\#traces required for accurate estimate $\hat{\mu}$ is dictated by

$$
\min _{x \neq x^{\prime}}| | \mu(x)-\mu\left(x^{\prime}\right)| |_{1}=2 \times \min _{x \in\{-1,0,1\}^{N}}\left|\|\mu(x) \mid\|_{1}\right.
$$

$$
\text { Deletion channel polynomial } \quad P_{d, x}(w)=\sum_{j=1}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}
$$

Mean-based algorithms \& complex analysis

Mean trace: $\mu(x)=\left(\mathrm{E}\left[Y_{1}\right], \mathrm{E}\left[Y_{2}\right], \ldots, \mathrm{E}\left[Y_{N}\right]\right) \quad$ (real-linear function of x$)$
\#traces required for accurate estimate $\hat{\mu}$ is dictated by

$$
\min _{x \neq x^{\prime}}| | \mu(x)-\mu\left(x^{\prime}\right)| |_{1}=2 \times \min _{x \in\{-1,0,1\}^{N}}| | \mu(x) \mid \|_{1}
$$

$$
\text { Deletion channel polynomial } \quad P_{d, x}(w)=\sum_{j=1}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}
$$

$$
\text { Bounding } \min \|\mu(x)\|_{1} \approx \begin{aligned}
& \text { Maximizing special polynomial } \\
& \text { over arc of complex circle }
\end{aligned}
$$

Mean-based algorithms \& Littlewood polynomials
Deletion channel polynomial $\quad P_{d, x}(w)=\sum_{j=1}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}$

$$
P_{d, x}(w)=(1-d) \sum_{j=1}^{N} x_{j} \cdot z^{j} \quad z=d+(1-d) w
$$

Easy to write in terms of x

Mean-based algorithms \& Littlewood polynomials

$P_{d, x}(w)=(1-d)$	$\sum_{j=1}^{N} x_{j} \cdot z^{j}$
$z=d+(1-d) w$	Easy to write in terms of x

Mean-based algorithms \& Littlewood polynomials

Deletion channel polynomial $\quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}$
Littlewood polynomial $A(z), \quad \begin{aligned} & x_{j} \in\{-1,0,1\}\end{aligned}$

$$
P_{d, x}(w)=(1-d) \left\lvert\, \begin{array}{ll}
\sum_{j=1}^{N} x_{j} \cdot z^{j} & z=d+(1-d) w
\end{array} \quad \begin{aligned}
& \text { Easy to write } \\
& \text { in terms of } \mathrm{x}
\end{aligned}\right.
$$

Mean-based algorithms \& Littlewood polynomials

$\begin{aligned} & \text { Deletion channel polynomial } \quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C} \\ & \text { Littlewood polynomial } A(z), \quad \begin{array}{l}x_{j} \in\{-1,0,1\}\end{array}\end{aligned}$

$$
P_{d, x}(w)=(1-d) \left\lvert\, \sum_{j=1}^{N} x_{j} \cdot z^{j} \quad z=d+(1-d) w \quad \begin{aligned}
& \text { Easy to write } \\
& \text { in terms of } \mathrm{x}
\end{aligned}\right.
$$

Mean-based algorithms \& Littlewood polynomials

$\begin{aligned} & \text { Deletion channel polynomial } \quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C} \\ & \text { Littlewood polynomial } A(z), \quad \begin{array}{l}x_{j} \in\{-1,0,1\}\end{array}\end{aligned}$

$$
P_{d, x}(w)=(1-d) \sum_{j=1}^{N} x_{j} \cdot z^{j} \quad z=d+(1-d) w \quad \begin{aligned}
& \text { Easy to write } \\
& \text { in terms of } x
\end{aligned}
$$

Mean-based algorithms \& Littlewood polynomials

$\begin{aligned} & \text { Deletion channel polynomial } \quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C} \\ & \text { Littlewood polynomial } A(z), \quad x_{j} \in\{-1,0,1\}\end{aligned}$

$$
P_{d, x}(w)=(1-d) \sum_{j=1}^{N} x_{j} \cdot z^{j} \quad z=d+(1-d) w \quad \begin{aligned}
& \text { Easy to write } \\
& \text { in terms of } \mathrm{x}
\end{aligned}
$$

[BorweinErdélyi97]
$A(z)$ Littlewood polynomial
w such that $z=e^{i \theta}, \quad \theta \in[-\pi / L, \pi / L]$
$\sum_{j}\left|\mu_{j}(x)\right| \cdot|w|^{j} \geq(1-d)\left|A\left(e^{i \theta}\right)\right|$

Mean-based algorithms \& Littlewood polynomials

Deletion channel polynomial $\quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}$
Littlewood polynomial $A(z), \quad x_{j} \in\{-1,0,1\}$

$$
\begin{array}{|l|l|}
\hline P_{d, x}(w)=(1-d) & \sum_{j=1}^{N} x_{j} \cdot z^{j} \\
z=d+(1-d) w & \begin{array}{l}
\text { Easy to write } \\
\text { in terms of } \mathrm{x}
\end{array} \\
\hline
\end{array}
$$

Mean-based algorithms \& Littlewood polynomials

Deletion channel polynomial $\quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}$
Littlewood polynomial $A(z), \quad x_{j} \in\{-1,0,1\}$

