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Abstract

We consider the problem of securing a multicast networkresjea wiretapper that can intercept
the packets on a limited number of arbitrary network edgeissofhoice. We assume that the network
employs the network coding technique to simultaneouslwelethe packets available at the source to
all the receivers. We show that this problem can be looked at metwork generalization of the wiretap
channel of type Il introduced in a seminal paper by Ozarow ‘fyaher. In particular, we show that
the transmitted information can be secured by using the @®z&vyner approach of coset coding at
the source on top of the existing network code. This way, wiekiy and transparently recover some
of the results available in the literature on secure netvemtting for wiretap networks. Moreover, we
derive new bounds on the required alphabet size that arpémdkent of the network size and devise an
algorithm for the construction of secure network codes. W&e ok at the dual problem and analyze the
amount of information that can be gained by the wiretappex Asction of the number of wiretapped

edges.

I. INTRODUCTION

Consider a communication network represented as a direptgoh G = (V, £') with unit
capacity edges and an information soufcthat multicasts information toreceiversRiy, . . ., R;
located at distinct nodes. Assume that the minimum size aftahat separates the source and

each receiver node is. It is known that a multicast rate of is achievable by using a linear

S. El Rouayheb and A. Sprintson are with the Department oftBéal and Computer Engineering, Texas A&M University,
College Station, TX, 77845 USA email§rouayheb@tamu.edu, spalex@ece.tamy.edu

E. Soljanin is with the Mathematics of Networking and Comiwation Deptartment, Enabling Computing Technologied| Be
Laboratories, Alcatel-Lucent, Murray Hill, NJ 07974, ein@mina@alcatel-lucent.com.

A preliminary version of this paper appeared in the Progegsddf the IEEE International Symposium on Information Tiyeo
(ISIT), Nice, France, 2007 [1].



network coding scheme [2], [3]. In this paper, we focus orusgenulticast connections in the
presence of a wiretapper that can access data on a limiteteruoh edges of its choice. Our
primary goal is to design a network coding scheme that dalidata at maximum rate to all the
destinations and does not reveal any information aboutr@msmitted message to the wiretapper.

The problem of making a linear network code informationetiegically secure in the presence
of a wiretaper that can look at a bounded number, sa9f network edges was first studied by
Cai and Yeung in [4]. They considered directed graphs angtoacted codes over an alphabet
with at Ieast(‘f‘) elements which can support a secure multicast rate of wp-t@. In [5], they
proved that these codes use the minimum amount of randomerpsised to achieve the security
constraint. However, the algorithm due to [4] has high cotafional complexity and requires
a very large field size (exponential in the number of wireeabpdges). Feldmaet al. derived
trade-offs between security, code alphabet size, and ecasttrate of secure linear network coding
schemes in [6], by using ideas from secret sharing and atisigahe network topology. Another
approach was taken by Jain in [7] who obtained security byetmerxploiting the topology of
the underlying network. Weakly secure network codes thatrimthat no meaningful information
is revealed to the adversary were studied by Bhattad andybiaaa in [3].

A related line of work considers a more powerByzantineadversary that can also modify the
packets on the edges it controls. Such an adversary can eetiadly more harmful in networks
that employ the network coding technique because a modiificatt one packet can propagate
throughout the network and affect other packets as wellui®ecetwork coding in the presence
of a Byzantine adversary has been studied byeHal. in [9] and Jagget al.in [10], [11], [12].

In [11], [12], the authors devise distributed polynomiaté algorithms that are rate-optimal and
achieve information theoretical security against sevecaharios of adversarial attacks.

The problem of error correction in networks was also studigdCai and Yeung in [13],
[14] where they generalized classical error-correctioding techniques to network settings. A
different model for error correction was introduced by Keetand Kschischang in [15] where
communication is established by transmitting subspacgsan of vectors through the network.
The use of rank-metric codes for error control under this ehadas investigated in [16]. The
common approach in these works is to encode packets at theesquior to sending them over
the network, using an error correcting code so that the paatary not only data but also

some redundant information derived from the data which éllp to reduce the probability of



incorrect decoding.

We also consider the coding at the source technique to beuaahajpproach for addressing
the information-theoretic security of wiretap networks.d network where the min-cut value
between the source and each receiver node asd an adversary can access uptedges of
his choice, we introduce a coding at source scheme that ensuiormation-theoretic security
based on the Ozarow-Wyner wiretap channel of type II, intoed in [17] and [18], where the
source transmitga symbols to the receiver and an adversary can accesg afyhose symbols.

