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Abstract— The advent of network coding presents Wams,x"/ Wa;ls
promising opportunities in many areas of communication - -

and networking. It has been recently shown that network ”aﬁ ““‘

coding technique can significantly increase the overall ,
throughput of wireless networks by taking advantage of C\ /
their broadcast nature. In wireless networks, each trans- o

mitted packet is broadcasted within a certain area and [p.]r: P[P B

can be overheard by the neighboring nodes. When a node

needs to transmit packets, it employs theopportunistic | 0 % @
coding approach that uses the knowledge of what the node’s

neighbors have heard in order to reduce the number of Wa”'s Wan(s
transmissions. With this approach, each transmitted packe Has .\

is a linear combination of the original packets over a certai *
finite field.

In this paper, we focus on the fundamental problem of
finding the optimal encoding for the broadcasted packets . )
that minimizes the overall number of transmissions. We Fig. 1. Broadcast coding network
show that this problem is NP-complete overGF'(2) and
establish several fundamental properties of the optimal
solution. We also propose a simple heuristic solution for

the problem based on graph coloring and present some s referred to as its “has” set. It is easy to verify that
empirical results for random settings. all clients can be satisfied by broadcasting two packets
p1+p2 + ps andp; + p4 (all additions are oveGF(2)).
Since without network coding all packets,...,ps

In recent years, there has been an enormous interesaie needed to be transmitted, network coding allows to
the design and deployment of wireless networks. Suckduce the number of transmissions 3/%.
networks are indispensable for providing ubiquitous net- In this paper, we focus on the single hop wireless
work coverage and have many applications in both civletting and consider the problem of minimizing the
and military areas. number of broadcast transmissions necessary to satisfy

Recently, it was observed that the broadcast naturealf the clients. Our contributions can be summarized as
wireless networks can be exploited in order to increasellows. First, we prove that the problem of determining
throughput and reduce energy consumption. In a wirelegsge minimum number of transmissions ov@i'(2) is
environment, each packet is broadcasted within a smAP-complete. Next, we show that the number of trans-
neighborhood, which allows the neighboring nodes tmissions may depend on the size of the finite field, and
overhear packets sent by their neighbors. When a naghat such a dependence is not necessarily monotonic.
needs to transmit packets, it can employ tpportunis-  Further, we prove that the problem of finding the size of
tic coding [1], [2] approach that uses the knowledge ofhe finite field which results in the minimum number of
what the node’s neighbors have heard in order to redugansmissions is an NP-hard problem. Next, we establish
the number of transmissions. With this approach, ea@dwer and upper bounds on theding advantage, i.e.,
transmitted packet is a linear combination of the originahe ratio between the total number of packets and the
packets over a certain finite field. minimum number of transmissions that can be achieved

Example 1. Consider the network depicted inby using network coding. In particular, we show that the
Figure 1. In this example, the central node, referred twding advantage depends on the size ofhhs* sets.
as a server, needs to deliver four packets...,ps to Next, we evaluative the value of coding advantage in
four clientscy, ..., cq; packetp; needs to be receivedrandom settings. Finally, we present a heuristic solution
by client ¢;. Each clientc; has an access to some obased on graph coloring and verify its performance
the packets overheard from prior transmissions. This gatough simulations.

I. INTRODUCTION



The considered problem is a special case of thpackets inW(¢;). It is easy to verify that the resulting
generalnetwork coding [3] problem for non-multicast instance of ProblerMIN-T-q is equivalent to the original
networks. The general network coding problem hame.
recently attracted a large body of research (see e.qg., [4],

