
On Secure Distributed Data Storage Under Repair
Dynamics

Sameer Pawar, Salim El Rouayheb, Kannan Ramchandran
University of California, Berkeley

Emails: {spawar,salim,kannanr}@eecs.berkeley.edu.

Abstract—We address the problem of securing distributed
storage systems against passive eavesdroppers that can observe
a limited number of storage nodes. An important aspect of
these systems is node failures over time, which demand a repair
mechanism aimed at maintaining a targeted high level of system
reliability. If an eavesdropper observes a node that is added to the
system to replace a failed node, it will have access to all the data
downloaded during repair, which can potentially compromise the
entire information in the system. We are interested in determining
the secrecy capacity of distributed storage systems under repair
dynamics, i.e., the maximum amount of data that can be securely
stored and made available to a legitimate user without revealing
any information to any eavesdropper. We derive a general upper
bound on the secrecy capacity and show that this bound is
tight for the bandwidth-limited regime which is of importance
in scenarios such as peer-to-peer distributed storage systems. We
also provide a simple explicit code construction that achieves the
capacity for this regime.

I. INTRODUCTION

Data storage devices have evolved significantly since the
days of punched cards. Nevertheless, storage devices, such as
hard disks or flash drives, are still bound to fail after long
periods of usage, risking the loss of valuable data. To solve
this problem and to increase the reliability of the stored data,
multiple storage nodes can be networked together to redun-
dantly store the data, thus forming a distributed data storage
system. Applications of such systems are innumerable and
include large data centers and peer-to-peer storage systems,
such as OceanStore [1], that use a large number of nodes
spread widely across the Internet to store files.

Codes for protecting data from erasures have been well
studied in classical channel coding theory, and can be used
here to increase the reliability of distributed storage systems.
Fig. 1 illustrates an example where a maximal distance sep-
arable (MDS) code is used to store a file F of 4 symbols,
(a1, a2, b1, b2) ∈ F4

5, distributively on 4 nodes, v1, . . . , v4,
each of capacity 2 symbols. The MDS code implemented here
ensures that any user, also called data collector, connecting to
any 2 storage nodes can obtain the whole file F . However,
what distinguishes the scenario here from the erasure channel
counterpart is that when a storage node fails, it needs to be
repaired or replaced by a new node in order to maintain a
desired level of system reliability. A straightforward repair
mechanism would be to add a new replacement node of
capacity 2, and make it act as a data collector by connecting

This research was funded in part by an AFOSR grant (FA9550-09-1-0120),
a DTRA grant (HDTRA1-09-1-0032), and an NSF grant (CCF-0830788).

a1 + 2b1

2a2 + b2

v4

a1 + a2

a1 + 4a2

v5

DC

v3

a2 + b2

a1 + b1

File F

v1

v2

a1, a2

b1, b2

b1, b2

a1, a2

1

2

2

2

2

1

1

∞

∞

Fig. 1. An example of a distributed data storage system under repair. A
file F of 4 symbols (a1, a2, b1, b2) ∈ F4

5 is stored on four nodes using an
MDS code. Node v1 fails and is replaced by a new node v5 that downloads
(b1 + b2), (a1 + a2 + b1 + b2) and (a1 + 4a2 + 2b1 + 2b2) from v2,
v3, and v4 respectively to compute and store (a1 + a2, a1 + 4a2). Nodes
v2, . . . , v5 form a new MDS code. The edges in the graph are labeled by
their capacities. The figure also depicts a data collector connecting to nodes
v2 and v4 to recover the stored file.

to 2 surviving nodes. The new node can then download the
whole file (4 symbols) to construct the lost part of the data and
store it. Another repair scheme that consumes less bandwidth
is depicted in Fig. 1 where node v1 fails and is replaced by
node v5. When node v5 connect to 3 nodes instead of 2, it
is possible to decrease the total repair bandwidth from 4 to 3
symbols. Note that v5 does not need to store the exact data that
was on v1; the only required property is that the data stored
on all the active nodes v2, v3, v4 and v5 form an MDS code.

