
Coded and Uncoded Trace Reconstruction

João Ribeiro
Imperial College London

Deletion channel

0 1 0 0 1 1

Deletion channel

0 1 0 0 1 1

0 1 0 0 1 1

Deletion channel

0 1 0 0 1 1

0 1 0 0 1 1

0 1 1

Deletion channel

0 1 0 0 1 1

0 1 0 0 1 1

0 1 1

Other deletion patterns that lead to
same output

0 1 0 0 1 1
0 1 0 0 1 1
0 1 0 0 1 1

Deletion channel

0 1 0 0 1 1

0 1 0 0 1 1

0 1 1

Other deletion patterns that lead to
same output

0 1 0 0 1 1
0 1 0 0 1 1
0 1 0 0 1 1

i.i.d. deletions: each bit deleted independently with fixed probability d

Deletion channel

0 1 0 0 1 1

0 1 0 0 1 1

0 1 1

Other deletion patterns that lead to
same output

0 1 0 0 1 1
0 1 0 0 1 1
0 1 0 0 1 1

i.i.d. deletions: each bit deleted independently with fixed probability d
Many open problems! E.g., capacity is still unknown…

Trace reconstruction

[Levenshtein01, BatuKannanKhannaMcGregor04]

• We succeed with high
probability

• We use as few traces as
possible

Goal
Reconstruct from traces

 such that:

x
y(1), …, y(t)

1 − O(1/N)
x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
N-bit string

Original motivation for trace reconstruction

[BatuKannanKhannaMcGregor04]

Ancestor DNA
mutations

(deletions, insertions, substitutions)

Descendent 1 DNA
Descendent 2 DNA

Descendent 3 DNA

Multiple sequence alignment: Deduce common ancestor DNA from descendants DNA.

Main settings for
uncoded trace
reconstruction

Average-case trace reconstruction

Average error probability of reconstruction
algorithm over all input strings is small.

Pr
x←{0,1}N,y(1),…,y(t)←𝖣𝖾𝗅(x)

[ℛ(y(1), …, y(t)) = x] ≈ 1

ℛ

Worst-case trace reconstruction

Reconstruction algorithm must
succeed with high probability
simultaneously for all input strings.

∀x : Pr
y(1),…,y(t)←𝖣𝖾𝗅(x)

[ℛ(y(1), …, y(t)) = x] ≈ 1

ℛ

x

…

i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
N-bit string

Worst-case trace reconstruction
Recall: Reconstruction algorithm must succeed for all strings with high probability.

Reconstruction
algorithms #traces deletion probability

Batu, Kannan, Khanna, McGregor
2004

Holenstein, Mitzenmacher,
Panigrahy, Wieder 2008 any constant < 1

De, O’Donnell, Servedio 2017
Nazarov, Peres 2017 any constant < 1

d = 1/N1/2+ϵN log N

exp(N1/2)

exp(N1/3)

Mean-based algorithms &

worst-case trace reconstruction

x i.i.d. deletions

∈ {−1,1}N
Y

∈ {−1,0,1}N

(padded with 0’s)

Mean-based algorithms &

worst-case trace reconstruction

x i.i.d. deletions

∈ {−1,1}N
Y

∈ {−1,0,1}N

(padded with 0’s)

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

Mean-based algorithms &

worst-case trace reconstruction

x i.i.d. deletions

∈ {−1,1}N
Y

∈ {−1,0,1}N

(padded with 0’s)

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

Mean-based algorithm:
• Compute estimate of mean trace from traces;

• Find such that is closest to .

̂μ μ(x) T
x ̂μ

[DeO’DonnellServedio17, NazarovPeres17]:
There exist mean-based algorithms using traces. Moreover,
this is optimal for mean-based algorithms.

T = exp(N1/3)

μ(x)

Mean-based algorithms & complex analysis

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

#traces required for accurate estimate is dictated by

min
x≠x′�

| |μ(x) − μ(x′ �) | |1 = 2 × min
x∈{−1,0,1}N

| |μ(x) | |1

̂μ

Mean-based algorithms & complex analysis

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

#traces required for accurate estimate is dictated by

min
x≠x′�

| |μ(x) − μ(x′ �) | |1 = 2 × min
x∈{−1,0,1}N

| |μ(x) | |1

̂μ

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Mean-based algorithms & complex analysis

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

#traces required for accurate estimate is dictated by

min
x≠x′�

| |μ(x) − μ(x′ �) | |1 = 2 × min
x∈{−1,0,1}N

| |μ(x) | |1

̂μ

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

(can use powerful complex analytic tools!)