[5] and references therein), however, many of the results [1l. HARDNESS RESULTS

(such as NP-hardness) cannot be immediately extendeqin this section we focus on the case in which the en-

to our problem. coding is performed ove® F'(2) and prove that Problem

While we present our results in the context of wireles§ \.T.2 which is a special case of ProbleRiiN-T-q
data transmission, the considered problem is very genelrglj GF(,2) is NP-complete

and can arise in many other practical settings. Forp ..o 2 proplemMIN-T-2 is NP-complete.
example, consider a content distribution network that R :
Proof: It is easy to verify that the problem belongs

needs to deliver a set of large files (such as video cIip@ NP. To prove that the problem is NP-complete we

to different clients. In this setting, if some of the files . -
show a reduction from the minimum vertex cover prob-

are already available for some clients, the distribution hi bl . d
can be efficiently implemented by multicasting a (smaﬁfm' Int IS problem we are given a grapiv, E.) an
eed to find a subsét of V, of minimum cardinality,

set of linear combinations of the original files. such that each edgee E is incident to at least one of
Il. MODEL the nodes in. We denote byOPTV® = |V| the size
. . . . ?f the optimal solution for the vertex cover problem.
We consider a one—hop wireless channel with a sing €Given an instanceG(V, E) to the vertex cover
servers and a set ofm cl[entsC ={c1,-.. cm}. The problem we build the following instance for Problem
server needs fo transmit a SBt = {p1,p2;---.Pn} \MIN-T-2. The packet seP includes a packet, for any

of packets to the clients. Each client requires a cert . .
subset of packets i, while some packets i are é\t’ﬁjc;evm:v {anlip: %(}eptehfeorssgzeetdgeplgg.(:vtseiget?]cgf

already availablle to it. Spe.cifically, each cliente C correspond to nodes il and by Pz — {p. | ¢ € E}
is associated with two sets: ) the subset of packets i? that correspond to edges in
o W(c;) C P - the set of packets required lay. E.
« H(ci) C P - the set of packets available &t For each edge(v,u) € E we define two clients:!
We refer tolW (¢;) and H(c;) as the “wants” and “has” and¢? such that:
sets of¢;, respectively. The server can transmit any H(ch) = {p.} andW(cl) = {py, pu};
packet from P as well as linear combinations (over H(CS) = {Po, pu} andl/?/(CQ) = {pe}.
GF(q)) of packets inP. Each transmissionis specified © ’ ©
by an encoding vectog;, = {g]} € GF(¢)" such that
the packetr; transmitted in communication roundis
equal tox; = Z;‘:l g} - p;. The practical issues related
to this model are discussed in [2].
Our goal is to find the set of encoding vectdrs= ]
{g:;} of minimum cardinality that allow each client to Lemma 4 OPT < OPTVC + |E|.

decode the packets it requested. We refer to this problem Proof: LetV C V' be the optimal solution to the
as ProblemMIN-T-q. vertex cover problem. Then, all clients can be satisfied

Problem MIN-T-q. Find the minimum number of by transmitting the following set of packets of size

vc .
transmissions and the corresponding ®edf encoding OPT™® + |E: .
vectors{g;}, ¢; = {g9!} € GF(q)", that allow each 1) For each node € V" we transmit the correspond-

We denote byOPT the size of the optimal solution
for this instance of ProblenMIN-T-2, i.e., the mini-
mum number of transmissions necessary to satisfy all
clients. In the following two lemmas we prove that
OPT = OPTVC + |E|.

clientc; € C to decode all the packets in its “wants” set ing packetp,;
Wi(c;). 2) For each edge(v,u) € E we transmit the packet
We assume, without loss of generality, that for each Py +pu+pe, Wherep,, p,, andp,. are packets that
packetp;, € P, there exists at least one clieat € C correspond to nodes u, and edge:, respectively.
such thatp; belongs to the “wants” sel(c;) of c;. It is easy to verify that the se® of correspond-
We also assume that for each clientc C it holds that ing encoding vectors is a feasible solution to Problem
H(ci) N W(e;) = 0. MIN-T-2. Since the total number of transmitted packets
Observation 2: Without loss of generality, we canis OPTVC +|E| it follows that OPT < OPTV® +|E|.
assume that the “wants” s8f (¢;) of each client; € C m

contains exactly one packet. Indeed, we can substitute emma 5: OPT > OPTVC + |E|.