The above important observations were the basis of the
original work of [2] where the authors showed that there
exists a fundamental tradeoff between the storage capacity of
each node and the repair bandwidth. They also introduced and
constructed “regenerating codes” as a new class of codes that
generalize classical erasure codes and permit the operation
of a distributed storage system at any point on the tradeoff
curve. When a distributed data storage system is formed using
nodes widely spread across the Internet, e.g., Internet based
peer-to-peer systems, individual nodes may not be secure and
can become susceptible to eavesdropping. This paper focuses
on such scenarios where an eavesdropper can gain access
to a certain number of the storage nodes. The compromised
distributed storage system is always assumed to be dynamic
with nodes continually failing and being repaired. Thus, the
compromised nodes can belong to the original set of storage

nodes that the system starts with, or even include some of
the replacement nodes added to the system to repair it from
failures. Under this setting, we are interested in determining
how much data can still be stored in the system without
revealing any information to any of the eavesdroppers.

To answer this question, we follow the approach of [2] and
model the distributed storage system as a multicast network
that uses network coding. Under this model, the eavesdropper
is an intruder that can access a fixed number of the network
nodes of her choice. This eavesdropper model is natural for
distributed storage systems and comes in contrast with the
wiretapper model studied in the network coding literature [3],
[4], [5] where the intruder can observe network edges, instead
of nodes. We derive a general upper bound on the secrecy ca-
pacity as a function of the node storage capacity and the repair
bandwidth. Motivated by system considerations, we define an
important operating regime, that we call the bandwidth-limited
regime, where the repair bandwidth is constrained not to
exceed a given upper bound, while no limitation is imposed on
the storage capacity of the nodes. For this important operating
regime, we show that our upper bound is tight and present
capacity-achieving codes.

This paper is organized as follows. In Section II we describe
the system and security model. We define the problem and
give a summary of our results in Section III. In Section IV
we illustrate two special cases of distributed storage systems
that are instructive in understanding the general problem. In
Section V, we derive an upper bound on the secrecy capacity,
and in Section VI, we present a scheme that achieves this
upper bound for the case of bandwidth-limited regime. We
conclude in Section VII.

II. MODEL

A. Distributed storage system

A distributed storage system (DSS) is a collection of storage
nodes that includes a source node s, that has an incompressible
data file F of R symbols, or units, each belonging to a finite
field F. The source node is connected to n storage nodes
v1, . . . , vn, each with a storage capacity of α symbols, which
may be utilized to save coded parts of the file F . The storage
nodes are individually unreliable and may fail over time. To
guarantee a certain desired level of reliability, we assume that
the DSS is required to always have n active, i.e., non-failed,
storage nodes that are in service. Therefore, when a storage
node fails, it is immediately replaced by a new node with same
storage capacity α. The DSS should be designed in a way to
allow any legitimate user, that we also call data collector, that
connects to any k out of the n active storage nodes available
at any given time, to be able to reconstruct the original file
F . We term this condition as the “reconstruction property” of
distributed storage systems.

We assume that nodes fail one at a time, and we denote by
vn+i the new replacement node added to the system to repair
the i-th failure. The new replacement node connects then to
some d nodes, chosen randomly, out of the remaining active
n− 1 nodes and downloads γ units from them in total, which
corresponds to the repair bandwidth of the system. The repair
degree d is a system parameter satisfying k ≤ d ≤ n−1. In this

work, we focus on the case of symmetrical repair where the
new node downloads equal amount of data, say β units, from
each of the d nodes it connects to, i.e., γ = dβ. The process of
replenishing redundancy to maintain the reliability of a DSS
is referred to as the “regeneration” or “repair” process. Note
that a new replacement node may download more data than
what it actually stores. Moreover, the stored data can possibly
be different than the one that was stored on the failed node, as
long as the “reconstruction property” of the DSS is retained. A
distributed storage system D is thus characterized as D(n, k).
For instance, the DSS depicted in Fig. 1 corresponds to D(4, 2)
which is operating at (α, γ) = (2, 3).

