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Deletion channel

0 1 0 0 1 1

0 1 0 0 1 1

0 1 1

Other deletion patterns that lead to 
same output

0 1 0 0 1 1
0 1 0 0 1 1
0 1 0 0 1 1

i.i.d. deletions: each bit deleted independently with fixed probability d
Many open problems! E.g., capacity is still unknown…



Trace reconstruction

[Levenshtein01, BatuKannanKhannaMcGregor04]

• We succeed with high 
probability


• We use as few traces as 
possible 

Goal  
Reconstruct        from traces    

                         such that:

x
y(1), …, y(t)

1 − O(1/N)
x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
N-bit string



Original motivation for trace reconstruction

[BatuKannanKhannaMcGregor04]

Ancestor DNA
mutations 


(deletions, insertions, substitutions)

Descendent 1 DNA
Descendent 2 DNA

Descendent 3 DNA

Multiple sequence alignment: Deduce common ancestor DNA from descendants DNA.



Main settings for 
uncoded trace 
reconstruction

Average-case trace reconstruction

Average error probability of reconstruction 
algorithm      over all input strings is small.

Pr
x←{0,1}N,y(1),…,y(t)←𝖣𝖾𝗅(x)

[ℛ(y(1), …, y(t)) = x] ≈ 1

ℛ

Worst-case trace reconstruction

Reconstruction algorithm       must 
succeed with high probability 
simultaneously for all input strings.

∀x : Pr
y(1),…,y(t)←𝖣𝖾𝗅(x)

[ℛ(y(1), …, y(t)) = x] ≈ 1

ℛ

x

…

i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown
N-bit string



Worst-case trace reconstruction
Recall: Reconstruction algorithm must succeed for all strings with high probability.

Reconstruction 
algorithms #traces deletion probability

Batu, Kannan, Khanna, McGregor 
2004

Holenstein, Mitzenmacher, 
Panigrahy, Wieder 2008 any constant < 1

De, O’Donnell, Servedio 2017 
Nazarov, Peres 2017 any constant < 1

d = 1/N1/2+ϵN log N

exp(N1/2)

exp(N1/3)
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Mean-based algorithms & 

worst-case trace reconstruction

x i.i.d. deletions

∈ {−1,1}N
Y

∈ {−1,0,1}N

(padded with 0’s)

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

Mean-based algorithm: 
• Compute estimate       of mean trace            from       traces;

• Find       such that             is closest to     .  

̂μ μ(x) T
x ̂μ

[DeO’DonnellServedio17, NazarovPeres17]:  
There exist mean-based algorithms using                              traces. Moreover, 
this is optimal for mean-based algorithms.

T = exp(N1/3)

μ(x)



Mean-based algorithms & complex analysis

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

#traces required for accurate estimate      is dictated by

min
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Mean-based algorithms & complex analysis

Mean trace: μ(x) = (E[Y1], E[Y2], …, E[YN]) (real-linear function of x)

#traces required for accurate estimate      is dictated by

min
x≠x′�

| |μ(x) − μ(x′ �) | |1 = 2 × min
x∈{−1,0,1}N

| |μ(x) | |1

̂μ

Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

(can use powerful complex analytic tools!)

Bounding                                         min | |μ(x) | |1 ≈ Maximizing special polynomial  
over arc of complex circle
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Deletion channel polynomial Pd,x(w) =
N

∑
j=1

μ(x)j ⋅ wj, w ∈ ℂ

Pd,x(w) = (1 − d)
N

∑
j=1

xj ⋅ zj z = d + (1 − d)w Easy to write 
in terms of x

max |A(eiθ) | ≥ e−cL

π
L

−
π
L

[BorweinErdélyi97]
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|A(eiθ) |

≥ e−cN1/3
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⟹              traces suffice to  
distinguish mean traces
eO(N1/3)



Average-case trace reconstruction

d = 1/log Nlog N

poly(N)

exp( log N)

Recall: Average error probability of reconstruction algorithm must be               .