Bounding min | |μ(x) | |1 ≈ Maximizing special polynomial
over arc of complex circle

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

z = eiθ, θ ∈ [−π/L, π/L]such thatw

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial ∑
j

|μj(x) | ⋅ |w |j ≥ (1 − d) |A(eiθ) | (△-ineq)

z = eiθ, θ ∈ [−π/L, π/L]such thatw

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

⟹ | |μ(x) | |1 ≥ e− c′�N
L2 ⋅ |A(eiθ) | (simple trig)

∑
j

|μj(x) | ⋅ |w |j ≥ (1 − d) |A(eiθ) | (△-ineq)

z = eiθ, θ ∈ [−π/L, π/L]such thatw

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

⟹ | |μ(x) | |1 ≥ e− c′�N
L2 ⋅ |A(eiθ) | (simple trig)

⟹ | |μ(x) | |1 ≥ e− cN
L2 ⋅ max

θ∈[−π/L,π/L]
|A(eiθ) |

∑
j

|μj(x) | ⋅ |w |j ≥ (1 − d) |A(eiθ) | (△-ineq)

z = eiθ, θ ∈ [−π/L, π/L]such thatw

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

⟹ | |μ(x) | |1 ≥ e− c′�N
L2 ⋅ |A(eiθ) | (simple trig)

⟹ | |μ(x) | |1 ≥ e− cN
L2 ⋅ max

θ∈[−π/L,π/L]
|A(eiθ) |

≥ e−cN1/3
([BE97] + Max wrt L)

∑
j

|μj(x) | ⋅ |w |j ≥ (1 − d) |A(eiθ) | (△-ineq)

z = eiθ, θ ∈ [−π/L, π/L]such thatw

Littlewood polynomial A(z), xj ∈ {−1,0,1}

Mean-based algorithms & Littlewood polynomials

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]

A(z) Littlewood polynomial

⟹ | |μ(x) | |1 ≥ e− c′�N
L2 ⋅ |A(eiθ) | (simple trig)

⟹ | |μ(x) | |1 ≥ e− cN
L2 ⋅ max

θ∈[−π/L,π/L]
|A(eiθ) |

≥ e−cN1/3
([BE97] + Max wrt L)

∑
j

|μj(x) | ⋅ |w |j ≥ (1 − d) |A(eiθ) | (△-ineq)

z = eiθ, θ ∈ [−π/L, π/L]such thatw

Littlewood polynomial A(z), xj ∈ {−1,0,1}

⟹ traces suffice to
distinguish mean traces
eO(N1/3)

Average-case trace reconstruction

d = 1/log Nlog N

poly(N)

exp(log N)

Recall: Average error probability of reconstruction algorithm must be .

Reconstruction
algorithms #traces deletion probability

Batu, Kannan, Khanna, McGregor
2004

Holenstein, Mitzenmacher,
Panigrahy, Wieder 2008 for small absolute constant

Peres, Zhai 2017

Holden, Pemantle, Peres 2018

d = 1/log Nlog N

poly(N)

exp(log1/2 N)

exp(log1/3 N)

d < c

d < 1/2

d < 1

c

O(1/N)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

X (N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

known1) Bootstrapping: Learn first bits of “for free”X X (N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

known1) Bootstrapping: Learn first bits of “for free”X
XiSuppose we know X1, X2, …, Xi−1

Goal: Find Xi

X (N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

known1) Bootstrapping: Learn first bits of “for free”X
XiSuppose we know X1, X2, …, Xi−1

Goal: Find Xi

“If X is random, whp anchor in trace comes
from anchor in X.”

anchor

2) Trace alignment: Align by anchor close to Xi

X (N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

X1) Bootstrapping: Learn first bits of “for free”X
Suppose we know X1, X2, …, Xi−1

known

Goal: Find Xi

Xi

2) Trace alignment: Align by anchor close to

“If X is random, whp anchor in trace comes
from anchor in X.”

Xi

anchor

(N-bit string)

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

X1) Bootstrapping: Learn first bits of “for free”X
Suppose we know X1, X2, …, Xi−1

known

Goal: Find Xi

Xi

2) Trace alignment: Align by anchor close to

“If X is random, whp anchor in trace comes
from anchor in X.”