Ozarow and Wyner showed that the maximum number of symbalg iy that the source
can communicate to the receiver securely in the informat@oretic sense is equal to— .
They also showed how to encode thesource symbols into the channel symbols for secure
transmission. Clearly, if the channel symbols are multicast over a network using a routing
scheme, thé: source symbols remain secure in the presence of an advexséryaccess to
any n edges. We will illustrate later that this is not necessattiy case when network coding
is used. However, we will show that a network code based orOtherow-Wyner scheme that
preserves security of the source symbols, which are coded into thenulticast symbols, can
be designed over a sufficiently large field.

Using the observations made by Feldn&ral. in [6], we show that our scheme is equivalent
to the one proposed in the pioneering work of Cai and Yeund]irHowever, with our approach,
we can quickly and transparently recover some of the resuslable in the literature on
secure network coding for wiretapped networks. The algoritlue to [4] is based on the code
construction proposed by let al.in [3], however more efficient network coding algorithms @av
been proposed recently (see, e.g., [19] and [20]). We usecthdts on the encoding complexity
of the network coding presented in [20], [21], [22] to derivew bounds on the required field
size of a secure network code that are independent of the eruaitedges in the network and
that depend only on the numbérof source symbols and the numbeof destinations. We
also propose an algorithm for construction of a secure nétwode that achieves these bounds.
Furthermore, we look at the dual problem and analyze theribgaf a given Ozarow-Wyner
code by studying the amount of information that can be gamethe wiretapper as a function
of the number of wiretapped edges.

Parts of the results presented in this paper were publishdd]iand were later extended

in [23], [24] by Silva and Kschischang to construct univérsecure network codes based on



maximum rank-distance (MRD) codes, and by Méalsal. in [25] to achieve secrecy for wireless
erasure networks.

This paper is organized as follows: In Section Il, we brielyiew the Ozarow-Wyner wiretap
channel of type Il problem. In Section Ill, we introduce thetwork generalization of this
problem. In Section IV, we present an algorithm for securevaek code design and establish
new bounds on the required code alphabet size. In Sectiore\stwdy the security of Ozarow-
Wyner codes. In Section VI, we highlight some connectionshef work with other works on
secure network coding and network error correction. Fmnadle conclude in Section VII with

a summary of our results and open problems.

1. WIRETAP CHANNEL I

We first consider a point-to-point scenario in which the seuran transmit symbols to the
receiver and an adversary can access;any those symbols [17], [18]. For this case, we know
that the maximum number of symbols that the source can conaatento the receiver securely
in the information-theoretic sense is equakte- u.

The problem is mathematically formulated as follows. et (sy, s, . . ., s)” be the random
variable associated with the information symbols that the source wishes to send securely
Y = (y1,%,...,y,)T the random variable associated with the symbols that aresrrited
through the noiseless channel between the source and #ieee@ndZ = (z1, 2o, ..., z,)" the
random variable associated with the wiretapped symbadfsdVhenk < n — u, there exists an
encoding scheme that mapsinto Y such that:

1) The uncertainty abouf is not reduced by the knowledge &f (perfect secrecy condition),

e,
H(S]Z) = H(S), (1)

and,
2) The informationS is completely determined (decodable) by the complete kedgé of
Y, that is,

H(S|Y) = 0. @)



Forn =2, k=1, p =1, such a coding scheme can be constructed as follows. If theeo
bit equals0, then either00 or 11 is transmitted through the channel with equal probability.
Similarly, if the source bit equals, then eithel01 or 10 is transmitted through the channel with

equal probability:

source bits; 0 1

codewordy, 1y, chosen
at random from {00,11} | {01, 10}

It is easy to see that knowledge of eithgr or y, does not reduce the uncertainty abeyt
whereas the knowledge of both and y, is sufficient to completely determing, namely,
51 = Y1+ Y2.

In general,k = n — u symbols can be transmitted securely by a coding scheme lmasad
[n,n — k] linear maximal distance separable (MDS) ca@tle ;. In this scheme, the encoder
is a probabilistic device which operates on the spBgeartitioned intog* cosets ofC, where
q is a large enough prime power. Theinformation symbols are taken as the syndrome which
specifies a coset, and the transmitted word is chosen urifaaitnrandom from the specified
coset. The decoder recovers the information symbols bylgiogmputing the syndrome of the
received word. Because of the properties of MDS codes, kenyd of anyu = n — k or fewer
symbols will leave the uncertainty of theinformation symbols unchanged. The code used in

the above example is the, 1] repetition code with the parity check matrix

H = [1 1]. 3)