B. Flow Graph Representation
We adopt the flow graph model introduced in [2] which we

describe here for completeness. In this model, the distributed
storage system is represented by an information flow graph
G. The graph G is a directed acyclic graph with capacity
constrained edges that consists of three kinds of nodes: a single
source node s, input storage nodes x

i
in and output storage

nodes x
i
out and data collectors DCj for i, j ∈ {1, 2, . . . }.

The source node s has an information S of which a specific
realization is the file F . Each storage node vi in the DSS is
represented by two nodes x

i
in and x

i
out joined by a directed

edge of capacity α (see Fig. 2), to account for the node storage
constraint.

The repair process is initiated every time a failure occurs.
As a result, the DSS, and consequently the flow graph, are
dynamic and evolve with time. At any given time, each node
in the graph is either active or inactive depending on whether
it has failed or not. The graph G starts with only the source
node s being active and connected to the storage input nodes
x

1
in, . . . , x

n
in by outgoing edges of infinite capacity. From

this point onwards, the source node s becomes and remains
inactive and the n input and output storage nodes become
active. When a node vi fails in a DSS, the corresponding nodes
x

i
in and x

i
out become inactive in G. If a replacement node vj

joins the DSS in the process of repairing a failure and connects
to d active nodes vi1 , . . . , vid , the corresponding nodes x

j
in and

x
j
out, with the edge (xj

in, x
j
out), are added to the flow graph

G, and node x
j
in is connected to the nodes x

i1
out, . . . , x

id
out

by incoming edges of capacity β each. A data collector is
represented by a node connected to k active storage output
nodes through infinite capacity links enabling it to reconstruct
the file F . The graph G constitutes a multicast network with
the data collectors as destinations. An underlying assumption
here is that the flow graph corresponding to a distributed
storage system depends on the sequence of failed nodes. As
an example, we depict in Fig. 2 the flow graph corresponding
to the DSS D(4, 2) of Fig. 1, when node v1 fails.

C. Eavesdropper Model
We assume the presence of an intruder “Eve” in the DSS,

who can observe up to �, � < k, nodes of her choice among
all the storage nodes, v1, v2, . . . , possibly at different time
instances as the system evolves. In the flow graph model, Eve
is an eavesdropper who can access a fixed number � of nodes
chosen from the storage input nodes x

1
in, x

2
in, Notice that

while a data collector observes output storage nodes, i.e., the

α

α

∞

∞

∞

∞

v3

v2

v4

α

α α

β = 1

β

β = 1

v1

v5

∞

∞

DC

x1
in

x3
in

x5
in

x4
in

x2
in

s

x4
out

x1
out

x3
out

x2
out x5

out

Fig. 2. The flow graph model of the DSS D(4, 2), with d = 3, of Fig. 1
when node v1 fails and is replaced by node v5. Each storage node vi is
represented by two nodes xi

in and xi
out connected by an edge (xi

in, xi
out)

of capacity α representing the node storage constraint. A data collector DC
connecting to nodes v2 and v4 is also depicted.

data stored on the nodes it connects to, Eve, has access to
input storage nodes, and thus can observe, in addition to the
stored data, all incoming messages to these nodes. We also
assume that Eve has complete knowledge of the storage and
repair schemes implemented in the DSS. Thus, she can choose
some of the � nodes to be among the initial n storage nodes,
or, if she deems it more profitable, she can choose to wait for
failures and eavesdrop on a replacement node by observing
its downloaded data. Eve is assumed to be passive, and only
observes the data without modifying it.