Xi

anchor

(N-bit string)

Y =
3) Reconstruction: Estimate special bit

distribution of “trace after anchor”

“There is special position that is decently
influenced by ” Xi

Yj⋆

| Pr[Yj⋆ = 1 |Xi = 1] − Pr[Yj⋆ = 1 |Xi = 0] | ≥
1

NC

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

X1) Bootstrapping: Learn first bits of “for free”X
Suppose we know X1, X2, …, Xi−1

known

Goal: Find Xi

Xi

2) Trace alignment: Align by anchor close to

“If X is random, whp anchor in trace comes
from anchor in X.”

Xi

anchor

Use to estimate
distribution of

Yj⋆

(N-bit string)

Y =
3) Reconstruction: Estimate special bit

distribution of “trace after anchor”

“There is special position that is decently
influenced by ” Xi

Yj⋆

| Pr[Yj⋆ = 1 |Xi = 1] − Pr[Yj⋆ = 1 |Xi = 0] | ≥
1

NC

A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp(log N)

X1) Bootstrapping: Learn first bits of “for free”X
Suppose we know X1, X2, …, Xi−1

known

Goal: Find Xi

Xi

2) Trace alignment: Align by anchor close to

“If X is random, whp anchor in trace comes
from anchor in X.”

Xi

anchor

Use to estimate
distribution of

Yj⋆

XiRecover whp using traces!poly(N)

(N-bit string)

Y =
3) Reconstruction: Estimate special bit

distribution of “trace after anchor”

“There is special position that is decently
influenced by ” Xi

Yj⋆

| Pr[Yj⋆ = 1 |Xi = 1] − Pr[Yj⋆ = 1 |Xi = 0] | ≥
1

NC

Lower bounds for trace reconstruction
General recipe for lower bounds:
• Worst-case: Show it is hard to distinguish between two specific strings with few traces;

• Average-case: Worst-case LB + we expect bad string of length to show up times in
random -bit string.

log N
2

≈ N
N

Lower bounds
#traces Worst-case Average-case

McGregor, Price, Vorotnikova
2014

Holden, Lyons 2018

Chase 2019

log2 NN

N1.25 log2.25 N

N1.5 log2.5 N

Lower bounds for trace reconstruction

[McGregorPriceVorotnikova14]

N traces necessary and sufficient to distinguish

0N−110N 0N10N−1vs.

[HoldenLyons18, Chase19]

N1.5 traces necessary and sufficient to distinguish

(01)N−110(01)N vs. (01)N10(01)N−1

0000100000
0000010000

010110010101
010101100101

Summing up…

Worst-case
trace reconstruction

Average-case
trace reconstruction

Upper bounds
#traces [DeO’DonnellServedio17,

NazarovPeres17]
[HoldenPemantlePeres18]

Lower bounds
#traces [HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

exp(O(N1/3))

≈ N3/2

exp(O(log1/3 N))

≈ log5/2 N

Summing up…

Worst-case
trace reconstruction

Average-case
trace reconstruction

Upper bounds
#traces [DeO’DonnellServedio17,

NazarovPeres17]
[HoldenPemantlePeres18]

Lower bounds
#traces [HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

exp(O(N1/3))

≈ N3/2

exp(O(log1/3 N))

≈ log5/2 N

almost
exponential gap

Summing up…

Worst-case
trace reconstruction

Average-case
trace reconstruction

Upper bounds
#traces [DeO’DonnellServedio17,

NazarovPeres17]
[HoldenPemantlePeres18]

Lower bounds
#traces [HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

exp(O(N1/3))

≈ N3/2

exp(O(log1/3 N))

≈ log5/2 N

almost
exponential gap

*All results over ,
as it is the hardest setting

{0,1}N

Trace reconstruction and portable DNA-based storage

[YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.

Trace reconstruction and portable DNA-based storage

[YazdiGabrysMilenkovic17, Organick+18]

A T C G A C T C A A G C G T A G A C…

A T C G A C T C A A G C G T A G A C…

A T C G A C T C A A G C G T A G A C…

A T C G A C T C A A G C G T A G A C…

nanopores

noisy
traces

Read from DNA via
nanopore sequencers

Trace reconstruction for the coding schemes in [YGM17, OAC+18] is based on heuristics.

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.

