How to distribute the multiplication of Secret Matrices?

Rafael G.L. D'Oliveira
Salim El Rouayheb
Daniel Heinlein
David Karpuk

Massachusetts Institute of Technology
Rutgers University
Aalto University
and
F-Secure

Setup

- User has two matrices $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$ and wants their product $A B$.

Setup

- User has two matrices $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$ and wants their product $A B$.
- N helper servers. Honest but curious.

Setup

- User has two matrices $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$ and wants their product $A B$.
- N helper servers. Honest but curious.
- Want information theoretic Privacy even if T server collude.

Setup

- User has two matrices $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$ and wants their product $A B$.
- N helper servers. Honest but curious.
- Want information theoretic Privacy even if T server collude.
- Figure of merit: communication cost.

Setup

- User has two matrices $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$ and wants their product $A B$.
- N helper servers. Honest but curious.
- Want information theoretic Privacy even if T server collude.
- Figure of merit: communication cost.
- Matrix Multiplication is everywhere!

Simplest Example: Polynomial Codes/Secret Sharing

$$
\begin{aligned}
& f(x)=A+R x \\
& g(x)=B+S x
\end{aligned}
$$

Server 1 Server 2 \quad Server 3

Simplest Example: Polynomial Codes/Secret Sharing

$$
\begin{aligned}
& f(x)=A+R x \\
& g(x)=B+S x
\end{aligned}
$$

Server 1 Server 2 Server 3

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.

Simplest Example: Polynomial Codes/Secret Sharing

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.
- User sends $f(i)$ and $g(i)$ to server i.

Simplest Example: Polynomial Codes/Secret Sharing

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.
- User sends $f(i)$ and $g(i)$ to server i.
- $h(x):=f(x) g(x)=A B+(A S+R B) x+R S x^{2}$

Simplest Example: Polynomial Codes/Secret Sharing

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.
- User sends $f(i)$ and $g(i)$ to server i.
- $h(x):=f(x) g(x)=A B+(A S+R B) x+R S x^{2}$
- User wants $A B=h(0)$.

Simplest Example: Polynomial Codes/Secret Sharing

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.
- User sends $f(i)$ and $g(i)$ to server i.
- $h(x):=f(x) g(x)=A B+(A S+R B) x+R S x^{2}$
- User wants $A B=h(0)$.
- Server i computes $h(i)=f(i) g(i)$ and sends it to the user.

Simplest Example: Polynomial Codes/Secret Sharing

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.
- User sends $f(i)$ and $g(i)$ to server i.
- $h(x):=f(x) g(x)=A B+(A S+R B) x+R S x^{2}$
- User wants $A B=h(0)$.
- Server i computes $h(i)=f(i) g(i)$ and sends it to the user.
- User interpolates $h(x)$ and decodes $A B=h(0)$.

Simplest Example: Polynomial Codes/Secret Sharing

- Generate random R and S same size as A and B, resp and forms $f(x)=A+R x, g(x)=B+S x$.
- User sends $f(i)$ and $g(i)$ to server i.
- $h(x):=f(x) g(x)=A B+(A S+R B) x+R S x^{2}$
- User wants $A B=h(0)$.
- Server i computes $h(i)=f(i) g(i)$ and sends it to the user.
- User interpolates $h(x)$ and decodes $A B=h(0)$.
- Comm. cost $=3 \times($ upload $A+\operatorname{upload} B+\operatorname{download} A B)$.

Divide \& Parallelize

- Let $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$
- We divide A and B as $A=\left[\begin{array}{c}A_{1} \\ \vdots \\ A_{K}\end{array}\right]$ and $B=\left[\begin{array}{lll}B_{1} & \cdots & B_{L}\end{array}\right]$.