each cliente; € C' whose “wants” set includes more Proof:  Consider an optimal solutiond =
than one packet by multiple cliens; = {c},c}....} {g,,....gopr} to ProblemMIN-T-2, where

such that the “has” sets of all clients @} are equivalent

to that of ¢; and each client irC; requests one of the g; = (¢v*,...,q," ", g%, ..., g;""") € GF(2)IPIHIVI,



With this solution, the packet transmitted at round For each edge:(v,u) € E let g; be the vector that

is equal to

;= Z g;-}j'puj'l- Zg:j.pej'

v, eV e;€E

We denote by(®) the linear subspace of dimensio
OPT of GF(2)IVI*IEl generated by the vectors i.

We show that there exist two sebs and®, of vectors
in (®) and a vertex cove¥” C V such that the following
three conditions holds:

correspond te in T'. Recallg; has one or two non-zero
components, which are eithet’ or g}, or both. This
implies that eithew or u, or both belong tdV.

We proved that there exist two seds; and &, of
independent vectors ig®) such that|/®;| = |E|, and

No,| > OPTVC. We conclude that

OPT = dim(®) > |®;| + |®s| > OPTVC +|E|.

[ ]
From lemmas 4 and 5 it follows thaOPT =

(1) For any edgec € I, there exists an encodingpprVe 4 |E|. Thus, a polynomial-time algorithm that

vector g; € @, such thatg¢ = 1, andg¢ = 0
for any edge’ € E'\ {e};

(2) For eacly; € ®; it holds thatg¢ = 0 for any edge
e € L,

solves ProblemMIN-T-2 will solve the vertex cover
problem as well, resulting in a contradiction. ]

IV. DEPENDENCE ON THE FIELD SIZE

(3) For eachv € V there exists an encoding vector |n this section we consider a variant of Prob-

gi € ®, such thatg? = 1 andg? = 0 for any
nodev’ € V' \ {v}.

Note that all encoding vectors i, U ®, are linearly
independent|®,| = | E|, and|®;| = |V].

First, we show how to construct the set. Lete(v, u)
be an edge i’ and letc! andc? be the two clients that
correspond ta. We note that in order to satistf, (®)
must contain at least one vectgy for which it holds
gi =1 andgf/ = 0 for any edge’ € E'\ {e}. Thus, we
can form®; by including, for eache € F, the vector
g: € (®) that corresponds te.

Second, we show how to construct sef and the
vertex coverl/. Again, lete(v, u) be an edge irF and
let ¢! and ¢? be the two clients that correspond #o
Note that, in order to satisfy the clien}, the set(®)
must contain a vectay; for which it holds thatgf’ =0
foralle’ € E, g2 =0 forall w € V\ {v,u}, and either
gy or gi* (or both) are non-zero. Lel’ be a set that
contains such vectors for alle E. Let] = dim(T). It
follows from linear algebra that there existsian(|V|+
|E|) matrix M over GF'(2) that satisfies the following
conditions:

1) The rows ofM span(T);
2) There arel linearly independent columns i/

such that each column contains exactly one no

zero element.

Indeed, we can first construct &r (|V|+|E|) matrix
M’ whose rows spaff’. Such matrix is of rank, hence

lem MIN-T-q which allows flexibility in choosing the
underlying finite filed. GF'(q). Specifically, for each
instance of the problem, we can choose the finite field
that minimizes the required number of transmissions.

We denote byOPT(q) the minimum required num-
ber of transmissions ove&F(q). We also denote by
OPT the minimum number of transmissions that can
be achieved over any finite field.

We begin by observing that the minimum number of
transmissions may depend on the size of the finite field
GF(q). For example, consider the problem described in
Table I, whereP = {p1, p2, p3, p4}, and for every client
ciy, H(e;) = P\ W(c;). We prove that in this problem
OPT(2) > OPT(3).