. WIRETAP NETWORK |1

We now consider an acyclic multicast netwotk= (V, E') with unit capacity edges, an
information sourcet receivers, and the value of the min-cut to each receiver usleip n. The
goal is to maximize the multicast rate with the constraintesfealing no information about the
multicast data to the adversary that can access data om edges. We assume that the adversary
knows the implemented network codeg. all the coefficients of the linear combinations that
determine the packets on each edge. Moreover, we assumghénatis no shared randomness
between the source and the receivers. The latter assuniptemout the use of traditional “key”

cryptography to achieve security.
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Fig. 1. Network equivalent to the wiretap channel of type II.

It can be seen that the wiretap channel of type Il is equitatethe simple unicast network
of Figure 1 formed byn disjoint edges between the source and the destination,&acying a
different symbol. For this network, the source can multidas< n — ;. symbols securely if it
first applies a secure wiretap channel code (as describaepbm@mppingt information symbols
into n transmitted symbol$y, ..., y,).

For general networks, when security is not an issue, we khatva multicast rate is possible
with linear network coding [2], [3]. It is interesting to agkether, using the same network code,
the source can always multicalst< n — p symbols securely using a wiretap channel code at
the source. Naturally, this would be a solution if a multicede ofn can be achieved just by
routing.

Example 1 (Butterfly Network)Consider this approach for the butterfly network shown in
Figure 2 where we have = 2, k = 1, u = 1. If the source applies the coding scheme described
in the previous section and the usual network code as in &ig@(a), the wiretapper will be
able to learn the source symbol if it taps into any of the edges EF or ED. Therefore, a
network code can break down a secure wiretap channel codeedo, if the network code is
changed so that node B combines its inputs oedy,,IF; and the coding vector of edge BE is
[1 a} where« is a primitive element of; (i.e,, the message sent on edge BErist+ ax, as
in Figure 2(b)), the wiretap channel code remains secueg,ishthe adversary cannot gain any
information by accessing any single edge in the networkeNbat the wiretap channel code

based on the MDS code with = [1 1] remains secure with any network code whose BE



Fig. 2. Single-edge wiretap butterfly network with a) ingecnetwork code and b) secure network code.

coding vector is linearly independent {)I 1]

We will next show that the source can multicast n — ;. symbols securely if it first applies
a secure wiretap channel code based on an MDS code withxax parity check matrixH
if the network code is such that no linear combinationuof n — k or fewer coding vectors
belongs to the space spanned by the row8{ofLet W C E denote the set ofit’| = 1 edges
the wiretapper chooses to observe, @fgd = (21, z9,...,2,)” the random variable associated
with the packets carried by the edgeslin. Let Cy, denote the matrix whose rows are the
coding vectors associated with the observed edgég.iAs in the case of the wiretap channel,

S = (s1,8,...,5:)" denotes the random variable associated with itHaformation symbols



that the source wishes to send securely, 8nd (yy, s, . .., y,)? the random variable associated
with the n wiretap channel code symbols. Thesymbols ofY will be multicast through the
network by using linear network coding. Writing (S, Y, Zy ) in two different forms, and taking

into account the decodability condition of Equation (2), get

H(S|Zw) + H(Y|SZw) = H(Y|Zw) + H(S|Y Zw) . (4)
=0
Our objective is to conceal all the information data from thieetapper. The perfect secrecy
condition implies
H(S|Zw)=H(S),YW C E s.t. [W| = p.

Thus we obtain,

H(Y|SZw) = H(Y|Zy) — H(S). (5)
This implies, in turn that
n—rankCy) — k > 0. (6)

Since there is a choice of edges such that @k = u, the maximum rate for secure
transmission is bounded as
E<n-—p.

If the bound is achieved with equality, we ha¥gY |SZy,) = 0 and consequently, the system

S
Ly

has to have a unique solution for &I for which ranKCy,) = p. That is,

of equations
H

Cw

Y

rank =n for all Cy s.t. ranKCy,) = p. @)

Cw

This analysis proves the following result:
Theorem 1:Let G = (V, E)) be an acyclic multicast network with unit capacity edges and
information source such that the size of a minimum cut betwibe source and each receiver

is equal ton. Then, a wiretap code at the source based on an MDS code Witk a parity



check matrixH and a network code such that no linear combination.et n — k or fewer
coding vectors belongs to the space spanned by the rows miake the network information-
theoretically secure against a wiretap adversary who caergb at most: < n — k edges. Any
adversary able to observe more than k£ edges will have uncertainty about the source smaller
thank.