Coded trace reconstruction

[CheraghchiGabrysMilenkovicRibeiro19]

x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
codeword of

𝒞

 with 𝒞 ⊆ {0,1}N |𝒞 | = 2RN

Coded trace reconstruction

[CheraghchiGabrysMilenkovicRibeiro19]

x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
codeword of

𝒞

 with 𝒞 ⊆ {0,1}N |𝒞 | = 2RN

• high rate , R = 1 − ϵ ϵ = oN(1)

Coded trace reconstruction

[CheraghchiGabrysMilenkovicRibeiro19]

x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
codeword of

𝒞

 with 𝒞 ⊆ {0,1}N |𝒞 | = 2RN

• high rate , R = 1 − ϵ ϵ = oN(1)

• reconstructed from few traces
(slow-growing) with
probability
t = t(1/ϵ)

1 − O(1/N)

Coded trace reconstruction

[CheraghchiGabrysMilenkovicRibeiro19]

x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
codeword of

𝒞

 with 𝒞 ⊆ {0,1}N |𝒞 | = 2RN

• high rate , R = 1 − ϵ ϵ = oN(1)

• reconstructed from few traces
(slow-growing) with
probability
t = t(1/ϵ)

1 − O(1/N)

poly(N)
• efficiently encodable and

reconstructable (time)

Some related work

Haeupler, Mitzenmacher
2014

First-order capacity for small deletion probability

(constant number of traces only)

Abroshan, Venkataramanan,
Dolecek, Guillén i Fàbregas

2019

Coding for multiple deletion channels with constant number of deletions only.

Uses VT codes. Builds up on work about file synchronization.

Average-case
trace reconstruction

Implies existence of large codes reconstructable from few traces.

No efficient encoding + we want to use even fewer traces.

PART I:
Markers + worst-case trace reconstruction

Basic construction

x -bit stringN

b1 b2 b3 b4

c1 c2 c3 c4

c1 c2 c3 c4

Basic construction

x
split into blocks with
 bitsm = O(log2 N)

-bit stringN

b1 b2 b3 b4

c1 c2 c3 c4

c1 c2 c3 c4

Basic construction

x
split into blocks with
 bitsm = O(log2 N)

𝒞b

encode each block
using appropriate
sub-code

𝒞b

-bit stringN

b1 b2 b3 b4

c1 c2 c3 c4

c1 c2 c3 c4

Basic construction

x
split into blocks with
 bitsm = O(log2 N)

𝒞b

encode each block
using appropriate
sub-code

𝒞b

= 0000…00
O(log N) bitsadd markers

between blocks

0

= 1111…11
O(log N) bits

1
0 1 0 1 0 1

-bit stringN

b1 b2 b3 b4

c1 c2 c3 c4

c1 c2 c3 c4

Reconstruction
𝒞b= 0000…00

O(log N) bits
= 1111…11

O(log N) bits
∈

Reconstruction
𝒞b= 0000…00

O(log N) bits
= 1111…11

O(log N) bits
∈

deletions

𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Key observation: part of trace coming
from a marker still looks like a marker.

Trace of codeword

Reconstruction

𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Key observation: part of trace coming
from a marker still looks like a marker.

Trace of codeword

If is chosen appropriately, long runs
of 0’s in trace only come from markers

𝒞b

Reconstruction

𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Key observation: part of trace coming
from a marker still looks like a marker.

Trace of codeword

If is chosen appropriately, long runs
of 0’s in trace only come from markers

𝒞b look for first 1

after long run of 0’s

Reconstruction

𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Trace of codeword

trace splitting
into sub-traces

Key observation: part of trace coming
from a marker still looks like a marker.

If is chosen appropriately, long runs
of 0’s in trace only come from markers

𝒞b

Reconstruction

𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Trace of codeword

trace splitting
into sub-traces

worst-case trace
reconstruction

Key observation: part of trace coming
from a marker still looks like a marker.

If is chosen appropriately, long runs
of 0’s in trace only come from markers

𝒞b

Reconstruction

𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Trace of codeword

trace splitting
into sub-traces

worst-case trace
reconstruction

Efficiently encodable/reconstructable
code with rate
using traces for
any constant deletion prob.

1 − O(1/log N)
exp(log1/3+γ N)

Key observation: part of trace coming
from a marker still looks like a marker.