Divide \& Parallelize

- Let $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$
- We divide A and B as $A=\left[\begin{array}{c}A_{1} \\ \vdots \\ A_{K}\end{array}\right]$ and $B=\left[\begin{array}{lll}B_{1} & \cdots & B_{L}\end{array}\right]$.
- $A B=\left[\begin{array}{ccc}A_{1} B_{1} & \cdots & A_{1} B_{L} \\ \vdots & \ddots & \vdots \\ A_{K} B_{1} & \cdots & A_{K} B_{L}\end{array}\right]$

Divide \& Parallelize

- Let $A \in \mathbb{F}_{q}^{r \times s}$ and $B \in \mathbb{F}_{q}^{s \times t}$
- We divide A and B as $A=\left[\begin{array}{c}A_{1} \\ \vdots \\ A_{K}\end{array}\right]$ and $B=\left[\begin{array}{lll}B_{1} & \cdots & B_{L}\end{array}\right]$.
$-A B=\left[\begin{array}{ccc}A_{1} B_{1} & \cdots & A_{1} B_{L} \\ \vdots & \ddots & \vdots \\ A_{K} B_{1} & \cdots & A_{K} B_{L}\end{array}\right]$
- Each server does $\frac{1}{K L}$ of the work.

Total Communication Cost

- When using N servers, the total Communication Cost is

$$
N(\underbrace{\frac{r s}{K}+\frac{s t}{L}}_{\text {Upload }}+\underbrace{\frac{r t}{K L}}_{\text {Download }})
$$

Total Communication Cost

- When using N servers, the total Communication Cost is

$$
N(\underbrace{\frac{r s}{K}+\frac{s t}{L}}_{\text {Upload }}+\underbrace{\frac{r t}{K L}}_{\text {Download }})
$$

Goal: Given partition parameters K and L, and security parameter T, minimize the number of servers N.

Previous Work: Polynomial Codes for Stragglers

- Originally introduced in [Yu, Maddah-Ali, Avestimehr, '17].
- Different Setting: mitigating stragglers
- Other Work: [Yu, Maddah-Ali, Avestimehr, '18] , [Dutta, Fahim, Haddadpour, Jeong, Cadambe, Grove, '18], [Sheth, Dutta, Chaudhari, Jeong, Yang, Kohonen, Roos, Grove, '18],
[Li, Maddah-Ali, Yu, Avestimehr, '18], etc.

Previous Work: Polynomial Codes for Security

- Distributed multiplication with information theoretic security.
- [Chang, Tandon, '18], [Kakar, Ebadifar, Sezgin, '18] and [Yang, Lee, '19]
- Related work: [Yu et al. '19], [Aliasgari et al. '19]

Can't Choose Any Polynomial

- Let $K=L=3$ and $T=2$.

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right], \quad B=\left[\begin{array}{lll}
B_{1} & B_{2} & B_{3}
\end{array}\right], \quad A B=\left[\begin{array}{lll}
A_{1} B_{1} & A_{1} B_{2} & A_{1} B_{3} \\
A_{2} B_{1} & A_{2} B_{2} & A_{2} B_{3} \\
A_{3} B_{1} & A_{3} B_{2} & A_{3} B_{3}
\end{array}\right]
$$

- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
- $g(x)=B_{1}+B_{2} x+B_{3} x^{2}+S_{1} x^{3}+S_{2} x^{4}$

Can't Choose Any Polynomial

- Let $K=L=3$ and $T=2$.

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right], \quad B=\left[\begin{array}{lll}
B_{1} & B_{2} & B_{3}
\end{array}\right], \quad A B=\left[\begin{array}{lll}
A_{1} B_{1} & A_{1} B_{2} & A_{1} B_{3} \\
A_{2} B_{1} & A_{2} B_{2} & A_{2} B_{3} \\
A_{3} B_{1} & A_{3} B_{2} & A_{3} B_{3}
\end{array}\right]
$$

- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
- $g(x)=B_{1}+B_{2} x+B_{3} x^{2}+S_{1} x^{3}+S_{2} x^{4}$
- Let $h(x)=f(x) g(x)$. Then,

$$
h(x)=A_{1} B_{1}+\left(A_{1} B_{2}+A_{2} B_{1}\right) x+\left(A_{1} B_{3}+A_{2} B_{2}+A_{3} B_{1}\right) x^{2}+\ldots
$$