III. PROBLEM STATEMENT AND RESULTS

A. Secrecy Capacity

Let S be a random vector uniformly distributed over FR
q ,

representing the incompressible data file at the source node
with H(S) = R. Let Vin := {x1

in, x
2
in, . . . } and Vout :=

{x1
out, x

2
out, . . . } be the sets of input and output storage nodes

in G respectively. For a storage node vi, let Di and Ci be
the random variables representing its downloaded messages
and stored content respectively. Thus, Ci, represents the data
that can be downloaded by a data collector when contacting
node vi, while Di, with H(Di) ≤ γ, represents the total data
revealed to Eve when she accesses node vi. The stored data
Ci is a function of the downloaded data Di.

Let V
a
out be the collection of all subsets of Vout of car-

dinality k consisting of nodes that are simultaneously active
at some instant in time. For any subset B of Vout, define
CB := {Ci : x

i
out ∈ B}. Similarly, for any subset E of Vin,

define DE := {Di : x
i
in ∈ E}. The reconstruction property,

then, can be written as

H(S|CB) = 0 ∀B ∈ V
a
out, (1)

and the perfect secrecy condition implies

H(S|DE) = H(S),∀E ⊂ Vin and |E| ≤ �. (2)

Given a DSS D(n, k) with � compromised nodes, its secrecy
capacity, denoted by Cs(α, γ), is then defined to be the
maximum amount of data that can be stored in this system
such that the reconstruction property and the perfect secrecy

condition are simultaneously satisfied for all possible data
collectors and eavesdroppers i.e.,

Cs(α, γ) := sup
H(S|CB) = 0 ∀B

H(S|DE) = H(S) ∀E

H(S) (3)

where B ∈ V
a
out, E ⊂ Vin and |E| ≤ �.

B. Results
First, we give the following general upper bound on the

secrecy capacity of a DSS:
Theorem 1: [Upper Bound] For a distributed data storage

system D(n, k), with a repair degree d, and � < k compro-
mised nodes, the secrecy capacity is upper bounded as

Cs(α, γ) ≤
k�

i=�+1

min{(d− i + 1)β, α}, (4)

where γ = dβ.
Next, we consider an important operational regime, namely

the bandwidth-limited regime, where the repair bandwidth γ

is constrained to a maximum amount Γ, i.e., γ ≤ Γ, while no
constraint is imposed on the storage capacity α at each node.
The secrecy capacity in this regime is defined as,

C
BL
s (Γ) := sup

γ ≤ Γ, 0 ≤ α

Cs(α, γ). (5)

For a fixed Γ, when the parameter d is a system design choice,
the upper bound of Theorem 1 on the secrecy capacity can be
further optimized, and attains a maximum for d = n − 1.
In section VI, we demonstrate that this upper bound can be
achieved for d = n−1 in the bandwidth-limited regime. Thus,
establishing the following theorem:

Theorem 2: [Bandwidth-Limited Regime] For a distributed
data storage system D(n, k), � < k compromised nodes, the
secrecy capacity for a bandwidth-limited regime, for d = n−1,
is

C
BL
s (Γ) =

k�

i=�+1

(n− i)
Γ

n− 1
, (6)

and is achieved with a storage capacity of α = Γ.

IV. SPECIAL CASES

A. Static Systems
A static version of the problem studied here corresponds

to a DSS with ideal storage nodes that do not fail. Hence
there is no need for any repair in the system. The flow graph
of this system is then the combination network studied in
network coding theory (see for e.g. [6, Chap. 4]). Therefore,
the static storage problem can be regarded as a special case
of wiretap networks [3], [4], or equivalently, as the erasure-
erasure wiretap-II channel studied in [7]. The secrecy capacity
for such systems is (k−�)α, and can be achieved using either
nested MDS codes [7], or the coset codes of [8], [4].