Next, we give an application of the previous theorem to thailfa of combinationnetworks

illustrated in Figure 3.

Fig. 3. CombinationB(n, M) network.

Example 2 (Combination Networksj combination networkB(n, M) is defined over a 3-
partite graph comprising three layers. The first layer dosta single source node, the second
layer M intermediate nodes and the last layer is formed(tlf)} receiver nodes such that every
set ofn nodes of the second layer is observed by a receiver.

The result of Theorem 1 can be used to construct a secure etode for B(n, M) from
an[M + k,M + k —n] MDS code which would achieve perfect secrecy against a aypper
that can observe any = n — k edges in the network. L&t be ann x (M + k) parity check
matrix of such MDS code oveF,. A secure network code can be obtained by taking the first
k rows of HT to form the matrix of the coset code at the source, and theofetite rows of
HT to be the coding vectors of the/ edges going out of the source. Equation (7) is satisfied
since the considered code is MDS and, therefore,ragplumns ofH form a basis off;. For
instance ifM + k + 1 is equal to a prime powey, a secure network code can be derived based

on an[M + k, M + k — n| Reed-Solomon code with the following Vandermonde paritgosh



matrix

1 aM+k=1 ]
1 a2 . q2(M+k-1)
H=1 . N (8)
1 o ... an(]\/[—i—k—l)

where« is a primitive element off,. Figure 4 depicts a secure network code for the network
B(3,4) andk = 2 using a [6,3] Reed-Solomon code o¥érwhose parity check matrix is given
by Equation (8) fora = 3.

Coset CodegH =

1 1 1
3 2 6

(Y1, Y2, y3)

Fig. 4. A secure network code for th#8(3,4) combination network based on a [6,3] Reed-Solomon code Bver

The above analysis shows that the maximum throughput canchieved by applying a
wiretap channel code at the source and then designing thrketode while respecting certain
constraints. The decoding of secure source symbBasthen merely a matrix multiplication of
the decoded multicast symbals sinceHY = S. The method gives us a better insight of how
much information the adversary gets if he can access moresetign the code is designed for.
It also enables us to design secure network coding schensgssmaller alphabets. These two

issues are discussed in detail in the next two sections.

IV. NETWORK CODE DESIGN ALPHABET SIZE

The approach described previously in the literature forifigda secure multicast network

code consisted of decoupling the problem of designing aiocasit network code and making it
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secure by using some code on top of it. Feldneaal. showed in [6] that there exist networks
where the above construction might require a quite largd B&le. In this section, we present a
different construction that exploits the topology of thewark. This is accomplished by adding
the security constraints to tHanear Information Flow(LIF) algorithm of [19] that constructs
linear multicast network codes in polynomial time in the roegnof edges in the graph. The
result is a better lower bound on the sufficient field size. By, the modified LIF algorithm
does not have a polynomial time complexity.

We start by giving a brief high level overview of the LIF algbm of [19]. The inputs of the
algorithm are the network, the source node, theceivers and the number of packets that
need to be multicast to all receivers. Assuming the min-etivben the source and any receiver
is at leastn, the algorithm outputs a linear network code that guararttie delivery of then
packets to all the receivers.

The algorithm starts by 1) findingflows Fi, F5, . .., F; of valuen each, from the source to to
each receiver and 2) definirig: x n matricesBr, (one for each receiver) formed by the global
encoding vectors of the last visited edges in the flow;. Initially, each matrixBy, is equal to
the identity matrix/,,. Then, the algorithm goes over the network edges, visitaxtheone in a
topological order. In each iteration, the algorithm findsuéable local encoding vector for the
visited edge, and updates all of thematricesBr,. The algorithm maintains the invariant that
the matricesBy, remain invertible after each iteration. Thus, when it teratés, each receiver
will get n linear combinations of the original packets that form a falhk system. Thus each
destination can solve for these packets by inverting theesppnding matrix.

The analysis of the algorithm due to [19] implies that a fieldiae at least (the number of
destinations) is sufficient for finding the desired netwodkie. In particular, as shown in [19,
Lemma 8], a field of size larger or equal tas sufficient for satisfying the condition that the
matricesBy, are always invertible.