Reconstruction 
algorithms #traces deletion probability

Batu, Kannan, Khanna, McGregor 
2004

Holenstein, Mitzenmacher, 
Panigrahy, Wieder 2008 for small absolute constant 

Peres, Zhai 2017

Holden, Pemantle, Peres 2018

d = 1/log Nlog N

poly(N)

exp(log1/2 N)

exp(log1/3 N)

d < c

d < 1/2

d < 1

c

O(1/N)
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A recipe for average-case trace reconstruction

[HolensteinMitzenmacherPanigrahyWieder08]

d = 1/log Nlog N

poly(N)

exp( log N)

X1) Bootstrapping: Learn first bits of       “for free”X
Suppose we know X1, X2, …, Xi−1

known

Goal: Find Xi

Xi

2) Trace alignment: Align by anchor close to

“If X is random, whp anchor in trace comes 
from anchor in X.” 

Xi

anchor

Use to estimate 
distribution of

Yj⋆

XiRecover        whp  using                  traces!poly(N)

(N-bit string)

Y =
3) Reconstruction: Estimate special bit

distribution of “trace after anchor”

“There is special position          that is decently 
influenced by       ” Xi

Yj⋆

| Pr[Yj⋆ = 1 |Xi = 1] − Pr[Yj⋆ = 1 |Xi = 0] | ≥
1

NC



Lower bounds for trace reconstruction
General recipe for lower bounds: 
• Worst-case: Show it is hard to distinguish between two specific strings with few traces;


• Average-case: Worst-case LB + we expect bad string of length               to show up               times in 
random     -bit string.

log N
2

≈ N
N

Lower bounds 
#traces Worst-case Average-case

McGregor, Price, Vorotnikova 
2014

Holden, Lyons 2018

Chase 2019

log2 NN

N1.25 log2.25 N

N1.5 log2.5 N



Lower bounds for trace reconstruction

[McGregorPriceVorotnikova14]

N traces necessary and sufficient to distinguish

0N−110N 0N10N−1vs.

[HoldenLyons18, Chase19]

N1.5 traces necessary and sufficient to distinguish

(01)N−110(01)N vs. (01)N10(01)N−1

0000100000
0000010000

010110010101
010101100101



Summing up…

Worst-case  
trace reconstruction

Average-case 
trace reconstruction

Upper bounds 
#traces [DeO’DonnellServedio17, 

NazarovPeres17]
[HoldenPemantlePeres18]

Lower bounds 
#traces [HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

exp(O(N1/3))

≈ N3/2

exp(O(log1/3 N))

≈ log5/2 N



Summing up…

Worst-case  
trace reconstruction

Average-case 
trace reconstruction

Upper bounds 
#traces [DeO’DonnellServedio17, 

NazarovPeres17]
[HoldenPemantlePeres18]

Lower bounds 
#traces [HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

exp(O(N1/3))

≈ N3/2

exp(O(log1/3 N))

≈ log5/2 N

almost 
exponential gap



Summing up…

Worst-case  
trace reconstruction

Average-case 
trace reconstruction

Upper bounds 
#traces [DeO’DonnellServedio17, 

NazarovPeres17]
[HoldenPemantlePeres18]

Lower bounds 
#traces [HoldenLyons18, Chase19] [HoldenLyons18, Chase19]

exp(O(N1/3))

≈ N3/2

exp(O(log1/3 N))

≈ log5/2 N

almost 
exponential gap

*All results over               ,  
as it is the hardest setting

{0,1}N



Trace reconstruction and portable DNA-based storage

[YazdiGabrysMilenkovic17, Organick+18]

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.



Trace reconstruction and portable DNA-based storage

[YazdiGabrysMilenkovic17, Organick+18]

A T C G A C T C A A G C G T A G A C…

A T C G A C T C A A G C G T A G A C…

A T C G A C T C A A G C G T A G A C…

A T C G A C T C A A G C G T A G A C…

nanopores

noisy 
traces

Read from DNA via  
nanopore sequencers

Trace reconstruction for the coding schemes in [YGM17, OAC+18] is based on heuristics.