Can't Choose Any Polynomial

- Let $K=L=3$ and $T=2$.

$$
A=\left[\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right], \quad B=\left[\begin{array}{lll}
B_{1} & B_{2} & B_{3}
\end{array}\right], \quad A B=\left[\begin{array}{lll}
A_{1} B_{1} & A_{1} B_{2} & A_{1} B_{3} \\
A_{2} B_{1} & A_{2} B_{2} & A_{2} B_{3} \\
A_{3} B_{1} & A_{3} B_{2} & A_{3} B_{3}
\end{array}\right]
$$

- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
- $g(x)=B_{1}+B_{2} x+B_{3} x^{2}+S_{1} x^{3}+S_{2} x^{4}$
- Let $h(x)=f(x) g(x)$. Then,

$$
h(x)=A_{1} B_{1}+\left(A_{1} B_{2}+A_{2} B_{1}\right) x+\left(A_{1} B_{3}+A_{2} B_{2}+A_{3} B_{1}\right) x^{2}+\ldots
$$

- Can't retrieve $A_{1} B_{2}$, for example.

It is not about the degree.

- Scheme 1:
- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
$\rightarrow g(x)=B_{1}+B_{2} x^{5}+B_{3} x^{10}+S_{1} x^{13}+S_{2} x^{14}$
- $N_{h}=\operatorname{deg} h+1=19$ servers.

It is not about the degree.

- Scheme 1:
- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
$\rightarrow g(x)=B_{1}+B_{2} x^{5}+B_{3} x^{10}+S_{1} x^{13}+S_{2} x^{14}$
- $N_{h}=\operatorname{deg} h+1=19$ servers.
- Scheme 2:
$\rightarrow f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
$\rightarrow g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- $\operatorname{deg} h^{*}=22$

It is not about the degree.

- Scheme 1:
- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
$\rightarrow g(x)=B_{1}+B_{2} x^{5}+B_{3} x^{10}+S_{1} x^{13}+S_{2} x^{14}$
- $N_{h}=\operatorname{deg} h+1=19$ servers.
- Scheme 2:
$f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
$\rightarrow g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- $\operatorname{deg} h^{*}=22>18=\operatorname{deg} h$

It is not about the degree.

- Scheme 1:
- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
$\rightarrow g(x)=B_{1}+B_{2} x^{5}+B_{3} x^{10}+S_{1} x^{13}+S_{2} x^{14}$
- $N_{h}=\operatorname{deg} h+1=19$ servers.
- Scheme 2:
- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- $\operatorname{deg} h^{*}=22>18=\operatorname{deg} h$
- But h^{*} has gaps in the degrees.
- No term of degrees $13,14,16,17$ or 20.

It is not about the degree.

- Scheme 1:
- $f(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{3}+R_{2} x^{4}$
$\rightarrow g(x)=B_{1}+B_{2} x^{5}+B_{3} x^{10}+S_{1} x^{13}+S_{2} x^{14}$
- $N_{h}=\operatorname{deg} h+1=19$ servers.
- Scheme 2:
- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- $\operatorname{deg} h^{*}=22>18=\operatorname{deg} h$
- But h^{*} has gaps in the degrees.
- No term of degrees 13, 14, 16, 17 or 20.
- Thus, only 18 points needed to interpolate h^{*}.
- $N_{h^{*}}=18<19=N_{h}$.

What is it about?

It is about the number of terms in the polynomial.

What is it about?

It is about the number of terms in the polynomial.

- Consider the polynomial $f(x)=a x^{6}+b x^{5}+c x$.
- We need $3<\operatorname{deg} f+1$ points to interpolate this polynomial.

What is it about?

It is about the number of terms in the polynomial.

- Consider the polynomial $f(x)=a x^{6}+b x^{5}+c x$.
- We need $3<\operatorname{deg} f+1$ points to interpolate this polynomial.
- Not any points! What does $f(0)$ tell you?

How many terms does $f(x) g(x)$ have?