First, we show thaODPT(2) > 2. Suppose, by way
of contradiction, that there is a solution to this problem
with two transmissions:

1 =gip1+ -+ gipa
Ty =gap1+ -+ g3pa

To satisfy all clients, the vector&?, g3), ..., (9%, 93)
should be all distinct and different froif®, 0), which is
not possible ovetZF'(2). Since the set of transmissions
{p1 + p3, p2 + p3, ps} satisfies all clients, it follows that
OPT(2) = 3. We note thatOPT is at least two, since
OprT > |[W (e;)| = 2. We also observe that ovérF(3)
only two transmissiongp; + p3 + pa,p2 + p3 + 2pa}
are sufficient, henc&PT(3) = OPT = 2.

it contains at leastnon-zero columns which are linearly [C] Wle) | H(e) ]

independent. The matri/ can be constructed ford/’
by performing Gaussian elimination. We denotelbyhe

subset ofV that corresponds té linearly independent
columns of M, each column contains exactly one non- s | 1pz,pa} | 1p1,p3}

zero element. Then, we sdi; to be the set of row
vectors of M. Note that®, hasl elements.

We proceed to show that” is a vertex cover in
G(V, E). We note that the structure @ff implies that
for any non-zero vectay; in the row span of\/, and, in
turn, in (T') it must hold thaty}” = 1 for somew € V.

c1 | {p1,p2} | {p3,pa}
ca | {p1,p3} | {p2,pa}
c3 | {p1,pa} | {p2,p3}
ca | {p2,p3} | {p1,p4}

c6 | {p3,pa} | {p1,p2}
TABLE |

The following lemma shows thaOPT(q) is not
necessarily a monotonic function of



Lemma 6: There exists an instance of(¢%),ev constitute a feasible solution for the broadcast
ProblemMIN-T-q for which it holds thatOPT'(¢) = 3 problem.
for fields with odd characteristic, such &F(3) and Second, suppose that there exists a solution=
OPT(q) > 3 for fields with even characteristic. {(¢¥)vev, (¢3)vev} for the broadcast problem with two
Proof (sketch): Consider the problem instance detransmissions. We show that this implies that there exists
scribed in Table Il, whereP = {pi,...,p7}, and agq+1 coloring of graphG:. For each vertex € V, the

H(c;) = P\ Wi(c). vector (g7, g5) determines the coefficients for packet
for the first and the second transmissionsbinThe set
[a [ Wl | of such vectors can be partitioned inte- 1 equivalence
c1 p1 classes, such that any two linearly dependent vectors are
Ei ii placed into the same equivalence class. Next, for each
o D2 pa equivalence class we assign one of the- 1 colors.
s p3, P5 Next, for each vertex» € V' we assign the color that
<6 P3,P6 corresponds to the equivalence class(gf, ¢4). It is
EZ i‘j’i; easy to verify that this will result in a valid coloring of
) Do p7 G that requires at most+ 1 colors. [
c10 | {pa,ps,p6}

V. BOUNDS ON CODING ADVANTAGE

Given a one-hop transmission problem witlpackets
P ={p1,p2,...,pn} andm clientsC = {c1,...,cm},

For fields with odd characteristic, the transmissioW® define the coding gaiii as the ratio between the

TABLE Il

sequence minimum number of transmissions without coding and
the minimum number of transmissions with coding, i.e.,
{p1+pa+ps+p7,p2+ps+pe+p7,p3+ps +p6+pr} n

satisfies all clients, henad®@PT'(q) = OPT = 3. . . OPT o

We observe that for fields with even characterisi¥nere OPT is the minimum number of transmissions
(¢ = 2%) it holds thatOPT(2F) > 3. Indeed, for any achievable over any finite fieldF'(q). .
solution{gi, g2, g3} € GF(q)? with three transmissions, Let L = max,co |H(c;)| and £ = ming,ec [H(c;)].
consider the matri” whose row vectors arg, g», and The following theorem establishes lower and upper
gs. To satisfy the demands of all the clients the vectdtounds ori. _ o
matroid of T should be isomorphic to the Fano matroid 11'€orem 8: The coding gain is bounded by