To construct a secure network code, we modify the LIF algoriin the following way. We
select ak x n parity check matrix+. Without loss of generality, we assume that jheackets
observed by the wiretapper are linearly independeet, rank Cy, = 1. We denote by, the
edge visited at the-th iteration of the LIF algorithm, and by, the set of the edges that have

been processed by the end of it. Then, we extend the set ofiants to guaranty that the



. H
encoding vectors are chosen so that the matridgs = [ o
w

Theorem 1, achieves the security condition. More precisgding the same techniques as the

} are also invertible; which, by

original LIF algorithm, we make sure that by the end of tha iteration, the matrice&r, and
the matricesMyy, are invertible; wherédV; = {e;} U W’ and W' is a subset ofP, containing
uw—1=n—k—1 edges. The total number of matrices that need to be kepttiblemn this
modified version of the LIF algorithm is at moéﬁ_‘ll) + t. Thus, similarly as in [19, Lemma
8], we obtain the following improved bound on the alphabet dor secure multicast:
Theorem 2:Let G = (V, E') be an acyclic network with unit capacity edges and an infoiona
source such that the min-cut value to each ofitiheceivers is equal ta. A secure multicast at
ratek < n— p in the presence of a wiretapper who can observe at mast: edges is possible

oz (M) e ©

over the alphabef, of size

The bound given by Equation (9) can be further improved byizieg as was first done in
[20] that not all edges in the network carry different lineambination of the source symbols.
Langberget al. showed in [21] that the number ehcoding edges a minimalacyclic multicast
network is bounded byn3t2. Encoding edges create new packets by combining the packets
received over the incoming edges of their tail nodes. A matimulticast network does not
contain redundant edgeisg., edges that can be removed from the network without vidgaitis
optimality. Reference [22] presents an efficient algorittimconstruction of a minimal acyclic
network G from the original networkG. This work also shows that a feasible network code for
a minimal network can be used for the original network as wlh only slight modifications.

The main idea of our scheme is to find a secure network codehéorrtinimal network,
and then use the procedure described in [22] to constructveorie code for original network
G which will also be secure. Now consider the problem of findsegure network codes fa¥.
This problem will not change if the wiretapper is not allowtedwiretap theforwarding edges
i.e,, the edges that just forward packets received by their tadles. Therefore, the set of edges
that the wiretapper might have access to consists of thedemg@dges and the edges outgoing
from the source. The number of such edges is boundezhby. Now, applying Theorem 2 on

G and taking into consideration the restriction on the edpes ¢an be potentially wiretapped,



we obtain the following bound on the sufficient field size whis independent of the size of
the network.
Corollary 1: For the transmission scenario of Theorem 2, a secure nsflitegtwork code

always exists over the alphaligf of size

232
qz<“)+t. (10)
w—1

For networks with two sources, we can completely settle tlestion on the required alphabet
size for a secure network code. Note that the adversary hae tonited to observing at most
one edge of his choice. Based on the work of Fragouli and &alja [20], the coding problem
for these networks is equivalent to a vertex coloring probté some specially designed graphs,

where the colors correspond to the points on the projecineRG(1, q):
[01], [10], and[1a'] for 0 <i < q—2, (11)

wherea is a primitive element ofF,. Clearly, any network with two sources and arbitrary number
of receives can be securely coded by reducing the set ofaiaitolors in (11) by removing
point (color)[1 1] and applying a wiretap code based on the maktix- [1 1] as in the example
above. Alphabet size sufficient to securely code all netwatk two sources also follows from
[20]:

Theorem 3:For any configuration with two sourceéseceivers, the code alphaligf of size

V2t —T/A+1/2) +1

is sufficient for a secure network code. There exist configama for which it is necessary.

V. WIRETAPPEREQUIVOCATION

In this section, we analyze the performance of coset codéiseircase of a wiretapper with
variable strengthi,e., the numben of edges he can observe is not fixed. For a given coset code,
we seek to quantify the amount of information that is leakethe wiretapper as a function of
.

Assume that at the soureeof a multicast network a coset code defined by a n parity

check matrixH is used as described in the previous section. The equivocat{u) of the



wiretapper,i.e., the uncertainty it has about the information source vester (si, ..., si)7, is

defined, as in [18], based on the worst case scenario, by

A = i H(S|\Z 12
()=, min  H(S|Zw), (12)
where Zy = (z1,...,2,)" is the random variable representing the observed packethen

setWW C FE of wiretapped edges. We havg, = CyY whereCy, is anu x n matrix, and
Y = (y1,...,y.)T is the output of the coset code at the source. It can be seem\tha can

be written as:

Alw) = min  H(S|Zw). (13)
rank(Cyy )=
Therefore, we will assume from now on without loss of gensrahat 1/ is such that
rank(Cy ) = p. For a given choice of suci/, let Cj;, be the parity check matrix of thi, y]
code generated by, . Let I, be then x n identity matrix. DefineJ, , to be then x (n — u)
matrix where the firsp. rows are all zeros and the last- ;. rows form1,,_,,. Theorem 4 below

gives the expression ak(x) which depends on the network code and the coset code used.