Write process: Data is encoded into {A,G,T,C} alphabet, then synthesized into DNA strand.
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Coded trace reconstruction

[CheraghchiGabrysMilenkovicRibeiro19]

x

…
i.i.d. deletion channel

i.i.d. deletion channel

i.i.d. deletion channel

… …

y(1)

y(2)

y(t)

unknown 
codeword of

𝒞

                        with                                            𝒞 ⊆ {0,1}N |𝒞 | = 2RN

• high rate                  ,                   R = 1 − ϵ ϵ = oN(1)

• reconstructed from few traces 
(                 slow-growing) with 
probability 
t = t(1/ϵ)

1 − O(1/N)

poly(N)
• efficiently encodable and 

reconstructable (time                )



Some related work

Haeupler, Mitzenmacher 
2014

First-order capacity for small deletion probability

(constant number of traces only)

Abroshan, Venkataramanan, 
Dolecek, Guillén i Fàbregas 

2019

Coding for multiple deletion channels with constant number of deletions only.

Uses VT codes. Builds up on work about file synchronization.

Average-case  
trace reconstruction

Implies existence of large codes reconstructable from few traces.

No efficient encoding + we want to use even fewer traces.



PART I: 
Markers + worst-case trace reconstruction
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Basic construction

x
split into blocks with 
                              bitsm = O(log2 N)

𝒞b

encode each block 
using appropriate 
sub-code

𝒞b

= 0000…00
O(log N) bitsadd markers  

between blocks

0

= 1111…11
O(log N) bits

1
0 1 0 1 0 1

-bit stringN

b1 b2 b3 b4

c1 c2 c3 c4

c1 c2 c3 c4
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∈

Key observation: part of trace coming 
from a marker still looks like a marker.

Trace of codeword

If           is chosen appropriately, long runs 
of 0’s in trace only come from markers

𝒞b look for first 1 

after long run of 0’s

Reconstruction



𝒞b= 0000…00
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𝒞b= 0000…00
O(log N) bits

= 1111…11
O(log N) bits

∈

Trace of codeword

trace splitting 
into sub-traces

worst-case trace  
reconstruction

Efficiently encodable/reconstructable 
code with rate                             
using                                 traces for 
any constant deletion prob.

1 − O(1/log N)
exp(log1/3+γ N)

Key observation: part of trace coming 
from a marker still looks like a marker.

If           is chosen appropriately, long runs 
of 0’s in trace only come from markers

𝒞b

Reconstruction
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A tool for designing the sub-code:

Almost   -wise independent strings

   -almost    -wise independent distribution:ϵ k X ∈ {0,1}m

∀i1, …, ik, x1, …, xk : | Pr[Xi1 = x1, …, Xik = xk] − 2−k | ≤ ϵ

[AlonGoldreichHåstadPeralta92]:  
“For decent parameters, can efficiently generate such strings from few uniformly random bits”

g : {0,1}t → {0,1}m

For every      ,                          and                         there is a              -computable function

with                           such that            is     -almost     -wise independent.  

m k = O(log m) poly(m)ϵ =
1

poly(m)

g(Ut) ϵ kt = O(log m)

k
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Designing the sub-code

So there is good fixing            
that enforces property

Ut = z

Desired property: No long runs of 0’s in trace of                   → allows for trace splittingc ∈ 𝒞b

⊕
g(z)

To encode                       :

x
x ∈ {0,1}m

satisfies property whp

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)



(     chosen so that property is satisfied)

Designing the sub-code

zx ⊕ g(z)z
log m

Desired property: No long runs of 0’s in trace of                   → allows for trace splittingc ∈ 𝒞b

To encode                       :x ∈ {0,1}m

𝖤𝗇𝖼(x) =

g(Ut)⟹ satisfies property with high probability

g : {0,1}t → {0,1}m generator from [AGHP92] with t = O(log m)



PART II: 
Markers + 


modified average-case trace reconstruction
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[HolensteinMitzenmacherPanigrahyWieder08]

A string       is     -subsequence-unique if no substring of length      can be obtained by deleting 
bits of another substring of length            (except for trivial containment).

x w

Key observation: an    -almost   -wise independent string is    -subsequence-unique 
with high probability for decent parameters     and    .ϵk

ϵ k w

w
1.1w

Deletion probability 
small enough constant ⟹ Efficient trace reconstruction algorithm for all   

length           -subsequence-unique strings 
with                         using                  traces.