Even though the above proposed solution is optimal for the
static case, it can have a very poor secrecy performance when
applied directly to dynamic storage systems with failures. For
instance, a straightforward way to repair a failed node would
be to download the whole file on the new replacement node,

dβ

α

α

(d− � + 1)β

(d− k + 1)β

(d− 1)β

α

α

β

β

β

∞

∞

∞
∞

β

β

DC
xn+1

in

xn+2
in

xn+�
in

xn+k
in

xn+1
out

xn+�
out

xn+2
out

xn+k
out

Fig. 3. Part of the flow graph corresponding to a DSS D(n, k), when nodes
v1, . . . , vk fail successively, and are replaced by nodes vn+1, . . . , vn+k . A
data collector DC connects to these k nodes and wants to retrieve the whole
file. Nodes vn+1, . . . , vn+� shown with broken boundaries are compromised
by Eve during repair.

and then generate the specific lost data. In this case, if Eve
accesses the new replacement node while it is downloading
the whole file, it will be able to reconstruct the entire original
data. Hence, the secrecy rate for this scheme would be zero.
However, Theorem 2 suggests that for some systems we can
achieve a positive secrecy capacity. This example highlights
the fact that dynamical repair of the DSS renders it intrinsically
different from the static counterpart, and one should be careful
in designing the repair scheme in order to safeguard the whole
stored data.

B. Systems Using Random Network Coding
Using the flow graph model, the authors of [2] showed

that random linear network codes over a large finite field
can achieve any point (α, γ), on the optimal storage-repair
bandwidth tradeoff curve with a high probability. Consider
an example of random linear network code used in a com-
promised DSS D(4, 3), which stores R = 6 symbols and
operates at d = 3, β = 1, and α = 3. In this case, each of
the initial nodes v1, . . . , v4 stores 3 independently generated
random linear combinations of these R = 6 symbols. Assume
now that node v4 fails and is replaced by a new node v5 that
connects to v1, v2, and v3, and downloads from each one of
them β = 1 random linear combination of their stored data.
Assume that after some time, node v5 fails and is replaced by
node v6 in a similar fashion. Now, if � = 2, and Eve accesses
nodes v5 and v6 while they were being repaired, it will observe
6 linear combinations of the original data symbols, which, with
high probability are linearly independent. Therefore, she will
be able to reconstruct the whole file.

The above analysis shows that, when random network
coding is used, it is not possible to achieve a positive secrecy
rate for this system, even with pre-processing at the source,
using for example Maximum Rank Distance (MRD) codes [5].
But according to Theorem 2, which we prove in section VI,
the secrecy capacity of the the above DSS D(4, 3) is equal to
one unit when � = 2. This is also in contrast with the case of
multicast networks with compromised edges instead of nodes
[3], wherein, random network coding can perform as good as

any deterministic secure code [5].

V. UPPER BOUND ON SECRECY CAPACITY

In this section we derive the upper bound of Theorem 1.
Consider a DSS D(n, k) with � < k. Assume that the nodes
v1, v2, . . . , vk have failed consecutively, and were replaced
during the repair process by the nodes vn+1, vn+2, . . . , vn+k

respectively as shown in Fig. 3. Now suppose that Eve accesses
nodes in E = {vn+1, vn+2, . . . , vn+�} while they were being
repaired, and consider a data collector connected to the nodes
in B = {vn+1, vn+2, . . . , vn+k}. The reconstruction property
implies H(S|CB) = 0 by Eq. (1), and the perfect secrecy
condition implies H(S|DE) = H(S) by Eq. (2). We can
therefore write

H(S) = H(S|DE)−H(S|CB)
(1)
≤ H(S|CE)−H(S|CB)
(2)
= H(S|CE)−H(S|CE , CB\E)
= I(S, CB\E |CE)
≤ H(CB\E |CE)

=
k�

i=�+1

H(Cn+i|Cn+1, . . . , Cn+i−1)

(3)
≤

k�

i=�+1

min{(d− i + 1)β, α}.