Theorem 4.
-1
. Cw
Ap) = WCrEn;llalf‘:M rank(H Tnp)- (14)
rank(Cy )=p w
Proof:
. Cw .
First let Ay, = RE By Equation (4), we have

Ciy



H(S|Zw) = H(Y|Zw) — H(Y|SZ)

=n —rankCy) — (n — rank

)

Cw
K
= rank( Ayt) — rankCy)
Cw
- 1 (15)
HA
= rank( WY = rank(Cyy)
C’WA;Vl

= dim((HA})) + dim({Cy Ay))
— dim((HA) N (CwAy')) — rankCyy)

=k — dim((HAGY) N (J,,)).

where () denotes the row space of a matrix afl, is the u x n matrix where the firsi
columns formI, and the last, — ;1 columns are all zeros. Note thdtm((HAy') N (J, ) is
exactly k minus the rank of the last — x column vectors ofHA;;. u

A relevant concept to our work here is that of the generallzachming weightsl; (C), . .., dx(C)
of a linear code’ which was introduced by Wei in [26] and that characterize ghgformance
of coset codes over the classical wiretap channel of typ&hé generalized Hamming weights
were extended to the wiretap networks setting in [27]. Gigecertain network with an asso-
ciated network and coset codes, Theorem 4 provides an éepiv@xpression of the network
formulation of ther-th generalized Hamming weightt. as the minimum number of edges that

should be wiretapped to leaksymbols to the wiretapper. Then, we can write

d, = min{pu; A(pn) =k —r}

-1

. ) Cw . (16)
:= min{yu; chl;\lil/lld:u rank(H Jop) =k —r}.
rank(Cyy )=p w

Next, we focus on three special cases. First, we revisit tbdainof the wiretap channel of
type Il of [17]. Second, we consider the case where the wpta may gain access to more
edges than what the secure code is designed to combat. Wairskudy the scenario where only

a part of the network edges are vulnerable to wiretapping.



A. Wiretap Channel of Type I

Consider again the wiretap channel of type Il studied in [THjeorem 4 can be used to easily
recover the following classical result for this channel.
Corollary 2: The equivocation rate of the wiretapper in the wiretap cleanhtype Il is given
by
A(p)= min rank{H;;i € U}, (17)

UC{1,2,...,n}
|Ul=n—p

whereH; denote the ith column of the parity check mattik

Proof: The wiretap channel of type Il is equivalent to the networided in Figure 1.
Assume that the edges between the source and the destinagiomdexed from 1 tm, so that
E ={1,...,n}. For anylW C {1,...,n}, definely to be the matrix formed by the rows of
the n x n identity matrix indexed by the elements ©f in an increasing order. Since edge

carries the packey;, for a given setiV’ C E of Wiret{apped edges)w = Iy and Cy, = Iy,

I

whereU = {1,...,n} \ W. Therefore, A, = v = Al, and the last: — ;1 columns of
Iy

HAY, are exactly the columns ¢ indexed byU. [ |

B. Underestimated Wiretapper

Suppose the coset code defined by the n parity check matrixH satisfies Theorem 1
and achieves perfect secrecy against a wiretapper that loserve \ edges. If, however, the
wiretapper can access edges, wherg: > )\, then the amount of information leaked to the
wiretapper can be shown to be equalite- )\, i.e., the number of additional wiretapped edges.

Corollary 3: For the case of an underestimated wiretapper, the equivacait the wiretapper
is given by:

Alp) =k —(p—=A).
Proof: Since the coset code achieves perfect secrec) faretapped edges, by Theorem 1,
we havek =n — X\ and H(S|Y Zy ) = 0. Thus, Equation (4) gives

H(S|Zw)=H(Y|Zw) =n—rankCy) = k+ X — rank Cy).

The minimum value of{ (S|Zy ) is obtained wheidy, has maximal rank, i.e, when raftk,, ) = p.
u



C. Restricted Wiretapper

In practice, for instance in large networks, the wiretappetry not have access to all the
network edges, and his choice pfedges is limited to a certain edge subggétc FE. For this
model, the equivocation rate of the wiretapper is deterchimeEquation 14 wheré’ is replaced
by E’. An interesting case arises, however, when the edgds ibelong to a cut of» edges
between the source and one of the receivers. In this cas@etifi@mance of the coset code is
the same as when it is used for a wiretap channel of type II.