- $f(x)=A_{1} x^{\alpha_{1}}+A_{2} x^{\alpha_{2}}+A_{3} x^{\alpha_{3}}+R_{1} x^{\alpha_{4}}+R_{2} x^{\alpha_{5}}$
- $g(x)=B_{1} x^{\beta_{1}}+B_{2} x^{\beta_{2}}+B_{3} x^{\beta_{3}}+S_{1} x^{\beta_{4}}+S_{2} x^{\beta_{5}}$

The terms in $h(x)$ appear in the following table.

How many terms does $f(x) g(x)$ have?

- $f(x)=A_{1} x^{\alpha_{1}}+A_{2} x^{\alpha_{2}}+A_{3} x^{\alpha_{3}}+R_{1} x^{\alpha_{4}}+R_{2} x^{\alpha_{5}}$
- $g(x)=B_{1} x^{\beta_{1}}+B_{2} x^{\beta_{2}}+B_{3} x^{\beta_{3}}+S_{1} x^{\beta_{4}}+S_{2} x^{\beta_{5}}$

The terms in $h(x)$ appear in the following table.

	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}
α_{1}	$\alpha_{1}+\beta_{1}$	$\alpha_{1}+\beta_{2}$	$\alpha_{1}+\beta_{3}$	$\alpha_{1}+\beta_{4}$	$\alpha_{1}+\beta_{5}$
α_{2}	$\alpha_{2}+\beta_{1}$	$\alpha_{2}+\beta_{2}$	$\alpha_{2}+\beta_{3}$	$\alpha_{2}+\beta_{4}$	$\alpha_{2}+\beta_{5}$
α_{3}	$\alpha_{3}+\beta_{1}$	$\alpha_{3}+\beta_{2}$	$\alpha_{3}+\beta_{3}$	$\alpha_{3}+\beta_{4}$	$\alpha_{3}+\beta_{5}$
α_{4}	$\alpha_{4}+\beta_{1}$	$\alpha_{4}+\beta_{2}$	$\alpha_{4}+\beta_{3}$	$\alpha_{4}+\beta_{4}$	$\alpha_{4}+\beta_{5}$
α_{5}	$\alpha_{5}+\beta_{1}$	$\alpha_{5}+\beta_{2}$	$\alpha_{5}+\beta_{3}$	$\alpha_{5}+\beta_{4}$	$\alpha_{5}+\beta_{5}$

How many terms does $f(x) g(x)$ have?

- $f(x)=A_{1} x^{\alpha_{1}}+A_{2} x^{\alpha_{2}}+A_{3} x^{\alpha_{3}}+R_{1} x^{\alpha_{4}}+R_{2} x^{\alpha_{5}}$
- $g(x)=B_{1} x^{\beta_{1}}+B_{2} x^{\beta_{2}}+B_{3} x^{\beta_{3}}+S_{1} x^{\beta_{4}}+S_{2} x^{\beta_{5}}$

The terms in $h(x)$ appear in the following table.

	β_{1}	β_{2}	β_{3}	β_{4}	β_{5}
α_{1}	$\alpha_{1}+\beta_{1}$	$\alpha_{1}+\beta_{2}$	$\alpha_{1}+\beta_{3}$	$\alpha_{1}+\beta_{4}$	$\alpha_{1}+\beta_{5}$
α_{2}	$\alpha_{2}+\beta_{1}$	$\alpha_{2}+\beta_{2}$	$\alpha_{2}+\beta_{3}$	$\alpha_{2}+\beta_{4}$	$\alpha_{2}+\beta_{5}$
α_{3}	$\alpha_{3}+\beta_{1}$	$\alpha_{3}+\beta_{2}$	$\alpha_{3}+\beta_{3}$	$\alpha_{3}+\beta_{4}$	$\alpha_{3}+\beta_{5}$
α_{4}	$\alpha_{4}+\beta_{1}$	$\alpha_{4}+\beta_{2}$	$\alpha_{4}+\beta_{3}$	$\alpha_{4}+\beta_{4}$	$\alpha_{4}+\beta_{5}$
α_{5}	$\alpha_{5}+\beta_{1}$	$\alpha_{5}+\beta_{2}$	$\alpha_{5}+\beta_{3}$	$\alpha_{5}+\beta_{4}$	$\alpha_{5}+\beta_{5}$

- We call this a degree table.