If is chosen appropriately, long runs
of 0’s in trace only come from markers

𝒞b

Reconstruction

A tool for designing the sub-code:

Almost -wise independent strings

 -almost -wise independent distribution:ϵ k X ∈ {0,1}m

∀i1, …, ik, x1, …, xk : | Pr[Xi1 = x1, …, Xik = xk] − 2−k | ≤ ϵ

k

A tool for designing the sub-code:

Almost -wise independent strings

 -almost -wise independent distribution:ϵ k X ∈ {0,1}m

∀i1, …, ik, x1, …, xk : | Pr[Xi1 = x1, …, Xik = xk] − 2−k | ≤ ϵ

[AlonGoldreichHåstadPeralta92]:
“For decent parameters, can efficiently generate such strings from few uniformly random bits”

k

A tool for designing the sub-code:

Almost -wise independent strings

 -almost -wise independent distribution:ϵ k X ∈ {0,1}m

∀i1, …, ik, x1, …, xk : | Pr[Xi1 = x1, …, Xik = xk] − 2−k | ≤ ϵ

[AlonGoldreichHåstadPeralta92]:
“For decent parameters, can efficiently generate such strings from few uniformly random bits”

g : {0,1}t → {0,1}m

For every , and there is a -computable function

with such that is -almost -wise independent.

m k = O(log m) poly(m)ϵ =
1

poly(m)

g(Ut) ϵ kt = O(log m)

k

Designing the sub-code

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

Designing the sub-code

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)

Designing the sub-code

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

To encode :

x
x ∈ {0,1}m

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)

Designing the sub-code

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

⊕
g(Ut)

To encode :

x
x ∈ {0,1}m

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)

Designing the sub-code

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

⊕
g(Ut)

To encode :

x
x ∈ {0,1}m

satisfies property whp

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)

Designing the sub-code

So there is good fixing
that enforces property

Ut = z

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

⊕
g(z)

To encode :

x
x ∈ {0,1}m

satisfies property whp

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)

(chosen so that property is satisfied)

Designing the sub-code

zx ⊕ g(z)z
log m

Desired property: No long runs of 0’s in trace of → allows for trace splittingc ∈ 𝒞b

To encode :x ∈ {0,1}m

𝖤𝗇𝖼(x) =

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)

PART II:
Markers +

modified average-case trace reconstruction

Subsequence-unique strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string is -subsequence-unique if no substring of length can be obtained by deleting
bits of another substring of length (except for trivial containment).

x w w
1.1w

Subsequence-unique strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string is -subsequence-unique if no substring of length can be obtained by deleting
bits of another substring of length (except for trivial containment).

x w w
1.1w

Deletion probability
small enough constant ⟹ Efficient trace reconstruction algorithm for all

length -subsequence-unique strings
with using traces.

m w
w = O(log m) poly(m)

Subsequence-unique strings

[HolensteinMitzenmacherPanigrahyWieder08]

A string is -subsequence-unique if no substring of length can be obtained by deleting
bits of another substring of length (except for trivial containment).

x w

Key observation: an -almost -wise independent string is -subsequence-unique
with high probability for decent parameters and .ϵk

ϵ k w

w
1.1w

Deletion probability
small enough constant ⟹ Efficient trace reconstruction algorithm for all

length -subsequence-unique strings
with using traces.

m w
w = O(log m) poly(m)

Use masking to encode
blocks into “almost”
subsequence-unique strings

x
encoded as∈ {0,1}m -subsequence-uniquew

w = O(log m)
log m

Better codes for small deletion probability

x ⊕ g(z)z

Use masking to encode
blocks into “almost”
subsequence-unique strings

111…111 000…000x ⊕ g(z)
m = O(log2 N)O(m) O(m)

z
O(log m)

HMPW trace reconstruction algorithm doesn’t work for strings like this…

x
encoded as∈ {0,1}m -subsequence-uniquew

w = O(log m)
log m

Better codes for small deletion probability

x ⊕ g(z)z

Better codes for small deletion probability

111…111 000…000x ⊕ g(z)
m = O(log2 N)O(m) O(m)

z
O(log m)

Original bootstrapping procedure requires traces in this case… 2 m = poly(N)
First barrier: HMPW algorithm needs to know first bits of “for free”log m x ⊕ g(z)

Better codes for small deletion probability

111…111 000…000x ⊕ g(z)
m = O(log2 N)O(m) O(m)

z
O(log m)

Exploit properties of masking:

x′� = 00…00 | |x
encoded as

z | | (x′� ⊕ g(z))

Original bootstrapping procedure requires traces in this case… 2 m = poly(N)
First barrier: HMPW algorithm needs to know first bits of “for free”log m x ⊕ g(z)