Corollary 4: In the case of a restricted wiretapper that can observe aegges in a cut
between the source and one of the destinations, the eqtimocate of the wiretapper is given
by Equation (17).

Proof: Assume the edges that are vulnerable to wiretapping arexéad&éom 1 ton,
so thatE’ = {1,...,n}. Let Zp = (21,...,2,)" denote the packets carried by those edges,
such that edge carries packet;. We can writeZz = Cg'Y, whereCg is ann x n matrix.
Since the cut comprises edges, the matriXCs is invertible; otherwise, by the properties of
linear network codes, the destination corresponding tactmsidered cut cannot decotte For
a choicelV C E’ of wiretapped edges, we havg, = Cy'Y, whereCy, = Iy,yCr. Moreover,
Ct = #Cr, whereW = E'\ W. Therefore,

-1 T
C I I
|l vl =wes | =Heg [TV
Ciy Ty Ty
T
I
Similar to the proof of Corollary 2, the last — 1 columns of HA™! "1 are exactly the

Iy

columns of HA~! indexed byU. So, by Theorem 4, we have

(») veliony O {(HA™ )i;i € U}
|U|l=n—p

= min rank{H;i e U}.

UC{1,2,...,n}
|Ul=n—p

[
Note that the previous result still holds for any subBebf possible wiretapped edges such that

Cg is invertible. For this scenario, the equivocation ratehsf wiretapper can be alternatively
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Fig. 5. A coding scheme achieving perfect secrecy againshitetl Byzantine wiretapper.

given by the generalized Hamming weights [26]C), ..., d,(C) of the linear cod& generated
by H. In this case, for a givep, A(u) is the unique solution to the following inequalities [26,

Cor. AJ:
dn—u—A(u) C)<n—p< dn—u—A(u)Jrl(C)-

VI. CONNECTIONS WITHOTHER SCHEMES

In this section, we explore the relationship between the@sed scheme and previously known
constructions [4], [28], [29], [23].

A. Secure Network Coding and Filtered Secret Sharing

Cai and Yeung were first to study the design of secure netwodes for multicast demands
[4]. They showed that, in the setting described above, arsewetwork code can be found for
any k < n — u. Their construction is equivalent to the following scheme:

1) Generate a vectoR = (rq,79,...,7,)" choosing its components uniformly at random

overF,,

2) Form vectorX by concatenating thg random symbolsk to the &k source symbols:

S
R

3) Chose annvertible n x n matrix 7' overF, and a feasible multicast network code [3] to

X — l } :(31,...,8k,r1,---77"u>T

ensure the security condition (1). (It is shown in [4, ThmtHjt such code and matrik

can be found provided that> (1))

4) ComputeY = T'X and multicasty” to all the destinations by using the constructed code.



Feldmanet al. considered also the same problem in [6]. Adopting the sanpeoaph of
[4], they showed that in order for the code to be secure, th&ixna should satisfy certain
conditions ([6, Thm. 6]). In particular, they showed thattie above transmission scheme, the
security condition (1) holds if and only if any set of vectamnsisting of

1) at mostu linearly independent edge coding vectors and/or

2) any number of vectors from the firktrows of 7!
is linearly independent. They also showed that if one saesfin the number of information
packets, that is, také < n — u, then it is possible to find secure network codes over fields of
size much smaller than the very large bound ().

We will now show that our approach based on coding for the tajrechannel at the source
is equivalent to the above stated scheme [4] with the canditof [6].

Proposition 1: For anyn x n matrix 7' satisfying the security conditions defined above, the

kxn matrix H = T* formed by taking the first rows of 7! satisfy the condition of Theorem 1.

Proof: Consider the secure multicast scheme of [4] as presentedealb@r a given
information vectorS € F;, let B(S) be the set of all possible vectois € F; that could

be multicast through the network under this scheme. Moreiseby,

B(S) = {Y EF'Y = TX, X = {Z} Re F;“k}.