$P_{d, x}(w)=(1-d)$	$\sum_{j=1}^{N} x_{j} \cdot z^{j}$

$$
\begin{aligned}
& w \text { such that } z=e^{i \theta}, \quad \theta \in[-\pi / L, \pi / L] \\
& \sum_{j}\left|\mu_{j}(x)\right| \cdot|w|^{j} \geq(1-d)\left|A\left(e^{i \theta}\right)\right| \quad \text { (} \triangle \text {-ineq) } \\
& \Longrightarrow||\mu(x)||_{1} \geq e^{-\frac{c^{\prime} N}{L^{2}}} \cdot\left|A\left(e^{i \theta}\right)\right| \quad \text { (simple trig) } \\
& \Longrightarrow||\mu(x)||_{1} \geq e^{-\frac{c N}{L^{2}}} \max _{\theta \in[-\pi / L, \pi / L]}\left|A\left(e^{i \theta}\right)\right|
\end{aligned}
$$

Mean-based algorithms \& Littlewood polynomials

Deletion channel polynomial $\quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}$
Littlewood polynomial $A(z), \quad x_{j} \in\{-1,0,1\}$

| $P_{d, x}(w)=(1-d)$ | $\sum_{j=1}^{N} x_{j} \cdot z^{j}$ | $z=d+(1-d) w$ |
| :--- | :--- | :--- | | Easy to write |
| :--- |
| in terms of x |

$$
\begin{aligned}
& w \text { such that } z=e^{i \theta}, \quad \theta \in[-\pi / L, \pi / L] \\
& \sum_{j}\left|\mu_{j}(x)\right| \cdot|w|^{j} \geq(1-d)\left|A\left(e^{i \theta}\right)\right| \quad \text { (} \Delta \text {-ineq) } \\
& \Longrightarrow\left|\left|\mu(x) \|_{1} \geq e^{-\frac{i N}{L^{2}}} \cdot\right| A\left(e^{i \theta}\right)\right| \quad \quad \text { (simple trig) } \\
& \Longrightarrow\|\mu(x)\|_{1} \geq e^{-\frac{c N}{L L^{2}}} \cdot \max _{\theta \in[-\pi / L, \pi L L]}\left|A\left(e^{i \theta}\right)\right| \\
& \\
& \geq e^{-c N^{1 / 3}} \quad \text { [[BE97] + Max wrt L) }
\end{aligned}
$$

Mean-based algorithms \& Littlewood polynomials

Deletion channel polynomial $\quad P_{d, x}(w)=\sum_{\substack{j=1}}^{N} \mu(x)_{j} \cdot w^{j}, \quad w \in \mathbb{C}$
Littlewood polynomial $A(z), \quad x_{j} \in\{-1,0,1\}$

| $P_{d, x}(w)=(1-d)$ | $\sum_{j=1}^{N} x_{j} \cdot z^{j}$ | $z=d+(1-d) w$ |
| :--- | :--- | :--- | | Easy to write |
| :--- |
| in terms of x |

[BorweinErdélyi97]
$A(z)$ Littlewood polynomial $\max \left|A\left(e^{i \theta}\right)\right| \geq e^{-c L}$

$$
\begin{aligned}
& w \text { such that } z=e^{i \theta}, \quad \theta \in[-\pi / L, \pi / L] \\
& \sum_{j}\left|\mu_{j}(x)\right| \cdot|w|^{j} \geq(1-d)\left|A\left(e^{i \theta}\right)\right| \\
& \Longrightarrow||\mu(x)||_{1} \geq e^{-\frac{c L^{\prime} N}{L^{2}}} \cdot\left|A\left(e^{i \theta}\right)\right| \\
& \Longrightarrow||\mu(x)||_{1} \geq e^{-\frac{c N}{L^{2}}} \cdot \max _{\theta \in[-\pi / L, \pi / L]}\left|A\left(e^{i \theta}\right)\right|
\end{aligned}
$$

Average-case trace reconstruction

Recall: Average error probability of reconstruction algorithm must be $O(1 / N)$.

Reconstruction algorithms	\#traces	deletion probability
Batu, Kannan, Khanna, McGregor		
2004	$\log N$	$d=1 / \log N$
Holenstein, Mitzenmacher, Panigrahy, Wieder 2008	$\operatorname{poly}(N)$	for small absolute constant c
Peres, Zhai 2017	$\exp \left(\log ^{1 / 2} N\right)$	$d<1 / 2$
Holden, Pemantle, Peres 2018	$\exp \left(\log ^{1 / 3} N\right)$	$d<1$

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]
X (N -bit string)

A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]
A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_{1}, X_{2}, \ldots, X_{i-1}$ Goal: Find X_{i}

A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_{1}, X_{2}, \ldots, X_{i-1}$
Goal: Find X_{i}
2) Trace alignment: Align by anchor close to X_{i}
"If X is random, whp anchor in trace comes from anchor in X."

A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_{1}, X_{2}, \ldots, X_{i-1}$
Goal: Find X_{i}
2) Trace alignment: Align by anchor close to X_{i}
"If X is random, whp anchor in trace comes from anchor in X."