[6]. But, the Fano matroid is only representable over " cr<L+1 (1)
fields with odd characteristics. Therefore, there are no n—¢7 7

solutions to above problem with three transmissions over Proof: We assume, without loss of generality, that
GF(2Y). B |W(¢)| = 1 for each cliente; € C. Let GF(q) be

The next lemma shows that deciding whether thge field that require® PT transmissions. Consider an
optimal number of transmissions can be achieved foramtimum solution® that include) PT encoding vectors

given field GF(q) is an NP-hard problem. 91y -+, JoPT-
Lemma 7: For given a prime powsy, itis an NP-hard  Lete; € GF(¢)", 1 < j < n, be the unit vector
problem to decide wheth&?PT'(¢) = OPT. whose components are all zeros except for thb one

Proof (sketch): Similar to [5], we use a reduction which is 1. Forl < i < n, we definew; = ¢; if client

from the problem of graph coloring. Given an undirected, wants packep,. Also, we define
graphG(V, E), we construct the following instance to -
the broadcast problem. For each nade V, the setP H(ei) = {ejips € Hci)}-
includes a packet,. For each edge(v,u) € E, the set  To guaranty that each clier} is able to decode the
C includes a client, such thati(c.) = {p.,p.} and packeth; in its “wants” list, there must be a vectgy €
H(c.) = P\ W(c). It is easy to verify that for this (®) such thatw; = y; + h;, h; € (H(c;)), where (®)
problem it holds thaOPT = 2. and (H(c;)) are the linear subspaces generated by the

We show the problem can be solved with two transyectors in® and H(c;), respectively. We note that the
missions oveGF'(q) if and only if G is ¢+ 1 colorable. Hamming weight ofy; is upper bounded by, + 1.
First, suppose that/(V, E') can be colored withy + 1 Let Y = {y; | ¢ € C}. By the optimality of
colors. Letd(v) € {1,...,q+1} be the color of vertex.  the solution the dimension of the linear subsp&ke
As shown in [5], there existg+ 1 pairwise independent generated byY” is equal to that of(®). Let B be the
vectors(z1, 23),..., (2{"", 24"") overGF(q). For each OPT x n matrix whose row vectors belong © and
nodev € V we set(g{,¢%) = (zf<”>,z§<”>). It is easy form the basis ofY". We note thatB must satisfy the
to verify that the two encoding vectorg}),cy and following two conditions:

4



1) Each row ofB contains at mosi. + 1 non-zero 50

elements. ::
2) B does not contain the all-zero column vector. éss
The first condition follows from the upper bound on EE

the Hamming weights of the vectors ¥i. The second
condition follows from the observation that for every
packetp; at the source, there is at least one client that
wants it. These two conditions imply thePT' > 2.

We proceed with the lower bound. Given an instance 1 g can 25
I; of ProblemMIN-T-g, we form another instancé,
with where all the “has” sets have ordérand where Fig.2. Histogram of coding gain for 7 clients with optimalcdeing
W(e;) = P\ H(c). Instancel, is formed by delet-
ing arbitrary elements from the “has” sets &f and
expanding the “wants” sets of its elements. Note that
any valid solution for instancé, is also a valid solution w0
for instancel;.

For a field GF'(q) of large enough size (larger than
the number of clients), we can always find a subsgfice
of dimensionn— ¢ in GF(q)" that is simultaneously or-
thogonal to all the subspacesﬁ(ci) > corresponding
to I (Theorem 1 in [7]). Any basis aof will constitute

Percentage of Experiments

5
a solution forl,, and, in turn, forl;, which requires of - . -25
n — £ transmissions. Thus, the lower bound followm. Coding Gain
VI. HEURISTICAPPROACH ANDNUMERICAL Fig. 3. Histogram of coding gain for 5 clients using memcsgle
RESULTS decoding