Then, for allY € B(S), we havel™Y = T*T ; = S. Therefore, anyy € B(S) also belongs
to the coset of the space spanned by the row$*ofvhose syndrome is equal & Moreover,
sinceT is invertible,| B(S)| = 2"~* implying that setB(S) is exactly that coset. The conditions

of [6] as stated above directly translate into (18), the li@emg condition of Theorem 1. =

B. Universal Secure Network Codes

For practical implementations of linear multicast netwaddes overF,, the information
sources are typically packets of a certain lengthi.e., sy, ..., s, are vectors iff". Applying
the approach presented in the preliminary version of thigepdl], Silva and Kschischang
devised in [23] a scheme that achieves a complete decoupditvgeen the secure code and the

network code design. Their scheme is universal in the sdraattachieves secrecy by applying



a coset code at source with no knowledge of the network codd. ukhe main idea is to use
a special class of MDS codes called maximal rank-distande<@VIRD) which are non-linear
over F, but linear over the extension field,~». The parity check matrix of an MRD code over
F,~, has the interesting property that it always satisfies thedition of Theorem 1 when the
edge coding vectors are ovEy, as stated in the theorem below.

Lemma 1:[23, Lemma 3] LetH be the parity check matrix of gm, n — k| linear MRD code

: | H| . :
overF . For any full rank(n — k) x n matrix B overF,, then x n matrix IS invertible.
B

Therefore, MRD codes will always achieve perfect secremspective of the network code
used. The choice of the MRD code will only depend on the uydeglfield F, of the network

code.

C. Byzantine Adversaries

The malicious activity of the wiretapper in the model coesedl in this paper was restricted to
eavesdropping. A more powerful wiretapper, with jammingadalities, may not only listen to the
data in the network but also alter it. This may lead to floodimgwhole network with erroneous
packets. Schemes to combat such wiretappers, known iatliteras Byzantine adversaries, were
studied in [12], [15], [16] and the references within.

Consider a scenario where the wiretapper can not only obgeedges but also jam edges
of his choice that are unknown to the destinations. In thisecave will describe a coding
scheme that achieves a multicast raté: et n — 2a — 1 and guaranties that the information will
remain hidden from the wiretapper. This can be achieved bygus coset code as described in
Section 1l followed by a powerful network error-corredircode [13], [14]. First, we recall an
important result in [14, Theorem 4]

Theorem 5:For an acyclic networkG(V, E) with min-cut n, there exists a linea-error-
correcting code of dimensiofn — 2«) over a sufficiently large field.

Let G be the generator matrix of a linearerror-correcting code of dimensign —2a) whose
existence is guaranteed by the previous theorem, andtdte its parity check matrix. A block
diagram of the coding scheme that achieves secrecy agaiBgzantine wiretapper at a rate
k = n — 2o — u is depicted in Figure 5. First, the informatigh= (sy,...,s;)? is encoded

using a coset code of parity check mattikinto the vectorl’ = (t1,...,t,)7, with m = k + u.



i

The vectorT is then encoded intd = (yi,...,y.)T = GT using the network error-correcting
code. To achieve perfect secre@y, should satisfy the condition of Theorem 1, which can be

expressed here as:

H
rank =k+p forall Cy s.t. rankCy) = p. (18)
Cw§

We assume that the code is over a field large enough to guatengxistence of the network
error-correcting code and the matfiksatisfying the above condition as well. At each destination
a decoder corrects the errors introduced by the wiretapmperecovers/’. The informationS is
then obtained as the unique solution of the systém= T It was recently shown in [30] that
the ratek = n — 2a — . is optimal and another construction for codes with the saropasties

was presented there.

VIlI. CONCLUSION

We considered the problem of securing a multicast netwonlementing network coding
against a wiretapper capable of observing a limited numbedges of his choice, as defined
initially by Cai and Yeung. We showed that the problem candrenfilated as a generalization
of the wiretap channel of type Il which was introduced andlgtd by Ozarow and Wyner, and
decomposed into two sub-problems: the first one consistesifjding a secure wiretap channel
code, or a coset code, and the second consists of designiegwark code satisfying some
additional constraints. We proved there is no penalty to pandopting this separation, which
we find in many ways illuminative. Moreover, this approadewed us to derive new bounds on
the required alphabet size for secure codes. These new $aliffel from those in the literature
in that they are independent from the network size and aretifums of only the number of
information symbols and that of destinations. We also arelythe performance of the proposed
coset codes under various wiretapper scenarios.

A number of interesting questions related to this problemai@ open. For instance, the
bounds presented here on the code alphabet size can berlargedin cases and it is worthy to
investigate whether tighter bounds exist. Another issuehvivas not addressed in this paper is
that of designing efficient decoding algorithms at the eegibns which can be very important

in practical implementations. Also, the work of [23] hintatl some advantages of non-linear



codes. The benefits of nonlinearity in security applicatjomhether at the source code or at the

network code level, are still to be better understood.
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