A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_{1}, X_{2}, \ldots, X_{i-1}$
Goal: Find X_{i}
2) Trace alignment: Align by anchor close to X_{i}
"If X is random, whp anchor in trace comes from anchor in X."
3) Reconstruction: Estimate special bit $Y=$ distribution of "trace after anchor"
"There is special position $Y_{j \star}$ that is decently influenced by X_{i} "

$$
\left\lvert\, \operatorname{Pr}\left[Y_{j^{\star}}=1\left|X_{i}=\underline{1]}-\operatorname{Pr}\left[Y_{j^{\star}}=1 \mid X_{i}=\underline{0}\right]\right| \geq \frac{1}{N^{C}}\right.\right.
$$

A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_{1}, X_{2}, \ldots, X_{i-1}$
Goal: Find X_{i}
2) Trace alignment: Align by anchor close to X_{i}
"If X is random, whp anchor in trace comes from anchor in X."
3) Reconstruction: Estimate special bit

$$
Y=\text { distribution of "trace after anchor" }
$$

"There is special position $Y_{j \star}$ that is decently influenced by X_{i} "

$$
\left\lvert\, \operatorname{Pr}\left[Y_{j^{\star}}=1\left|X_{i}=\underline{1]}-\operatorname{Pr}\left[Y_{j^{\star}}=1 \mid X_{i}=\underline{0}\right]\right| \geq \frac{1}{N^{C}}\right.\right.
$$

A recipe for average-case trace reconstruction

 [HolensteinMitzenmacherPanigrahyWieder08]1) Bootstrapping: Learn first bits of X "for free"

Suppose we know $X_{1}, X_{2}, \ldots, X_{i-1}$
Goal: Find X_{i}
2) Trace alignment: Align by anchor close to X_{i}
"If X is random, whp anchor in trace comes from anchor in X."
3) Reconstruction: Estimate special bit

$$
Y=\text { distribution of "trace after anchor" }
$$

"There is special position $Y_{j \star}$ that is decently influenced by X_{i} "
known

$$
\left\lvert\, \operatorname{Pr}\left[Y_{j^{\star}}=1\left|X_{i}=\underline{1]}-\operatorname{Pr}\left[Y_{j^{\star}}=1 \mid X_{i}=\underline{0}\right]\right| \geq \frac{1}{N^{C}}\right.\right.
$$

Recover X_{i} whp using poly (N) traces!

Lower bounds for trace reconstruction

General recipe for lower bounds:

- Worst-case: Show it is hard to distinguish between two specific strings with few traces;
- Average-case: Worst-case LB + we expect bad string of length $\frac{\log N}{2}$ to show up $\approx \sqrt{N}$ times in random N -bit string.

Lower bounds \#traces	Worst-case	Average-case
McGregor, Price, Vorotnikova 2014	N	$\log ^{2} N$
Holden, Lyons 2018	$N^{1.25}$	$\log ^{2.25} N$
Chase 2019	$N^{1.5}$	$\log ^{2.5} N$

Lower bounds for trace reconstruction

[McGregorPriceVorotnikova14]
N traces necessary and sufficient to distinguish

$$
0^{N-1} 10^{N} \quad \text { vs. } \quad 0^{N} 10^{N-1}
$$

[HoldenLyons18, Chase19]
$N^{1.5}$ traces necessary and sufficient to distinguish
$(01)^{N-1} 10(01)^{N}$ vs. $(01)^{N} 10(01)^{N-1}$

010110010101 010101100101

Summing up...

	Worst-case trace reconstruction	Average-case trace reconstruction
Upper bounds \#traces	$\exp \left(O\left(N^{1 / 3}\right)\right)$ [DeO'DonnellServedio17, NazarovPeres17]	$\begin{array}{r} \exp \left(O\left(\log ^{1 / 3} N\right)\right) \\ {[\text { HoldenPemantlePeres18] }} \end{array}$
Lower bounds \#traces	$\approx N^{3 / 2}$ [HoldenLyons18, Chase19]	$\begin{gathered} \approx \log ^{5 / 2} N \\ {[\text { HoldenLyons18, Chase19] }} \end{gathered}$

Summing up...

Summing up...

	Worst-case trace reconstruction	Average-case trace reconstruction
Upper bounds \#traces	$\exp \left(O\left(N^{1 / 3}\right)\right)$ [DeO'DonnellServedio17, NazarovPeres17]	$\exp \left(O\left(\log ^{1 / 3} N\right)\right)$ [HoldenPemantlePeres18]
Lower bounds \#traces	$\approx N^{3 / 2}$ [HoldenLyons18, Chase19]	$\begin{gathered} \approx \log ^{5 / 2} N \\ {[\text { HoldenLyons18, Chase19] }} \end{gathered}$

> *All results over $\{0,1\}^{N}$, as it is the hardest setting

Trace reconstruction and portable DNA-based storage

[YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into $\{A, G, T, C\}$ alphabet, then synthesized into DNA strand.

Trace reconstruction and portable DNA-based storage

[YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into $\{A, G, T, C\}$ alphabet, then synthesized into DNA strand.

ATCGACTCAAGCGTAGAC...
ATCGACTCAAGCGTAGAC... \quad noisy

ATCGACTCAAGCGTAGAC...

Trace reconstruction for the coding schemes in [YGM17, OAC+18] is based on heuristics.