m w
w = O(log m) poly(m)
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111…111 000…000x′� ⊕ g(z)
m′� ≈ m = O(log2 N)O( m) O( m)

z′�

O(log m)

Original bootstrapping procedure requires                              traces in this case… 2 m = poly(N)

Exploit properties of masking:
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encoded as
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Better codes for small deletion probability

111…111 000…000x′� ⊕ g(z)
m′� ≈ m = O(log2 N)O( m) O( m)

z′�

O(log m)

Original bootstrapping procedure requires                              traces in this case… 2 m = poly(N)

Exploit properties of masking:

x′� = 00…00 | |x
encoded as

z′�| | (x′� ⊕ g(z))

z′� = systematic encoding of             robust against 
constant fraction of deletions+insertions

0 | |z

Bootstrapping only 
requires               
traces now! 

O(m)

First barrier: HMPW algorithm needs to know first             bits of                    “for free”log m x ⊕ g(z)



A few more things: 
• Actually need a stronger property than subsequence-uniqueness because of markers;

• Need to make sure trace splitting works.

There is an absolute constant                       such that for all                there 
exists an efficiently encodable/reconstructable code with rate                         
using                     traces against i.i.d. deletions with probability    .

1 − O(1/log N)
polylog(N)

d⋆ ∈ (0,1) d ≤ d⋆

d

Almost   -wise independent string satisfies both of them with high probability.k

Better codes for small deletion probability



Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate            over 
an alphabet of size             using                          traces. 

1 − ϵ
Oϵ(1) O(log1/d(1/ϵ))

Moreover, this is tight.
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Coded trace reconstruction over large alphabets

[BrakensiekLiSpang19]

There exist efficiently encodable/reconstructable codes with rate            over 
an alphabet of size             using                          traces. 

1 − ϵ
Oϵ(1) O(log1/d(1/ϵ))

Moreover, this is tight.

⟹ 1 − ϵ ≤ 1 − dT ⟹ T ≥ log1/d(1/ϵ)

Lower bound:

Capacity of     -use deletion channel ≤ Capacity of    -use erasure channel = 1 − dTT T
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A tool for the upper bound: Synchronization strings

[HaeuplerShahrasbi17]

A string      is a    -synchronization string if for all S τ i < j < k

ED(S[i,j), S[ j,k)) > (1 − τ)(k − i)

“close” to maximal edit distance everywhere

For every    , can efficiently construct a    -synch-string of length         
over an alphabet of size                   .

τ τ N
poly(1/τ)
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(c1,1) (c3,3)

deletions

c1 c2 c3 c4

c1 c2 c3 c4

c1 ? c3 ?

equivalent 
to

erasures
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Why are synchronization strings useful?
[HaeuplerShahrasbi17]: “Can efficiently transform deletions into (worst-case) erasures by 
indexing with synchronization string, with constant alphabet size blowup”

S
deletions

-synchronization stringτ

dN
∈ ΣN S′� ∈ Σ(1−d)N

“Error-free” indexing algorithm:

S′�j

find correct index      such 

that        is mapped to       by 

deletion process

ij
Sij S′�j

abort and output special 

symbol       (misdecoding)?

[HaeuplerShahrasbi17]:

There is efficient error-free indexing 
algorithm with at most

misdecodings.

τdN
1 − τ
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𝒞 rate                  code robust against            fraction of erasures≈ 1 − ϵ ≈ ϵ3

[BrakensiekLiSpang19]: Efficient code over alphabet of size            using                           tracesOϵ(1) O(log1/d(1/ϵ))

Construction:   Index codewords of        with     𝒞 S

S               -synchronization string over alphabet of size(τ = ϵC) Oϵ(1)

(c1, S1) (c2, S2) (cN, SN)…(c1, …, cN) ∈ 𝒞
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Coded trace reconstruction 

from synchronization strings

(x11, x12) …Trace of codeword

Reconstruction:

(x21, x22) (x31, x32) (x41, x42)
run error-free  

indexing algorithm 
on second symbol

i1 i3 ??
recover treat as 

erasureci1 = x11

treat as 
erasure

recover
ci3 = x31

#erasures ≤ #misdecodings + #(symbols deleted in every trace) ≤
ϵ3N

2
+ dTN ≤ ϵ3N

        corrects this 
many erasures!
𝒞

symbols from synch string

[BrakensiekLiSpang19]: Efficient code over alphabet of size            using                           tracesOϵ(1) O(log1/d(1/ϵ))
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From large alphabets to binary codes
Construction: Concatenate good code over large alphabet with marker-based inner code

x -bit stringN
c ∈ 𝒞𝗈𝗎𝗍𝒞𝗈𝗎𝗍

large alphabet code correcting  
many substitutions

(c1, S1) …S       -synchronization string  
over alphabet of size
1/3

O(1) (c2, S2) (c3, S3) (c4, S4)

(ci, Si)

concatenate with 
binary code

ci

Robust against deletions, 
with two possible runlengths, 
same number of runs

𝖤𝗇𝖼R(ci) = 0 1

m log mlog m

𝖤𝗇𝖼S(Si) = 10 10 …
log m

ci “Dense” codeword TBDci
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Reconstruction

1) Trace alignment:

Long runs only come from markers ⟹ Find traces of (most) synch symbols

run error-free 
indexing algo Recover index itrace of         

whp
ci recover S̃

2) Use special trace rec properties of         +  error-correction properties of 𝒞𝗈𝗎𝗍𝒞
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Designing the (existential) inner code

11…100…0

mlog m log m

c ∈ 𝒞

Key observation: Since markers are short, nearly all strings of this type are good for any average-
case trace rec algorithm!

⟹ If         is small, can brute force high-rate code         to require few traces + be dense!m 𝒞

⟹ Using [HPP18], reconstruct          with                             traces.𝒞 exp(log1/3 m)



Combining everything

Set inner code length to                                 to ensure ratem =
1
ϵ

log ( 1
ϵ )

For any constant deletion probability and every     , there exists a code of 
rate               that can be reconstructed from                               traces.

ϵ
1 − ϵ exp(log1/3 (1/ϵ))

[BrakensiekLiSpang19]
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Set inner code length to                                 to ensure ratem =
1
ϵ

log ( 1
ϵ )

For any constant deletion probability and every     , there exists a code of 
rate               that can be reconstructed from                               traces.

ϵ
1 − ϵ exp(log1/3 (1/ϵ))

[BrakensiekLiSpang19]

Caveat: Inner code construction takes time                .exp(m)

⟹ Overall code construction only efficient for ϵ ≥
log log N

log N

≥ 1 − ϵ



Summing up…
We can exploit worst-case and average-case trace reconstruction to design efficient high-rate 
codes requiring significantly fewer traces, or satisfying other nice properties.

rate = 1 - ε #traces efficient encoding  
& reconstruction observations

Markers + modified  
avg-case trace rec 

[CGMR19]

Deletion probability 
smaller than absolute 

constant

Synch string + Markers + 
existential trace rec 

[BLS19]

Code construction 

is not efficient

Synch string + Markers + 
existential trace rec 

[BLS19]

Arbitrary constant 
deletion probability

logC N

ϵ ≥
log log N

log N

ϵ =
1

log N

exp((log log N)1/3)

exp(log1/3(1/ϵ))

ϵ =
1

log N



Summing up…
We can exploit worst-case and average-case trace reconstruction to design efficient high-rate 
codes requiring significantly fewer traces, or satisfying other nice properties.

rate = 1 - ε #traces efficient encoding  
& reconstruction observations

Markers + modified  
avg-case trace rec 

[CGMR19]

Deletion probability 
smaller than absolute 

constant

Synch string + Markers + 
existential trace rec 

[BLS19]

Code construction 

is not efficient

Synch string + Markers + 
existential trace rec 

[BLS19]

Arbitrary constant 
deletion probability

logC N

ϵ ≥
log log N

log N

ϵ =
1

log N

exp((log log N)1/3)

exp(log1/3(1/ϵ))

ϵ =
1

log N

Lower bound [BLS19]:      Arbitrary code of rate 1 − ϵ ⟹ requires                            traces≈ log5/2 ( 1
ϵ )



Future work

• Efficient high-rate codes using even fewer traces;


• Bridge gap between bounds for (coded and uncoded) trace reconstruction;


• High-rate codes that handle deletions and random insertions with few traces;
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