Properties of the Degree Table

- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$

h^{*}	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	12	15	18	21	22

Properties of the Degree Table

- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- Decodability: Red cells

h^{*}	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	12	15	18	21	22

Properties of the Degree Table

- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$

h^{*}	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	12	15	18	21	22

Properties of the Degree Table

- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- Decodability: Red cells

h^{*}	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	12	15	18	21	22

- Security A: Green cells distinct.
- Security B: Blue cells distinct.

Properties of the Degree Table

- $f^{*}(x)=A_{1}+A_{2} x+A_{3} x^{2}+R_{1} x^{9}+R_{2} x^{12}$
- $g^{*}(x)=B_{1}+B_{2} x^{3}+B_{3} x^{6}+S_{1} x^{9}+S_{2} x^{10}$
- Decodability: Red cells

h^{*}	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
12	12	15	18	21	22

- Security A: Green cells distinct.
- Security B: Blue cells distinct.
- Goal: Minimize distinct cells.

Problem Restatement: The Degree Table

	β_{1}	\cdots	β_{L}	β_{L+1}	\cdots	β_{L+T}
α_{1}	$\alpha_{1}+\beta_{1}$	\cdots	$\alpha_{1}+\beta_{L}$	$\alpha_{1}+\beta_{L+1}$	\cdots	$\alpha_{1}+\beta_{L+T}$
\vdots						
α_{K}	$\alpha_{K}+\beta_{1}$	\cdots	$\alpha_{K}+\beta_{L}$	$\alpha_{K}+\beta_{L+1}$	\cdots	$\alpha_{K}+\beta_{L+T}$
α_{K+1}	$\alpha_{K+1}+\beta_{1}$	\cdots	$\alpha_{K+1}+\beta_{L}$	$\alpha_{K+1}+\beta_{L+1}$	\cdots	$\alpha_{K+1}+\beta_{L+T}$
\vdots						
α_{K+T}	$\alpha_{K+T}+\beta_{1}$	\cdots	$\alpha_{K+T}+\beta_{L}$	$\alpha_{K+T}+\beta_{L+1}$	\cdots	$\alpha_{K+T}+\beta_{L+T}$

- Goal: Minimize number of distinct terms.
- Subject to:
- Decodability: Numbers in the red region are all unique.
- A-Security: Numbers in the green region are all distinct.
- B-Security: Numbers in the blue region are all distinct.

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6
0	0	3	6
1	1	4	7
2	2	5	8

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6
0	0	3	6
1	1	4	7
2	2	5	8
9			

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9
0	0	3	6	
1	1	4	7	
2	2	5	8	
9				

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10
0	0	3	6	9	
1	1	4	7	10	
2	2	5	8	11	
9	9	12	15	18	
10					

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	19
10	10	13	16	19	20

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	
1	1	4	7	10	11	
2	2	5	8	11	12	
9	9	12	15	18	19	
10	10	13	16	19	20	
11						

GASP $_{\text {big }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15	18	19	20
10	10	13	16	19	20	21
11	11	14	17	20	21	22

Number of Terms

Theorem [D'Oliveira, SER, Karpuk, ISIT '19]

The number of terms in $\mathrm{GASP}_{\text {big }}$, for $L \leq K$, is

$$
N=\left\{\begin{array}{cl}
2 K+2 T-1 & \text { if } L=1 \\
(K+T)(L+1)-1 & \text { if } L \geq 2, T<K \\
2 K L+2 T-1 & \text { if } L \geq 2, T \geq K
\end{array}\right.
$$

How good is GASP $_{\text {big }}$?

How good is GASP $_{\text {big }}$?