Coded trace reconstruction

[CheraghchiGabrysMilenkovicRibeiro19]

Some related work

Haeupler, Mitzenmacher			
2014		\quad	First-order capacity for small deletion probability
:---:			
(constant number of traces only)			

PART I:

Markers + worst-case trace reconstruction

Basic construction

$\mathcal{X} \quad N$-bit string

Basic construction

$\mathcal{X} \quad N$-bit string
split into blocks with
$m=O\left(\log ^{2} N\right)$ bits

Basic construction

$\mathcal{X} \quad N$-bit string
split into blocks with
$m=O\left(\log ^{2} N\right)$ bits
encode each block
using appropriate sub-code \mathscr{C}_{b}

Basic construction

$\mathcal{X} \quad N$-bit string
split into blocks with
$m=O\left(\log ^{2} N\right)$ bits
encode each block
using appropriate
sub-code \mathscr{C}_{b}

$0=\underset{\text { O(log N) bits }}{0000 \ldots}$
$1=\underset{\mathrm{O}(\log \mathrm{N}) \text { bits }}{1111 \ldots 11}$

Reconstruction

$\square=\underset{\mathrm{O}(\log \mathrm{N}) \text { bits }}{000 \ldots} \quad \square=\underset{\mathrm{O}(\log \mathrm{N}) \mathrm{bits}}{111 \ldots .11} \quad \square \in \mathscr{C}_{b}$

Reconstruction

$=\underset{\mathbf{O}(\log \mathbf{N}) \text { bits }}{0000} \ldots=\underset{\mathbf{O}(\log \mathbf{N}) \text { bits }}{1111 \ldots 11} \quad \in \mathscr{C}_{b}$

Reconstruction

$$
\square=\begin{aligned}
& 0000 \ldots .00 \\
& \text { Ollog Ni) bits }
\end{aligned}
$$

$$
=\underset{\text { O(log N) bits }}{1111 \ldots 11}
$$

$$
\in \in \mathscr{C}_{b}
$$

Trace of codeword
Key observation: part of trace coming from a marker still looks like a marker.

Reconstruction

$$
=\underset{\mathbf{O}(\log \mathrm{N}) \text { bits }}{0000 \ldots 00}
$$

$=\underset{\text { O(log N) bits }}{1111 \ldots 11}$
$\in \mathscr{C}_{b}$
Trace of codeword
Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_{b} is chosen appropriately, long runs of 0's in trace only come from markers

Reconstruction

$$
=\underset{\text { O(log N) bits }}{0000 \ldots 00}
$$

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_{b} is chosen appropriately, long runs of 0's in trace only come from markers
$=\underset{\mathbf{O}(\log \mathrm{N}) \text { bits }}{1111 \ldots 11}$
$\square \in \mathscr{C}_{b}$
Trace of codeword

Reconstruction

$\square=\underset{\mathbf{O}(\log \mathrm{N}) \text { bits }}{0000 \ldots 00}$
$=\underset{\mathbf{O}(\log \mathrm{N}) \text { bits }}{1111 \ldots 11}$
$\square \in \mathscr{C}_{b}$
Trace of codeword

Reconstruction

$$
=\underset{\mathbf{O}(\log \mathbf{N}) \text { bits }}{0000 \ldots 00}
$$

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_{b} is chosen appropriately, long runs of 0's in trace only come from markers
$=\underset{\mathbf{O}(\log \mathrm{N}) \text { bits }}{1111 \ldots 11}$
$\in \mathscr{C}_{b}$
Trace of codeword

Reconstruction

$$
=\underset{\mathbf{O}(\log \mathrm{N}) \text { bits }}{0000 \ldots 00}
$$

Key observation: part of trace coming from a marker still looks like a marker.

If \mathscr{C}_{b} is chosen appropriately, long runs of 0's in trace only come from markers

Efficiently encodable/reconstructable code with rate $1-O(1 / \log N)$ using $\exp \left(\log ^{1 / 3+\gamma} N\right)$ traces for any constant deletion prob.

Trace of codeword
$=\underset{\mathbf{O}(\log \mathrm{N}) \mathrm{bits}}{1111}$

A tool for designing the sub-code: Almost k-wise independent strings

ϵ-almost k-wise independent distribution: $X \in\{0,1\}^{m}$

$$
\forall i_{1}, \ldots, i_{k}, x_{1}, \ldots, x_{k}:\left|\operatorname{Pr}\left[X_{i_{1}}=x_{1}, \ldots, X_{i_{k}}=x_{k}\right]-2^{-k}\right| \leq \epsilon
$$

A tool for designing the sub-code: Almost k-wise independent strings

ϵ-almost k-wise independent distribution: $X \in\{0,1\}^{m}$

$$
\forall i_{1}, \ldots, i_{k}, x_{1}, \ldots, x_{k}:\left|\operatorname{Pr}\left[X_{i_{1}}=x_{1}, \ldots, X_{i_{k}}=x_{k}\right]-2^{-k}\right| \leq \epsilon
$$

[AlonGoldreichHåstadPeralta92]:
"For decent parameters, can efficiently generate such strings from few uniformly random bits"

A tool for designing the sub-code: Almost k-wise independent strings

ϵ-almost k-wise independent distribution: $X \in\{0,1\}^{m}$

$$
\forall i_{1}, \ldots, i_{k}, x_{1}, \ldots, x_{k}:\left|\operatorname{Pr}\left[X_{i_{1}}=x_{1}, \ldots, X_{i_{k}}=x_{k}\right]-2^{-k}\right| \leq \epsilon
$$

[AlonGoldreichHåstadPeralta92]:
"For decent parameters, can efficiently generate such strings from few uniformly random bits"

For every $m, k=O(\log m)$ and $\epsilon=\frac{1}{\operatorname{poly}(m)}$ there is a poly (m)-computable function

$$
g:\{0,1\}^{t} \rightarrow\{0,1\}^{m}
$$

with $t=O(\log m)$ such that $g\left(U_{t}\right)$ is ϵ-almost k-wise independent.