A. Heuristic Approach

In Section Ill, we proved that ProbleMIN-T-2 is NP-
Comp|ete hence f|nd|ng an Opt|ma| solution for |arge |rﬁ” clients that Correspond to nOdesm’lcan be satisfied
stances of the problem can be impractical. In this sectidy one transmission, which includes a linear combination
we present a heuristic approach to solve this proble®. all packets in their “wants” sets. Thus, the minimum
Our heuristic solution employsnemoryless decoding, Number of transmissions with memoryless decoding can
i.e., each client uses exactly one of the transmittdd® found by solving &lique partition problem [8], i.e.,
packets to decode one of the packets in its “wants” li@rtition of V' into disjoint subsetd/,, V5, ..., Vi, such
and never uses a linear combination of the transmittélpt forl <i < k, the subgraph o+ induced byV; is a
packets. While memoryless decoding, in general, resug@mplete graph. This problem, in turn, corresponds to the
in a suboptimal solution, our numerical results, present&jnimum graph coloring problem of the complimentary
below, show that in many cases the number of requiréiaph. The latter problem is a well-studied problem with
packets is close to the optimum. We observe that tieWwealth of heuristic solutions developed in the recent
problem of finding the minimum number of transmisyears.
sions with memoryless decoding is equivalent to the
problem of finding the minimum chromatic number oB. Numerical results
an undirected graph.

Specifically, consider an instandeproblem of Prob-
lem MIN-T-q, in which the “wants” set of each client
is of cardinality one. Then, we construct an instanc
G(V, E) to graph coloring problem through the follow-
ing procedure:

« For each clientc; € C there is a corresponding

vertexv,, in V.

We performed several numerical experiments in order
to evaluate the coding gain as well as the performance
of the heuristic solution in random settings. In all of our
@xpenments described below, the “wants” set of each
client is of cardinality one, and the number of clients is
equal to the number of packets.

In the first experiment, we evaluated the coding gain of
a single-hop wireless system with seven clients. Specif-

« Each two vertices,, andv,; are connected by anije4y"\ve generated 50 instances of ProbletiN-T-g,

edge if one of the foIIowmg holds: in each setting the set “has” of each client is randomly
— Clientsc; andc; have identical “wants” sets; selected. The results of the experiment are shown in
- Wi(e;) € H(cj) andW(c;) € H(ci). Figure 2. The results show that in the majority of the

Let V C V be a clique inG(V, E), i.e., each two experiments, there is a significant coding gain (more than

vertices ofV are connected by an edge @ Note that 1.75).
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VIl. CONCLUSION

Ei ¢ The paper focuses on minimizing the number of trans-
82s . missions necessary for satisfying all clients in singl@-ho
E wireless settings. We employ the technique of network
3’ ’ coding which allows to take advantage of the packets
15)_ o , that were overheard from prior transmissions.
Our paper makes the following contributions. First,
g Y anaiorrss 2 3 we proved that the problem of finding the minimum

number of transmissions is NP-complete over the binary

Fig. 5. Average Coding gain as a function of the cardinalify ofield. Second, we analyzed an extended version of the

the “has” set using different techniques: (1) optimal déwgd (2) problem in which the encoding can be performed over a

memoryless decoding; (3) heuristic approach. larger finite field. Furthermore, we established lower and

upper bounds on the value of the coding gain. Next, we

presented a heuristic solution based on graph coloring.

The second experiment is similar to the first ond inlly, we conducted a simulation study that evaluates
but the clients only employ memoryless decoding. THBe coding gains in practical settings.

results of the experiment are shown in Figure 3. The 1ne considered problem presents significant chal-

results show that a significant coding gain (up to 2_5§3nges and provides a fertile ground for future research.

can be achieved, while in the majority of the cases, tH& particular, we would like to prove the NP-hardness
coding gain is at least 1.7. and inapproximability for finite fields of larger size as

In the third experiment, we studied the dependence \3'16” as for non-linear network codes.
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