Better codes for small deletion probability

111…111 000…000x ⊕ g(z)
m = O(log2 N)O(m) O(m)

z
O(log m)

Exploit properties of masking:

x′� = 00…00 | |x
encoded as

z | | (x′� ⊕ g(z))

z′� = systematic encoding of robust against
constant fraction of deletions+insertions

0 | |z

Original bootstrapping procedure requires traces in this case… 2 m = poly(N)
First barrier: HMPW algorithm needs to know first bits of “for free”log m x ⊕ g(z)

Better codes for small deletion probability

111…111 000…000x ⊕ g(z)
m = O(log2 N)O(m) O(m)

z
O(log m)

Original bootstrapping procedure requires traces in this case… 2 m = poly(N)

Exploit properties of masking:

x′� = 00…00 | |x
encoded as

z′�| | (x′� ⊕ g(z))

z′� = systematic encoding of robust against
constant fraction of deletions+insertions

0 | |z

First barrier: HMPW algorithm needs to know first bits of “for free”log m x ⊕ g(z)

Better codes for small deletion probability

111…111 000…000x′� ⊕ g(z)
m′� ≈ m = O(log2 N)O(m) O(m)

z′�

O(log m)

Original bootstrapping procedure requires traces in this case… 2 m = poly(N)

Exploit properties of masking:

x′� = 00…00 | |x
encoded as

z′�| | (x′� ⊕ g(z))

z′� = systematic encoding of robust against
constant fraction of deletions+insertions

0 | |z

First barrier: HMPW algorithm needs to know first bits of “for free”log m x ⊕ g(z)

Better codes for small deletion probability

111…111 000…000x′� ⊕ g(z)
m′� ≈ m = O(log2 N)O(m) O(m)

z′�

O(log m)

Original bootstrapping procedure requires traces in this case… 2 m = poly(N)

Exploit properties of masking:

x′� = 00…00 | |x
encoded as

z′�| | (x′� ⊕ g(z))

z′� = systematic encoding of robust against
constant fraction of deletions+insertions

0 | |z

Bootstrapping only
requires
traces now!

O(m)

First barrier: HMPW algorithm needs to know first bits of “for free”log m x ⊕ g(z)

A few more things:
• Actually need a stronger property than subsequence-uniqueness because of markers;

• Need to make sure trace splitting works.

There is an absolute constant such that for all there
exists an efficiently encodable/reconstructable code with rate
using traces against i.i.d. deletions with probability .

1 − O(1/log N)
polylog(N)

d⋆ ∈ (0,1) d ≤ d⋆

d

Almost -wise independent string satisfies both of them with high probability.k

Better codes for small deletion probability

Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate over
an alphabet of size using traces.

1 − ϵ
Oϵ(1) O(log1/d(1/ϵ))

Moreover, this is tight.

Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate over
an alphabet of size using traces.

1 − ϵ
Oϵ(1) O(log1/d(1/ϵ))

Moreover, this is tight.

Lower bound:

Capacity of -use deletion channel ≤ Capacity of -use erasure channel = 1 − dTT T

Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate over
an alphabet of size using traces.

1 − ϵ
Oϵ(1) O(log1/d(1/ϵ))

Moreover, this is tight.

⟹ 1 − ϵ ≤ 1 − dT ⟹ T ≥ log1/d(1/ϵ)

Lower bound:

Capacity of -use deletion channel ≤ Capacity of -use erasure channel = 1 − dTT T

A tool for the upper bound: Synchronization strings

[HaeuplerShahrasbi17]

A string is a -synchronization string if for all S τ i < j < k

ED(S[i,j), S[j,k)) > (1 − τ)(k − i)

A tool for the upper bound: Synchronization strings

[HaeuplerShahrasbi17]

A string is a -synchronization string if for all S τ i < j < k

ED(S[i,j), S[j,k)) > (1 − τ)(k − i)

“close” to maximal edit distance everywhere

A tool for the upper bound: Synchronization strings

[HaeuplerShahrasbi17]

A string is a -synchronization string if for all S τ i < j < k

ED(S[i,j), S[j,k)) > (1 − τ)(k − i)

“close” to maximal edit distance everywhere

For every , can efficiently construct a -synch-string of length
over an alphabet of size .