- Lagrange coding [Yu et al.,'19] achieves same rate for $T \geq \min \{K, L\}$.

How good is GASP $_{\text {big }}$?

- Lagrange coding [Yu et al.,'19] achieves same rate for $T \geq \min \{K, L\}$.
- Can we do better?

GASP $_{\text {small }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13

GASP $_{\text {small }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9						

GASP $_{\text {small }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9						
12						

GASP $_{\text {small }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9						
12						
15						

GASP $_{\text {small }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15			
12	12	15	18			
15	15	18	21			

GASP $_{\text {small }}$ [D'Oliveira, SER, Karpuk, ISIT '19]

$$
K=L=T=3
$$

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15	18	19	20
12	12	15	18	21	22	23
15	15	18	21	24	25	26

Number of Terms

Theorem [D'Oliveira, SER, Karpuk, ISIT '19]
The number of terms in $\mathrm{GASP}_{\text {small }}$, for $K \leq L$, is

$$
\mathrm{N}=\left\{\begin{array}{cl}
2 K+T^{2} & \text { if } L=1, T<K \\
K T+K+T & \text { if } L=1, T \geq K \\
K L+K+L & \text { if } L \geq 2,1=T<K \\
K L+K+L+T^{2}+T-3 & \text { if } L \geq 2,2 \leq T<K \\
K L+K T+L+2 T-3-\left\lfloor\frac{T-2}{K}\right\rfloor & \text { if } L \geq 2, K \leq T \leq K(L-1)+1 \\
2 K L+K T-K+T & \text { if } L \geq 2, K(L-1)+1 \leq T
\end{array}\right.
$$

What is small $T ?$

Theorem [D'Oliveira, SER, Karpuk, ISIT '19]

$\mathrm{GASP}_{\text {small }}$ outperforms $\mathrm{GASP}_{\text {big }}$ for $T<\min \{K, L\}$.

What is small $T ?$

Theorem [D'Oliveira, SER, Karpuk, ISIT '19]

$\mathrm{GASP}_{\text {small }}$ outperforms $\mathrm{GASP}_{\text {big }}$ for $T<\min \{K, L\}$.

- Can we do better?

GASP $_{r}$: Gap Additive Secure Polynomial codes

Theorem [D'Oliveira, SER, Heinlein, Karpuk, ITW '19]

- Partitioning parameters: K and L
- Security parameter: T
- Chain length: r

Then, the degree table constructed by GASP ${ }_{r}$ has

$$
N=K L+K+T-1+T \cdot(L+T)-S(r)
$$

Theorem [D'Oliveira, SER, Heinlein, Karpuk, ITW '19]

- Partitioning parameters: K and L
- Security parameter: T
- Chain length: r

Then, the degree table constructed by GASP r has

$$
N=K L+K+T-1+T \cdot(L+T)-S(r)
$$

where

$$
\begin{aligned}
& S(r)=\max \{0, \min \{r, \varphi\}\} L+2 \max \{0, r-z+1\}+\gamma+(T-r) L+\max \{0, K+T-K L-1\}+ \\
& +\eta \max \{0, T-K+r-1\}+(T-1-\eta)(T-1) \\
& \varphi=T-1-K L+2 K, \quad \eta=\lfloor(T-1) / r\rfloor, \quad z=\max \{1, \varphi+1\}, \\
& \gamma= \begin{cases}0 & \text { if } r<z \\
K(x-a)(x+a-1) / 2-a b+x y+x & \text { else }\end{cases}
\end{aligned}
$$

with a, b, x, y defined by

$$
\begin{aligned}
& T-1-r=a K+b \text { and } 0 \leq b \leq K-1, \\
& T-1-z=x K+y \text { and } 0 \leq y \leq K-1 .
\end{aligned}
$$

Lower Bounds

Theorem [D'Oliveira, SER, Heinlein, Karpuk, ITW '19]

- Partitioning parameters: K and L
- Security parameter: T
- Number of distinct terms: N

Then the following three inequalities hold.

1. $K L+\max \{K, L\}+2 T-1 \leq N$.