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting
$g:\{0,1\}^{t} \rightarrow\{0,1\}^{m}$ generator from [AGHP92] with $t=O(\log m)$
$\Longrightarrow g\left(U_{t}\right) \quad$ satisfies property with high probability

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting

$$
g:\{0,1\}^{t} \rightarrow\{0,1\}^{m} \quad \text { generator from [AGHP92] with } t=O(\log m)
$$

$\Longrightarrow g\left(U_{t}\right)$ satisfies property with high probability

To encode $x \in\{0,1\}^{m}$:

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting

$$
g:\{0,1\}^{t} \rightarrow\{0,1\}^{m} \quad \text { generator from [AGHP92] with } t=O(\log m)
$$

$\Longrightarrow g\left(U_{t}\right) \quad$ satisfies property with high probability

To encode $x \in\{0,1\}^{m}$:

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting

$$
g:\{0,1\}^{t} \rightarrow\{0,1\}^{m} \quad \text { generator from [AGHP92] with } t=O(\log m)
$$

$\Longrightarrow g\left(U_{t}\right) \quad$ satisfies property with high probability

To encode $x \in\{0,1\}^{m}$:

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting

$$
g:\{0,1\}^{t} \rightarrow\{0,1\}^{m} \quad \text { generator from [AGHP92] with } t=O(\log m)
$$

$\Longrightarrow g\left(U_{t}\right)$ satisfies property with high probability

To encode $x \in\{0,1\}^{m}$:

satisfies property whp
So there is good fixing $U_{t}=z$ that enforces property

Designing the sub-code

Desired property: No long runs of 0's in trace of $c \in \mathscr{C}_{b} \rightarrow$ allows for trace splitting

$$
\begin{aligned}
g: & \{0,1\}^{t} \rightarrow\{0,1\}^{m} \text { generator from [AGHP92] with } t=O(\log m) \\
& \Longrightarrow g\left(U_{t}\right) \text { satisfies property with high probability }
\end{aligned}
$$

To encode $x \in\{0,1\}^{m}$:

```
Enc}(x)=z\quadx\oplusg(z)\quad(z\mathrm{ chosen so that property is satisfied)
log}
```


PART II:
 Markers +
 modified average-case trace reconstruction

Subsequence-unique strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string X is w-subsequence-unique if no substring of length w can be obtained by deleting bits of another substring of length $1.1 w$ (except for trivial containment).

Subsequence-unique strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string X is w-subsequence-unique if no substring of length w can be obtained by deleting bits of another substring of length $1.1 w$ (except for trivial containment).

Deletion probability small enough constant

Efficient trace reconstruction algorithm for all length $m \quad w$-subsequence-unique strings with $w=O(\log m)$ using poly (m) traces.

Subsequence-unique strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string X is w-subsequence-unique if no substring of length w can be obtained by deleting bits of another substring of length $1.1 w$ (except for trivial containment).

Deletion probability small enough constant

Efficient trace reconstruction algorithm for all length $m \quad w$-subsequence-unique strings with $w=O(\log m)$ using poly (m) traces.

Key observation: an ϵ-almost k-wise independent string is w-subsequence-unique with high probability for decent parameters k and ϵ.

Better codes for small deletion probability

Use masking to encode blocks into "almost" subsequence-unique strings

$\log m$
w-subsequence-unique
$w=O(\log m)$

Better codes for small deletion probability

Use masking to encode blocks into "almost" subsequence-unique strings

$\log m \quad w$-subsequence-unique $w=O(\log m)$

$O(\log m)$		
$111 \ldots 111$	χ	$x \oplus g(z)$
$O(\sqrt{m})$	$m=O\left(\log ^{2} N\right)$	$O(\sqrt{m})$

HMPW trace reconstruction algorithm doesn't work for strings like this...

Better codes for small deletion probability

$O(\log m)$

$111 \ldots 111$	z	$x \notin g(z)$
$O(\sqrt{m})$	$m=O\left(\log ^{2} N\right)$	$000 \ldots 000$
$O(\sqrt{m})$		

First barrier: HMPW algorithm needs to know first $\log m$ bits of $x \bigoplus g(z)$ "for free" Original bootstrapping procedure requires $2^{\sqrt{m}}=\mathbf{p o l y}(N)$ traces in this case...

Better codes for small deletion probability

$O(\log m)$

$111 \ldots 111$	z	$000 \ldots 000$
$O(\sqrt{m})$	$m=O\left(\log ^{2} N\right)$	$O(\sqrt{m})$

First barrier: HMPW algorithm needs to know first $\log m$ bits of $x \bigoplus g(z)$ "for free" Original bootstrapping procedure requires $2^{\sqrt{m}}=\mathbf{p o l y}(N)$ traces in this case...

Exploit properties of masking:
$x^{\prime}=00 \ldots 00| | x \underset{\text { encoded as }}{ } \quad z \|\left(x^{\prime} \oplus g(z)\right)$

Better codes for small deletion probability

$O(\log m)$

$111 \ldots 111$	z	$x \oplus g(z)$
$O(\sqrt{m})$	$m=O\left(\log ^{2} N\right)$	$000 \ldots 000$

First barrier: HMPW algorithm needs to know first $\log m$ bits of $x \bigoplus g(z)$ "for free" Original bootstrapping procedure requires $2^{\sqrt{m}}=\mathbf{p o l y}(N)$ traces in this case...