Inequality (1) follows from the fact that the stored data CE

is a function of the downloaded data DE , (2) from, CB\E :=
{Cn+�+1, . . . , Cn+k}, (3) follows from the fact that each node
can store at most α units, and for each replacement node we
have H(Ci) ≤ H(Di) ≤ dβ, also from the topology of the
network (see Fig. 3). Note that each node x

n+i
in is connected

to each of the nodes x
n+1
out , . . . , x

n+i−1
out by an edge of capacity

β. The upper bound of Theorem 1 follows then directly from
the definition of Eq. (3).

VI. SECRECY CAPACITY IN THE BANDWIDTH-LIMITED
REGIME

A. Example
Consider again the DSS D(4, 3) with α = 3, d = 3, β = 1,

and � = 2 of Section IV-B, for which the secrecy rate
using random linear network coding was shown to be 0. The
upper bound on the secrecy capacity of this system given
by Theorem 1 is 1. We provide a scheme that achieves
this upper bound. The proposed code is depicted in Fig. 4
and consists of the concatenation of an MDS coset code
[8] with a special repetition code that was introduced in [9]
by Rashmi et al. for constructing exact regeneration codes.
Let S ∈ Fq denote the information symbol to be securely
stored on the system. S is encoded using the outer MDS code
into a codeword (Z, K1,K2, . . . , K5), where K1, . . . ,K5 are
independent random keys uniformly distributed over Fq and
Z = S +

�5
i=1 Ki. The encoded symbols Z, K1, . . . ,K5

are then stored on the nodes v1, . . . , v4 as shown in Fig. 4,
following the special repetition code of [9]. It is easy to
verify that any data collector connecting to 3 nodes, observes

coset code
MDSS

K1, K2, . . . , K5

K2K1

K1 K3 K5

K5K4K2

K3 K4Node v2

Node v3

Node v1

Node v4

Random keys

Z,K1, . . . , K5

Information
symbol

Z

Z

Fig. 4. Schematic representation of the optimal code for the DSS D(4, 3)
with α = 3, β = 1, d = 3, and � = 2 that achieves the secrecy capacity of 1
unit. An MDS coset code takes the information symbol S and five independent
random keys K1, . . . , K5, as an input and outputs a parity check symbol
Z = S +

�5
i=1 Ki, along with random keys in systematic form. These

symbols are then stored on the DSS using the code structure of [9].

all the symbols Z, K1, . . . , K5, and can therefore decode
S = Z −

�5
i=1 Ki. However, an eavesdropper accessing

any two nodes will only observe 5 symbols out of 6, and
cannot gain any information about S. Next, we generalize
this construction to obtain a capacity-achieving code for the
bandwidth-limited regime.

B. Code Construction

Our approach builds on the results of [9] where the authors
constructed a family of exact regenerating codes for d = n−1.
The “exact” property of these codes allows any repair node to
reconstruct and store an identical copy of the data lost upon
a failure. For simplicity, we will explain the construction for
β = 1, i.e., Γ = n−1. For any larger values of Γ, and in turn of
β, the file can be split into chunks, each of which can be sepa-
rately encoded using the construction corresponding to β = 1.
Choose α = Γ. From [2] we know that M =

�k
i=1(n− i) is

the capacity of the above DSS in the absence of any adversary
(� = 0). Let R :=

�k
i=�+1(n−i) be the number of information

symbols that we would like to store securely on the DSS,
and θ := n(n−1)

2 . Let S = (s1, . . . , sR) ∈ FR
q denote the

information file and K = (K1, . . . , KM−R) ∈ FM−R
q denote

M − R independent random keys each uniformly distributed
over Fq . Then, the proposed code consists of an outer nested
(θ,M) MDS coset code [7] which takes S and K as an input,
and outputs X = (x1, . . . , xθ), such that X = KGK + SGS ,

where G =
�

GK

GS

�
is a generator matrix of a (θ,M) MDS

code, and GK in itself is a generator matrix for a (θ,M −R)
MDS code. The information vector S effectively selects the
coset of the MDS code generated by GK .

