Slow and Stale Gradients Can Win the Race: Error-Runtime Trade-offs in Distributed SGD

Gauri Joshi

Carnegie Mellon University

Shannon YouTube Channel 1st February 2019

Joint work with

Sanghamitra Dutta, CMU

Jianyu Wang, CMU

Soumyadip Ghosh, IBM

Parijat Dube, IBM

Priya Nagpurkar, IBM

Stochastic Gradient Descent is the backbone of ML

Speeding Up SGD convergence is of critical importance!

Batch Gradient Descent

 $F(\mathbf{w})$

F(w) is the empirical risk function

$$\min_{\mathbf{w}} \left\{ F(\mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{w}, \xi_n) \right\}$$

 ξ_n is the n-th labeled sample

Mini-batch SGD

 $F(\mathbf{w})$

F(w) is the empirical risk function

$$\min_{\mathbf{w}} \left\{ F(\mathbf{w}) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{w}, \xi_n) \right\}$$

 ξ_n is the n-th labeled sample

Accelerating single-node SGD convergence

$$\mathbf{w}_{j+1} = \mathbf{w}_j - \frac{\eta}{m} \sum_{n=1}^m \nabla f(\mathbf{w}_j, \xi_n)$$

Learning Rate Schedules: AdaGrad, Adam

Momentum Methods: Polyak, Nesterov

Variance Reduction Methods

Second-Order Hessian Methods

For large training datasets singlenode SGD can be prohibitively slow...

MAGENET

Our Work: Speeding Up Error-Runtime Convergence of Distributed SGD

Key Issues

- Straggling Workers
- o Gradient Staleness
- \circ $\,$ Communication between nodes $\,$

Our Approach: Considering convergence w.r.t. *wall-clock time* instead of iterations

Need novel convergence analysis as well as runtime analysis

Our Work: Speeding Up Error-Runtime Convergence of Distributed SGD

[Dutta, Joshi et al, Slow and Stale Gradients, AISTATS 2018]

[Wang-Joshi, Cooperative-SGD, 2018] [Wang-Joshi, Adaptive Comm, SysML 2018]

Parameter Server Model: Synchronous SGD

Can process a P-times larger mini-batch in each iteration

Bottlenecked by one or more slow workers

Parameter Server Model: Asynchronous SGD

[Recht 2011, Dean 2012, Cipar 2013 ...]

Don't have to wait for straggling workers

Gradient Staleness can increase error

Parameter Server Model: Asynchronous SGD

[Recht 2011, Dean 2012, Cipar 2013 ...]

Don't have to wait for straggling workers

Gradient Staleness can increase error

Parameter Server Model: Asynchronous SGD

Don't have to wait for straggling workers

Gradient Staleness can increase error

Outline

Error Analysis of Sync, Async SGD

Runtime Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Sync SGD: Error Analysis

Update Rule: Equivalent to mini-batch SGD with batch size Pm

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \frac{\eta}{P} \sum_{i=1}^{P} g(\mathbf{w}_n, \xi_i)$$

For c-strongly convex, L-smooth functions [Bottou, 2016]

$$\mathbb{E}[F(\mathbf{w}_{J}) - F^{*}] \leq \frac{\eta L \sigma^{2}}{2c(Pm)} + (1 - \eta c)^{J} \left(F(\mathbf{w}_{0}) - F^{*} - \frac{\eta L \sigma^{2}}{2c(Pm)}\right)$$

Error Floor Decay Rate

Async SGD: Error Analysis

Update Rule $\mathbf{w}_{n+1} = \mathbf{w}_n - \eta g(\mathbf{w}_{\tau(n)}, \xi_i)$