τ τ N
poly(1/τ)

Why are synchronization strings useful?

c = (c1, c2, …, cN) ∈ ΣN ((c1,1), (c2,2), …, (cN, N)) ∈ (Σ × [N])N
naive

indexing

Why are synchronization strings useful?

c = (c1, c2, …, cN) ∈ ΣN ((c1,1), (c2,2), …, (cN, N)) ∈ (Σ × [N])N
naive

indexing

(c1,1) (c2,2) (c3,3) (c4,4)

(c1,1) (c2,2) (c3,3) (c4,4)

(c1,1) (c3,3)

deletions

Why are synchronization strings useful?

c = (c1, c2, …, cN) ∈ ΣN ((c1,1), (c2,2), …, (cN, N)) ∈ (Σ × [N])N
naive

indexing

(c1,1) (c2,2) (c3,3) (c4,4)

(c1,1) (c2,2) (c3,3) (c4,4)

(c1,1) (c3,3)

deletions

c1 c2 c3 c4

c1 c2 c3 c4

c1 ? c3 ?

equivalent
to

erasures

Why are synchronization strings useful?
[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by
indexing with synchronization string, with constant alphabet size blowup”

S
deletions

-synchronization stringτ

dN
∈ ΣN S′� ∈ Σ(1−d)N

Why are synchronization strings useful?
[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by
indexing with synchronization string, with constant alphabet size blowup”

S
deletions

-synchronization stringτ

dN
∈ ΣN S′� ∈ Σ(1−d)N

“Error-free” indexing algorithm:

S′�j

find correct index such

that is mapped to by

deletion process

ij
Sij S′�j

abort and output special

symbol (misdecoding)?

Why are synchronization strings useful?
[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by
indexing with synchronization string, with constant alphabet size blowup”

S
deletions

-synchronization stringτ

dN
∈ ΣN S′� ∈ Σ(1−d)N

“Error-free” indexing algorithm:

S′�j

find correct index such

that is mapped to by

deletion process

ij
Sij S′�j

abort and output special

symbol (misdecoding)?

[HaeuplerShahrasbi17]:

There is efficient error-free indexing
algorithm with at most

misdecodings.

τdN
1 − τ

Coded trace reconstruction

from synchronization strings

𝒞 rate code robust against fraction of erasures≈ 1 − ϵ ≈ ϵ3

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Construction: Index codewords of with 𝒞 S

S -synchronization string over alphabet of size(τ = ϵC) Oϵ(1)

Coded trace reconstruction

from synchronization strings

𝒞 rate code robust against fraction of erasures≈ 1 − ϵ ≈ ϵ3

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Construction: Index codewords of with 𝒞 S

S -synchronization string over alphabet of size(τ = ϵC) Oϵ(1)

(c1, S1) (c2, S2) (cN, SN)…(c1, …, cN) ∈ 𝒞

Coded trace reconstruction

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Coded trace reconstruction

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)

symbols from synch string

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Coded trace reconstruction

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)
run error-free

indexing algorithm
on second symbol

i1 i3 ??

symbols from synch string

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Coded trace reconstruction

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)
run error-free

indexing algorithm
on second symbol

i1 i3 ??
recover treat as

erasureci1 = x11

treat as
erasure

recover
ci3 = x31

symbols from synch string

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Coded trace reconstruction

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)
run error-free

indexing algorithm
on second symbol

i1 i3 ??
recover treat as

erasureci1 = x11

treat as
erasure

recover
ci3 = x31

#erasures ≤ #misdecodings + #(symbols deleted in every trace) ≤
ϵ3N

2
+ dTN ≤ ϵ3N

symbols from synch string

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

Coded trace reconstruction

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)
run error-free

indexing algorithm
on second symbol

i1 i3 ??
recover treat as

erasureci1 = x11

treat as
erasure

recover
ci3 = x31

#erasures ≤ #misdecodings + #(symbols deleted in every trace) ≤
ϵ3N

2
+ dTN ≤ ϵ3N

 corrects this
many erasures!
𝒞

symbols from synch string

[BrakensiekLiSpang19]: Efficient code over alphabet of size using tracesOϵ(1) O(log1/d(1/ϵ))

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN

cici

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

cici

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

(c1, S1) …S -synchronization string
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

cici

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

(c1, S1) …S -synchronization string
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

(ci, Si)

concatenate with
binary code

cici

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

(c1, S1) …S -synchronization string
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

(ci, Si)

concatenate with
binary code

ci𝖤𝗇𝖼R(ci) = 0 1

m log mlog m
ci

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

(c1, S1) …S -synchronization string
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