Exploit properties of masking:

$x^{\prime}=00 \ldots 00| | x \xrightarrow[\text { encoded as }]{ } \quad z \|\left(x^{\prime} \bigoplus g(z)\right)$
$z^{\prime}=\begin{aligned} & \text { systematic encoding of } 0| | z \text { robust against } \\ & \text { constant fraction of deletions }+ \text { insertions }\end{aligned}$

Better codes for small deletion probability

$O(\log m)$

$111 \ldots 111$	z	$x \oplus g(z)$
$O(\sqrt{m})$	$m=O\left(\log ^{2} N\right)$	$000 \ldots 000$

First barrier: HMPW algorithm needs to know first $\log m$ bits of $x \bigoplus g(z)$ "for free" Original bootstrapping procedure requires $2^{\sqrt{m}}=\mathbf{p o l y}(N)$ traces in this case...

Exploit properties of masking:

$x^{\prime}=00 \ldots 00| | x \underset{\text { encoded as }}{ } z^{\prime}| |\left(x^{\prime} \oplus g(z)\right)$
$z^{\prime}=\begin{aligned} & \text { systematic encoding of } 0| | z \text { robust against } \\ & \text { constant fraction of deletions }+ \text { insertions }\end{aligned}$

Better codes for small deletion probability

$O(\log m)$

First barrier: HMPW algorithm needs to know first $\log m$ bits of $x \bigoplus g(z)$ "for free" Original bootstrapping procedure requires $2^{\sqrt{m}}=\mathbf{p o l y}(N)$ traces in this case...

Exploit properties of masking:
$x^{\prime}=00 \ldots 00| | x \underset{\text { encoded as }}{ } z^{\prime} \|\left(x^{\prime} \oplus g(z)\right)$
$z^{\prime}=\begin{aligned} & \text { systematic encoding of } 0| | z \text { robust against } \\ & \text { constant fraction of deletions }+ \text { insertions }\end{aligned}$

Better codes for small deletion probability

$O(\log m)$

First barrier: HMPW algorithm needs to know first $\log m$ bits of $x \bigoplus g(z)$ "for free" Original bootstrapping procedure requires $2^{\sqrt{m}}=\mathbf{p o l y}(N)$ traces in this case...

Exploit properties of masking:

$x^{\prime}=00 \ldots 00 \| x \xrightarrow[\text { encoded as }]{ } z^{\prime} \|\left(x^{\prime} \oplus g(z)\right)$
$z^{\prime}=$ systematic encoding of $0|\mid z$ robust against
Bootstrapping only requires $O(m)$ traces now!

Better codes for small deletion probability

A few more things:

- Actually need a stronger property than subsequence-uniqueness because of markers;
- Need to make sure trace splitting works.

Almost k-wise independent string satisfies both of them with high probability.

> There is an absolute constant $d^{\star} \in(0,1)$ such that for all $d \leq d^{\star}$ there exists an efficiently encodable/reconstructable code with rate $1-O(1 / \log N)$ using polylog (N) traces against i.i.d. deletions with probability d.

Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate $1-\epsilon$ over an alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces.

Moreover, this is tight.

Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate $1-\epsilon$ over an alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces.

Moreover, this is tight.

Lower bound:

Capacity of T-use deletion channel \leq Capacity of T-use erasure channel $=1-d^{T}$

Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate $1-\epsilon$ over an alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces.

Moreover, this is tight.

Lower bound:

Capacity of T-use deletion channel \leq Capacity of T-use erasure channel $=1-d^{T}$
$\Longrightarrow \quad 1-\epsilon \leq 1-d^{T} \quad \Longrightarrow \quad T \geq \log _{1 / d}(1 / \epsilon)$

A tool for the upper bound: Synchronization strings

 [HaeuplerShahrasbi17]A string S is a τ-synchronization string if for all $i<j<k$

$$
E D\left(S_{[i, j)}, S_{[j, k)}\right)>(1-\tau)(k-i)
$$

A tool for the upper bound: Synchronization strings

 [HaeuplerShahrasbi17]A string S is a τ-synchronization string if for all $i<j<k$

$$
E D\left(S_{[i, j)}, S_{[j, k)}\right)>(1-\tau)(k-i)
$$

"close" to maximal edit distance everywhere

A tool for the upper bound: Synchronization strings

 [HaeuplerShahrasbi17]A string S is a τ-synchronization string if for all $i<j<k$

$$
E D\left(S_{[i, j)}, S_{[j, k)}\right)>(1-\tau)(k-i)
$$

"close" to maximal edit distance everywhere

For every τ, can efficiently construct a τ-synch-string of length N over an alphabet of size poly $(1 / \tau)$.

Why are synchronization strings useful?

$$
c=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \Sigma^{N} \xrightarrow{\substack{\text { naive } \\ \text { indexing }}} \quad\left(\left(c_{1}, 1\right),\left(c_{2}, 2\right), \ldots,\left(c_{N}, N\right)\right) \in(\Sigma \times[N])^{N}
$$

Why are synchronization strings useful?

$$
\begin{gathered}
c=\begin{array}{lll}
\left(c_{1}, c_{2}, \ldots, c_{N}\right) & \in \Sigma^{N} \xrightarrow{\substack{\text { naive } \\
\text { indexing }}}\left(\left(c_{1}, 1\right),\left(c_{2}, 2\right), \ldots,\left(c_{N}, N\right)\right) \in(\Sigma \times[N])^{N} \\
\begin{array}{cccc}
\left(c_{1}, 1\right) & \left(c_{2}, 2\right) & \left(c_{3}, 3\right) \quad\left(c_{4}, 4\right)
\end{array} \\
& \downarrow \\
\begin{array}{lll}
\left(c_{1}, 1\right) & \left(c_{2}, 2\right) & \left(c_{3}, 3\right) \quad\left(c_{4}, 4\right)
\end{array} \\
& \downarrow \text { deletions } \\
& \left(c_{1}, 1\right) & \left(c_{3}, 3\right)
\end{array}
\end{gathered}
$$