Hard to analyze due to stale gradients

Assumptions in Previous works

- $\circ~$ Upper Bound on Staleness $\tau(n) \leq B~~$ [Hogwild 2014, Lian et al 2015]
- Geometric staleness distribution

$$P(au(n)=j)=p(1-p)^{j-1}$$
[Mitiliagkas et al 2016]

o Independently drawn gradient staleness

We remove these assumptions, and instead consider

$$\mathbb{E}[||\nabla F(\mathbf{w}_j) - \nabla F(\mathbf{w}_{\tau(j)})||_2^2] \le \gamma \mathbb{E}[||\nabla F(\mathbf{w}_j)||_2^2] \qquad \gamma \le 1$$

Async SGD: Error Analysis

For c-strongly convex, L-smooth functions,

 $\gamma~$ is the staleness bound,

and p_0 is the probability of getting a fresh gradient

Analysis can be generalized to non-convex objectives

Outline

Error Analysis of Sync, Async SGD

Runtime Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Expected Time Per Iteration

Each worker takes time Y~ exp(μ)

Synchronous SGD

$$\mathbb{E}[T] = \mathbb{E}[Y_{P:P}]$$
$$\approx \frac{1}{\mu} \log P$$

Expected Time Per Iteration

Synchronous SGDAsynchronous SGD
$$\mathbb{E}[T] = \mathbb{E}[Y_{P:P}]$$
 $\mathbb{E}[T] = \frac{1}{\mu P}$ $\approx \frac{1}{\mu} \log P$ P log P times
smaller!

Outline

Error Analysis of Sync, Async SGD

Runtime Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Need to compare convergence w.r.t. *wall-clock time* instead of iterations

Outline

Error Analysis of Sync, Async SGD

Runtime Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Sync SGD Variants

Related Work: Revisiting Distributed SGD [Chen, Monga et al]

Instead of erasure coding [Tandon et al], we ignore the slow gradients

Sync SGD: Expected Time Per Iteration

Sync SGD: Choosing the best K

Error is equivalent to mini-batch SGD with batch size Km

Async SGD Variants

Async SGD

K-Async SGD

K-Batch Async SGD

Async SGD Variants

Our runtime and error analysis for Async SGD can be generalized to these variants

Spanning the spectrum between Synchronous and Asynchronous SGD

Spanning the spectrum between Synchronous and Asynchronous SGD

Ongoing Research Direction

Gradually increasing synchrony

Outline

Error Analysis of Sync, Async SGD

Runtime Analysis of Sync, Async SGD

Straggler Mitigation via SGD variants

Staleness Compensation in Async SGD

Spanning the spectrum between Synchronous and Asynchronous SGD

Adapting the Learning Rate to Tame Gradient Staleness

Proposed Learning Rate Schedule

$$\eta_j = \min\left\{\frac{C}{||\mathbf{w}_j - \mathbf{w}_{\tau(j)}||_2^2}, \eta_{max}\right\}$$

helps eliminate the bounded staleness assumption in our analysis

Related to momentum tuning in [Mitliagkas 2016]

Our Work: Speeding Up Error-Runtime Convergence of Distributed SGD

[Dutta et al, AISTATS 2018]

Key Issues

- Straggling Workers
- o Gradient Staleness

Two Ways of Reducing Communication

 Compressing or quantizing gradients sent by nodes to the parameter server

2. Performing local updates at the nodes and averaging
periodically to encourage
consensus

[Wang-Joshi, Cooperative-SGD, 2018] [Wang-Joshi, Adaptive Comm, 2018]

Distributed SGD with Local Updates

DESIGN PARAMETERS

- 1. Number of local updates, τ , the communication period
- 2. Model-averaging Method
 - Federated Avg, [McMahan 2015]
 - Elastic Avg, [Zhang et al 2015]
 - Decentralized Avg, [Lian et al 2017]

Error convergence analysis with local updates for non-convex objectives was mostly unexplored

Error-Runtime Trade-off in Local-Update SGD

Model discrepancies gives inferior error-convergence Large τ or sparse averaging reduces communication delay