Lower Bounds

Theorem [D'Oliveira, SER, Heinlein, Karpuk, ITW '19]

- Partitioning parameters: K and L
- Security parameter: T
- Number of distinct terms: N

Then the following three inequalities hold.

1. $K L+\max \{K, L\}+2 T-1 \leq N$.
2. If $3 \max \{K, L\}+3 T-2<K L$ or $2 \leq K=L$, then $K L+\max \{K, L\}+2 T \leq N$.

Lower Bounds

Theorem [D'Oliveira, SER, Heinlein, Karpuk, ITW '19]

- Partitioning parameters: K and L
- Security parameter: T
- Number of distinct terms: N

Then the following three inequalities hold.

1. $K L+\max \{K, L\}+2 T-1 \leq N$.
2. If $3 \max \{K, L\}+3 T-2<K L$ or $2 \leq K=L$, then $K L+\max \{K, L\}+2 T \leq N$.
3. $K L+K+L+2 T-1-T \min \{K, L, T\} \leq N$.

Main Idea Behind Lower Bound

- Result from additive combinatorics on the minimal size of sum sets.

Main Idea Behind Lower Bound

- Result from additive combinatorics on the minimal size of sum sets.

Lemma [Tao, Vu, "Additive Combinatorics"]

Let A and B be sets of integers. Then $|A|+|B|-1 \leq|A+B|$ and if $2 \leq|A|,|B|$, then equality holds iff A and B are arithmetic progressions with the same common difference.

Main Idea Behind Lower Bound

- Result from additive combinatorics on the minimal size of sum sets.

Lemma [Tao, Vu, "Additive Combinatorics"]

Let A and B be sets of integers. Then $|A|+|B|-1 \leq|A+B|$ and if $2 \leq|A|,|B|$, then equality holds iff A and B are arithmetic progressions with the same common difference.

Current Situation

- $K=L=4$
- GASP ${ }_{r}$ for $r=1, \ldots, K$.

Optimality*

Corollary
If either $K=1, L=1$, or $T=1$, then GASP_{r} is optimal.

Optimality*

Corollary

If either $K=1, L=1$, or $T=1$, then GASP_{r} is optimal.

Corollary

If $K=L=T=n^{2} \geq 4$, then GASP_{n} is asymptotically optimal.

Optimality*

Corollary

If either $K=1, L=1$, or $T=1$, then GASP $_{r}$ is optimal.

Corollary

If $K=L=T=n^{2} \geq 4$, then GASP_{n} is asymptotically optimal.

Is it all worth it?

- $r=s=t=n$ (square matrices).

Is it all worth it?

- $r=s=t=n$ (square matrices).
- Security parameter T is constant.

Is it all worth it?

- $r=s=t=n$ (square matrices).
- Security parameter T is constant.
- Servers multiply two $n \times n$ in time $\mathcal{O}\left(n^{\omega}\right)$.

Is it all worth it?

- $r=s=t=n$ (square matrices).
- Security parameter T is constant.
- Servers multiply two $n \times n$ in time $\mathcal{O}\left(n^{\omega}\right)$.
- Partitioning parameters $K=L=n^{\varepsilon}$.

Is it all worth it?

- $r=s=t=n$ (square matrices).
- Security parameter T is constant.
- Servers multiply two $n \times n$ in time $\mathcal{O}\left(n^{\omega}\right)$.
- Partitioning parameters $K=L=n^{\varepsilon}$.

Theorem [D'Oliveira, SER, Heinlein, Karpuk '20]

By using GASP, the user can perform the matrix multiplication in time $\mathcal{O}\left(n^{4-\frac{6}{\omega+1}} \log (n)^{2}\right)$ as opposed to the $\mathcal{O}\left(n^{\omega}\right)$ time it would take to do locally.

Is it all worth it?

Is it all worth it?

Open Problems

- Are there better schemes for the degree table?
- Are there better bounds?
- What about information theoretical bounds?
- Are polynomial codes optimal?

Thanks!