Why are synchronization strings useful?

$$
\begin{aligned}
& c=\left(c_{1}, c_{2}, \ldots, c_{N}\right) \in \Sigma^{N} \xrightarrow{\substack{\text { naive } \\
\text { indexing }}} \quad\left(\left(c_{1}, 1\right),\left(c_{2}, 2\right), \ldots,\left(c_{N}, N\right)\right) \in(\Sigma \times[N])^{N} \\
& \left(c_{1}, 1\right) \quad\left(c_{2}, 2\right) \quad\left(c_{3}, 3\right) \quad\left(c_{4}, 4\right) \\
& \downarrow \\
& \left(c_{1}, 1\right) \quad\left(c_{2}, 2\right) \quad\left(c_{3}, 3\right) \quad\left(c_{4}, 4\right) \\
& \text { equivalent } \\
& \text { to } \\
& c_{1} \quad c_{2} \quad c_{3} \quad c_{4} \\
& \downarrow \text { deletions } \\
& \left(c_{1}, 1\right) \quad\left(c_{3}, 3\right) \\
& c_{1} \quad \text { ? } c_{3} \text { ? }
\end{aligned}
$$

Why are synchronization strings useful?

[HaeuplerShahrasbi17]: "Can efficiently transform deletions into (worst-case) erasures by indexing with synchronization string, with constant alphabet size blowup"

$$
\underset{\tau \text {-synchronization string }}{S \in \sum^{N}}
$$

Why are synchronization strings useful?

[HaeuplerShahrasbi17]: "Can efficiently transform deletions into (worst-case) erasures by indexing with synchronization string, with constant alphabet size blowup"

$$
S \in \Sigma^{N} \xrightarrow{d N \text { deletions }} \quad S^{\prime} \in \Sigma^{(1-d) N}
$$

"Error-free" indexing algorithm:

Why are synchronization strings useful?

[HaeuplerShahrasbi17]: "Can efficiently transform deletions into (worst-case) erasures by indexing with synchronization string, with constant alphabet size blowup"

$$
S \in \Sigma^{N} \quad \xrightarrow{d N \text { deletions }} \quad S^{\prime} \in \Sigma^{(1-d) N}
$$

τ-synchronization string
"Error-free" indexing algorithm:

[HaeuplerShahrasbi17]:
There is efficient error-free indexing algorithm with at most

$$
\frac{\tau d N}{1-\tau}
$$

misdecodings.

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces
$S\left(\tau=\epsilon^{C}\right)$-synchronization string over alphabet of size $O_{\epsilon}(1)$
rate $\approx 1-\epsilon$ code robust against $\approx \epsilon^{3}$ fraction of erasures

Construction: Index codewords of \mathscr{C} with S

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces
$S\left(\tau=\epsilon^{C}\right)$-synchronization string over alphabet of size $O_{\epsilon}(1)$
\mathscr{C} rate $\approx 1-\epsilon$ code robust against $\approx \epsilon^{3}$ fraction of erasures

Construction: Index codewords of \mathscr{C} with S
$\left(c_{1}, \ldots, c_{N}\right) \in \mathscr{C} \longrightarrow\left(c_{1}, S_{1}\right) \quad\left(c_{2}, S_{2}\right) \quad \cdots \quad\left(c_{N}, S_{N}\right)$

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces

Reconstruction:

Trace of codeword
$\left(x_{11}, x_{12}\right) \quad\left(x_{21}, x_{22}\right)$
$\left(x_{31}, x_{32}\right)$
$\left(x_{41}, x_{42}\right)$

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces

Reconstruction:

Trace of codeword

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces

Reconstruction:

Trace of codeword

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces

Reconstruction:

Trace of codeword

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces

Reconstruction:

Trace of codeword

\#erasures \leq \#misdecodings + \#(symbols deleted in every trace) $\leq \frac{\epsilon^{3} N}{2}+d^{T} N \leq \epsilon^{3} N$

Coded trace reconstruction from synchronization strings

[BrakensiekLiSpang19]: Efficient code over alphabet of size $O_{\epsilon}(1)$ using $O\left(\log _{1 / d}(1 / \epsilon)\right)$ traces

Reconstruction:

Trace of codeword

\mathscr{C} corrects this many erasures!
\#erasures \leq \#misdecodings + \#(symbols deleted in every trace) $\leq \frac{\epsilon^{3} N}{2}+d^{T} N \leq \epsilon^{3} N$

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code
$\mathcal{X} \quad N$-bit string

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$\mathcal{X} \quad N$-bit string

large alphabet code correcting many substitutions

```
c}\in\mathscr{\mp@subsup{\mathscr{C}}{\mathrm{ out}}{}
```


From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$\mathcal{X} \quad N$-bit string

S many substitutions
large alphabet code correcting

1/3-synchronization string over alphabet of size $O(1)$

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$x \quad N$-bit string

S
large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size $O(1)$

\square
concatenate with
binary code

$$
\left(c_{i}, S_{i}\right)
$$

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$\mathcal{X} \quad N$-bit string

S
large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size $O(1)$

$\left(c_{1}, S_{1}\right) \quad\left(c_{2}, S_{2}\right) \quad\left(c_{3}, S_{3}\right) \quad\left(c_{4}, S_{4}\right) \quad \cdots$
concatenate with
binary code