(ci, Si)

concatenate with
binary code

ci𝖤𝗇𝖼R(ci) = 0 1

m log mlog m

ci “Dense” codeword TBDci

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

(c1, S1) …S -synchronization string
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

(ci, Si)

concatenate with
binary code

ci𝖤𝗇𝖼R(ci) = 0 1

m log mlog m

𝖤𝗇𝖼S(Si) = 10 10 …
log m

ci “Dense” codeword TBDci

From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting
many substitutions

(c1, S1) …S -synchronization string
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

(ci, Si)

concatenate with
binary code

ci

Robust against deletions,
with two possible runlengths,
same number of runs

𝖤𝗇𝖼R(ci) = 0 1

m log mlog m

𝖤𝗇𝖼S(Si) = 10 10 …
log m

ci “Dense” codeword TBDci

Reconstruction

Reconstruction

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

recover S̃

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

run error-free
indexing algorecover S̃

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

run error-free
indexing algo Recover index irecover S̃

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

run error-free
indexing algo Recover index itrace of

whp
ci recover S̃

Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

run error-free
indexing algo Recover index itrace of

whp
ci recover S̃

2) Use special trace rec properties of + error-correction properties of 𝒞𝗈𝗎𝗍𝒞

Designing the (existential) inner code

11…100…0

mlog m log m

c ∈ 𝒞

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

Designing the (existential) inner code

11…100…0

mlog m log m

c ∈ 𝒞

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

⟹ If is small, can brute force high-rate code to require few traces + be dense!m 𝒞

Designing the (existential) inner code

11…100…0

mlog m log m

c ∈ 𝒞

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

⟹ If is small, can brute force high-rate code to require few traces + be dense!m 𝒞

⟹ Using [HPP18], reconstruct with traces.𝒞 exp(log1/3 m)

Combining everything

Set inner code length to to ensure ratem =
1
ϵ

log (1
ϵ)

For any constant deletion probability and every , there exists a code of
rate that can be reconstructed from traces.

ϵ
1 − ϵ exp(log1/3 (1/ϵ))

[BrakensiekLiSpang19]

≥ 1 − ϵ

Combining everything

Set inner code length to to ensure ratem =
1
ϵ

log (1
ϵ)

For any constant deletion probability and every , there exists a code of
rate that can be reconstructed from traces.

ϵ
1 − ϵ exp(log1/3 (1/ϵ))

[BrakensiekLiSpang19]

Caveat: Inner code construction takes time .exp(m)

⟹ Overall code construction only efficient for ϵ ≥
log log N

log N

≥ 1 − ϵ

Summing up…
We can exploit worst-case and average-case trace reconstruction to design efficient high-rate
codes requiring significantly fewer traces, or satisfying other nice properties.

rate = 1 - ε #traces efficient encoding
& reconstruction observations

Markers + modified
avg-case trace rec

[CGMR19]

Deletion probability
smaller than absolute

constant

Synch string + Markers +
existential trace rec

[BLS19]

Code construction

is not efficient

Synch string + Markers +
existential trace rec

[BLS19]

Arbitrary constant
deletion probability

logC N

ϵ ≥
log log N

log N

ϵ =
1

log N

exp((log log N)1/3)

exp(log1/3(1/ϵ))

ϵ =
1

log N

Summing up…
We can exploit worst-case and average-case trace reconstruction to design efficient high-rate
codes requiring significantly fewer traces, or satisfying other nice properties.

rate = 1 - ε #traces efficient encoding
& reconstruction observations

Markers + modified
avg-case trace rec

[CGMR19]

Deletion probability
smaller than absolute

constant

Synch string + Markers +
existential trace rec

[BLS19]

Code construction

is not efficient

Synch string + Markers +
existential trace rec

[BLS19]

Arbitrary constant
deletion probability

logC N

ϵ ≥
log log N

log N

ϵ =
1

log N

exp((log log N)1/3)

exp(log1/3(1/ϵ))

ϵ =
1

log N

Lower bound [BLS19]: Arbitrary code of rate 1 − ϵ ⟹ requires traces≈ log5/2 (1
ϵ)

Future work

• Efficient high-rate codes using even fewer traces;

• Bridge gap between bounds for (coded and uncoded) trace reconstruction;

• High-rate codes that handle deletions and random insertions with few traces;

Future work

• Efficient high-rate codes using even fewer traces;

• Bridge gap between bounds for (coded and uncoded) trace reconstruction;

• High-rate codes that handle deletions and random insertions with few traces;

Thanks!