Outline

Error Analysis via the Cooperative SGD Framework

Runtime Analysis

Adaptive Communication Strategies

40

The Cooperative SGD Framework

KEY ELEMENTS

1. Model Versions at m workers and v auxiliary nodes

 $\mathbf{X}_{k} = [\mathbf{x}_{k}^{(1)}, \dots, \mathbf{x}_{k}^{(p)}, \mathbf{z}_{k}^{(1)}, \dots, \mathbf{z}_{k}^{(v)}]$

2. au local updates at m workers, no updates at auxiliary nodes

- 3. Mixing Matrix $\mathbf{W}_{\mathbf{k}}$ $\mathbf{W}_{k} = \begin{cases} \mathbf{W}, & k \mod \tau = 0 \\ \mathbf{I}_{(p+v) \times (p+v)}, & \text{otherwise} \end{cases}$
- 4. Update Rule $\mathbf{X}_{k+1} = (\mathbf{X}_k - \eta \mathbf{G}_k) \mathbf{W}_k$

$$\mathcal{A}(\tau, \mathbf{W}, v)$$

Cooperative SGD: Special Cases

Fully Synchronous $\mathcal{A}(1, \mathbf{11}^T/m, 0)$

Periodic/Federated Avg $\mathcal{A}(\tau, \mathbf{11}^T/m, 0)$

Elastic Averaging SGD $\mathcal{A}(1, \mathbf{W}_{\alpha}, 1)$

Decentralized SGD $\mathcal{A}(1, \mathbf{W}, 0)$

and many more variants..

Cooperative SGD: Assumptions

1. Lipschitz smooth

$$||\nabla F(\mathbf{x}) - \nabla F(\mathbf{y})|| \le L||\mathbf{x} - \mathbf{y}||$$

2. Unbiased Gradients

$$\mathbb{E}_{\xi|\mathbf{x}}[g(\mathbf{x})] = \nabla F(\mathbf{x})$$

3. Bounded Variance

$$\mathbb{E}_{\xi|\mathbf{x}}[||g(\mathbf{x}) - \nabla F(\mathbf{x})||^2] \le \beta ||g(\mathbf{x})||^2 + \sigma^2$$

$$\mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K}||\nabla F(\mathbf{u}_{k})||^{2}\right]$$
Average of all the local models

 $\zeta = \max\{|\lambda_2(\mathbf{W})|, |\lambda_{m+v}(\mathbf{W})|\}$, the spectral Gap of W, which is

larger for sparser networks

 $\eta_{\rm eff}=\eta \frac{m}{m+v}$, more auxiliary variables gives slower convergence, but a lower error floor

$$\mathbb{E}\left[\frac{1}{K}\sum_{k=1}^{K}||\nabla F(\mathbf{u}_{k})||^{2}\right] \leq \frac{2(F(\mathbf{x}_{1}) - F_{\inf})}{\eta_{\text{eff}}K} + \frac{\eta_{\text{eff}}L\sigma^{2}}{m} + \frac{\eta^{2}L^{2}\sigma^{2}}{\eta^{2}L^{2}\sigma^{2}\left(\frac{1+\zeta^{2}}{1-\zeta^{2}}\tau - 1\right)}$$

MAIN CONTRIBUTIONS

- \circ First analysis of Elastic Averaging SGD for non-convex objectives. Can show that $\alpha = m/m + 2$ gives minimum error
- Allows comparison of periodic averaging (controlling τ) and decentralized SGD (controlling ζ)

Outline

Error Analysis via the Cooperative SGD Framework

Runtime Analysis

Adaptive Communication Strategies

Cooperative SGD: Runtime Per Iteration Fully Synchronous SGD

$$T_{\text{sync}} = \max(Y_{1,1}, Y_{2,1}, \dots, Y_{m,1}) + D$$
$$\mathbb{E}[T_{\text{sync}}] = \mathbb{E}[Y_{m:m}] + \mathbb{E}[D]$$