$\left(c_{i}, S_{i}\right)$

$\operatorname{Enc}_{R}\left(c_{i}\right)=\begin{array}{ccc}0 & \bar{c}_{i} & 1 \\ \log m & m & \log m\end{array}$

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$\mathcal{X} \quad N$-bit string

S
large alphabet code correcting many substitutions

1/3-synchronization string over alphabet of size $O(1)$

$\left(c_{1}, S_{1}\right) \quad\left(c_{2}, S_{2}\right) \quad\left(c_{3}, S_{3}\right) \quad\left(c_{4}, S_{4}\right) \quad \cdots$
concatenate with
binary code

$\operatorname{Enc}_{R}\left(c_{i}\right)=\begin{array}{ccc}0 & \bar{c}_{i} & 1 \\ \log m & m & \log m\end{array}$
$\overline{c_{i}}$ "Dense" codeword TBD

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$\mathcal{X} \quad N$-bit string

large alphabet code correcting many substitutions

S

1/3-synchronization string over alphabet of size $O(1)$

$\left(c_{1}, S_{1}\right) \quad\left(c_{2}, S_{2}\right) \quad\left(c_{3}, S_{3}\right)$
$\left(c_{4}, S_{4}\right)$
concatenate with
binary code

$\operatorname{Enc}_{R}\left(c_{i}\right)=$

$\log m$

\square
$\overline{C_{i}} \quad$ "Dense" codeword TBD

From large alphabets to binary codes

Construction: Concatenate good code over large alphabet with marker-based inner code

$\mathcal{X} \quad N$-bit string

large alphabet code correcting many substitutions

S

1/3-synchronization string over alphabet of size $O(1)$

$\left(c_{1}, S_{1}\right) \quad\left(c_{2}, S_{2}\right) \quad\left(c_{3}, S_{3}\right)$ $\left(c_{4}, S_{4}\right) \quad \cdots$
concatenate with
binary code

Reconstruction
\square

Reconstruction

Reconstruction

1) Trace alignment:

Long runs only come from markers $\quad \Longrightarrow$ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers $\quad \Longrightarrow$ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers

Reconstruction

1) Trace alignment:

Long runs only come from markers $\quad \Longrightarrow$ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers $\quad \Longrightarrow$ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers $\quad \Longrightarrow$ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers $\quad \Longrightarrow$ Find traces of (most) synch symbols

2) Use special trace rec properties of $\overline{\mathscr{C}}+$ error-correction properties of $\mathscr{\mathscr { C }}$ out

Designing the (existential) inner code

Key observation: Since markers are short, nearly all strings of this type are good for any averagecase trace rec algorithm!

Designing the (existential) inner code

Key observation: Since markers are short, nearly all strings of this type are good for any averagecase trace rec algorithm!

If m is small, can brute force high-rate code $\overline{\mathscr{C}}$ to require few traces + be dense!

Designing the (existential) inner code

Key observation: Since markers are short, nearly all strings of this type are good for any averagecase trace rec algorithm!

If m is small, can brute force high-rate code $\overline{\mathscr{C}}$ to require few traces + be dense!

Using [HPP18], reconstruct $\overline{\mathscr{C}}$
with $\exp \left(\log ^{1 / 3} m\right)$ traces.

Combining everything

Set inner code length to $m=\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)$ to ensure rate $\geq 1-\epsilon$
[BrakensiekLiSpang19]
For any constant deletion probability and every ϵ, there exists a code of rate $1-\epsilon$ that can be reconstructed from $\exp \left(\log ^{1 / 3}(1 / \epsilon)\right)$ traces.

Combining everything

Set inner code length to $m=\frac{1}{\epsilon} \log \left(\frac{1}{\epsilon}\right)$ to ensure rate $\geq 1-\epsilon$
[BrakensiekLiSpang19]
For any constant deletion probability and every ϵ, there exists a code of rate $1-\epsilon$ that can be reconstructed from $\exp \left(\log ^{1 / 3}(1 / \epsilon)\right)$ traces.

Caveat: Inner code construction takes time $\exp (m)$.
\Longrightarrow Overall code construction only efficient for $\epsilon \geq \frac{\log \log N}{\log N}$

Summing up...

We can exploit worst-case and average-case trace reconstruction to design efficient high-rate codes requiring significantly fewer traces, or satisfying other nice properties.

	rate $=1-\varepsilon$	\#traces	efficient encoding \& reconstruction
Markers + modified avg-case trace rec [CGMR19]	$\epsilon=\frac{1}{\log N}$	$\log ^{C} N$	observations
Synch string + Markers + existential trace rec [BLS19]	$\epsilon=\frac{1}{\log N}$	$\exp \left((\log \log N)^{1 / 3}\right)$	Deletion probability smaller than absolute constant
Synch string + Markers + existential trace rec [BLS19]	$\epsilon \geq \frac{\log \log N}{\log N}$	$\exp \left(\log ^{1 / 3}(1 / \epsilon)\right)$	Code construction is not efficient

Summing up...

We can exploit worst-case and average-case trace reconstruction to design efficient high-rate codes requiring significantly fewer traces, or satisfying other nice properties.

Future work

- Efficient high-rate codes using even fewer traces;
- Bridge gap between bounds for (coded and uncoded) trace reconstruction;
- High-rate codes that handle deletions and random insertions with few traces;

Future work

- Efficient high-rate codes using even fewer traces;
- Bridge gap between bounds for (coded and uncoded) trace reconstruction;
- High-rate codes that handle deletions and random insertions with few traces;

Thanks!