This outer (θ,M) MDS code is then followed by the special
repetition code introduced in [9] which stores the codeword
X on the DSS. The procedure of constructing this inner code
can be described using an auxiliary complete graph over n

vertices u1, . . . , un that consists of θ edges. Suppose the edges
are indexed by the coded symbols x1, . . . , xθ. The code then
consists of storing on node vi the indices of the edges adjacent
to vertex ui in the complete graph. Consequently, every coded
symbol xi is stored on exactly two storage nodes, and any pair
of two storage nodes have exactly one distinct coded symbol
in common, e.g., code in Fig. 4 for n = 4.

This inner code transforms the dynamic storage system into

an equivalent static point-to-point channel. First notice that
α = Γ, hence all the data downloaded during the repair
process, i.e., dβ = Γ, is stored on the new replacement
node without any further compression. Thus, accessing a node
during repair process, i.e., observing its downloaded data,
is equivalent to accessing it after the repair process, i.e.,
observing its stored data. Second, the exact regeneration codes
restore a failed node with the exact lost data. So, even though
there are failures and repairs, the data storage system looks
exactly the same at any point of time. Any data collector
downloads M symbols out of x1, . . . , xθ by connecting to
k nodes. Moreover, any eavesdropper can observe µ =��

i=1(n − i) = M − R symbols. Thus, the system becomes
similar to the erasure-erasure wiretap channel-II of parameters
(θ,M, µ)1. Therefore, since the outer code is a nested MDS
code, from [7] we know that it can achieve the secrecy capacity
of M − µ = M − (M − R) = R =

�k
i=�+1(n − i) of

the corresponding erasure-erasure wiretap channel. This rate
is achieved for every 1 unit of β. Thus, the total secrecy rate
achieved for β = Γ/(n− 1) is

�k
i=�+1(n− i) Γ

n−1 .

VII. CONCLUSION

In this paper we considered dynamic distributed data storage
systems that are subject to eavesdropping. Our main objective
was to determine the secrecy capacity of such systems, i.e.,
the maximum amount of data that these systems can store and
deliver to data collectors, without revealing any information
to the eavesdropper. Modeling such systems as multicast
networks with compromised nodes, we gave an upper bound
on the secrecy capacity, and showed that it can be achieved
in the important bandwidth-limited regime where the nodes
have sufficient storage capacity. Finding the general expression
of the secrecy capacity of distributed storage systems, and
more generally of multicast networks with a fixed number of
compromised nodes, remains an open problem that we hope
to address in future work.

REFERENCES

[1] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz, “Maintenance-free global data storage,” IEEE Internet
Computing, pp. 40–49, 2001.

[2] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, and K. Ramchandran,
“Network coding for distributed storage systems,” to appear in IEEE
Trans. Inform. Theory.

[3] N. Cai and R. W. Yeung, “Secure network coding,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), 2002.

[4] S. El Rouayheb and E. Soljanin, “On wiretap networks II,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), (Nice, France), 2007.

[5] D. Silva and F. Kschischang, “Security for wiretap networks via rank-
metric codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2008.

[6] R. Yeung, S.-Y. Li, and N. Cai, Network Coding Theory (Foundations and
Trends in Communications and Information Theory). Now Publishers Inc,
2006.

[7] S. Arunkumar and S. W. Mclaughlin, “MDS codes on erasure-erasure
wire-tap channel,” in arXiv:0902.3286v1, 2009.

[8] L. H. Ozarow and A. D. Wyner, “Wire-tap channel-II,” in AT&T Bell lab
tech. journal vol. 63, no. 10, 1984.

[9] K. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Exact
regenerating codes for distributed storage,” in Allerton Conference on
Control, Computing, and Communication, Urbana-Champaign, IL, 2009.

1In the erasure-erasure wiretap channel-II of parameters (θ, M, µ), the
transmitter sends θ symbols. A legitimate receiver and an eavesdropper receive
M and µ symbols respectively through independent erasure channels [7].