Cooperative SGD: Runtime Per Iteration Periodic Averaging SGD

$$T_{P-Avg} = \max(\overline{Y}_1, \overline{Y}_2, \dots, \overline{Y}_m) + \frac{D}{\tau}$$
$$\mathbb{E}[T_{P-Avg}] = \mathbb{E}[\overline{Y}_{m:m}] + \frac{\mathbb{E}[D]}{\tau}$$
Straggler
Mitigation due
to averaging Comm. Delay
amortized over
 τ slots

49

Cooperative SGD: Runtime Per Iteration

Cooperative SGD: Runtime Per Iteration

Analyzing the effect of mixing matrix W and auxiliary variables is non-trivial and is still open.

Outline

Error Analysis via the Cooperative SGD Framework

Runtime Analysis

Adaptive Communication Strategies

Error-Runtime Trade-off in Local-Update SGD

Large τ or sparse averaging reduces communication delay Model discrepancies gives inferior error-convergence

Outline

Error Analysis via the Cooperative SGD Framework

Runtime Analysis

Adaptive Communication Strategies

Adaptive Communication Strategy When to Switch to a Different τ ?

Our Approach: Use the error-runtime analysis to decide switching points

Error-Runtime Trade-off

Error-Runtime Trade-off

$$\frac{T}{K} = \max(\overline{Y}_1, \overline{Y}_2, \dots, \overline{Y}_m) + \frac{D}{\tau}$$
$$\approx Y + \frac{D}{\tau}, \text{ for const.} Y, D$$

Error-Runtime Trade-off

Error at time
$$T \leq \frac{2(F(\mathbf{x}_1) - F_{\inf})}{\eta_{\text{eff}}T} \left(Y + \frac{D}{\tau}\right) + \frac{\eta_{\text{eff}}L\sigma^2}{m} + \frac{\eta_{\text{eff}}L\sigma^2}{m} + \frac{\eta_{\text{eff}}L\sigma^2}{m} \right)$$

A heuristic choice of au is to take the derivative and set to 0

$$\tau*=\sqrt{\frac{2(F(\mathbf{x}_1)-F_{\mathrm{inf}})D}{\eta^3L^2\sigma^2T}}.$$
 Decreases with T AdaComm Strategy

Can we directly use this in practice?

$$\tau * = \sqrt{\frac{2(F(\mathbf{x}_1) - F_{\text{inf}})D}{\eta^3 L^2 \sigma^2 T}}.$$

AdaComm Strategy

Unfortunately, no.

We don't know $F_{inf.}$ L, σ in most ML problems

Also, we cannot switch at each time T

Modifying AdaComm to Account for Practical Constraints

What about learning rate schedules like AdaGrad, Adam etc. ?

Experiments on VGG16 and ResNet50

Adaptive Communication Strategy

Experiments on CIFAR10/100, VGG16/ResNet-50 with 4 nodes

Adaptive Communication Strategy

Experiments on CIFAR10/100, VGG16/ResNet-50 with 4 nodes

Key Takeaways Speeding Up Error-Runtime Convergence of Distributed SGD

True SGD convergence is w.r.t. the wall-clock time

Integration of error and runtime reduction strategies

Many Other Interesting Directions in Distributed Machine Learning

- Asynchronous Local-Update SGD Algorithms
- Unevenly distributed and non i.i.d. data
- Model-parallel distributed SGD
- Gradient Compression or Quantization

ArXiV Links to Our Papers

Asynchronous/Synchronous SGD

https://arxiv.org/abs/1803.01113, AISTATS 2018 S. Dutta, G. Joshi, S. Ghosh, P. Dube, P. Nagpurkar

Cooperative SGD Framework

https://arxiv.org/abs/1808.07576, preprint J. Wang, G. Joshi

Adaptive Communication Strategies for Local-Update SGD

https://arxiv.org/abs/1810.08313, SysML 2019

J. Wang, G. Joshi

Cooperative SGD: Runtime Analysis

