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Abstract—We consider the problem of securing a dis-
tributed storage system with decentralized data, where
some of the nodes are compromised by an eavesdropper.
The system is formed of n storage nodes among which k
nodes (k < n) have information sources. The system is
required to have the “MDS property”, i.e., to allow any
user to recover all the sources by contacting any k nodes.
To achieve this goal, the source nodes need to disseminate
their data to the other nodes in the system while revealing
no information to the eavesdropper. We investigate the role
of interaction between the sources in reducing the total
required bandwidth. When the sources are independent, we
show that interaction does not help and that there always
exists an optimal non-interactive scheme.

I. INTRODUCTION
Recent and ongoing impressive advances in the dif-

ferent technologies related to data storage are making
it an inexpensive and ubiquitous resource. This has
resulted in a surge of applications, such as email service
and online storage, that require storing and maintaining
large amounts of data. For reliability and scalability
reasons, this data is distributed on multiple storage nodes
interconnected by a network, forming, thus, a distributed
storage system [1]–[4]. A user of this sytem should be
able to download his or her data by contacting a targeted
minimum number of the storage nodes. It is likely,
however, for some of these nodes to become compro-
mised by a passive eavesdropper who can observe their
stored data, and listen to their incoming and outgoing
communications. This would be the case, for instance,
when the system is connected to the Internet which
makes it vulnerable to different kinds of “phishing”
activities.
This paper investigates strategies to make distributed

storage systems secure against eavesdropping for a gen-
eral scenario where the data sources exist in a decentral-
ized fashion at different nodes in the system. Consider
for example the storage system depicted in Figure 1
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Fig. 1. A distributed storage system having three nodes where one of
them is compromised by an eavesdropper. Two files X1 and X2 are
stored respectively on nodes v1 and v2. Node v3 joins the network
with no initial data. Each node vi has available to him an independent
random key Ki. The figure also depicts a data collector (DC) wanting
X1 and X2 who is connected to nodes v2 and v3.

consisting of three nodes v1, v2, and v3 having large
storage capacities. Two equal-length binary files, X1 and
X2, are stored respectively on nodes v1 and v2. Node v3
has no data stored initially. This system should allow
any user, or data collector, contacting any two nodes to
be able to recover the files stored in the system. We
consider the scenario where one of the nodes has been
compromised by an eavesdropper, and we want to find a
bandwidth-optimal communication protocol among the
three nodes that will guarantee seamless service for
any data collector while revealing no information to the
eavesdropper about the data residing on the uncompro-
mised nodes.
Assuming that each node vi has access to an inde-

pendent random key Ki, Table I proposes such protocol
that consists of four rounds. At the beginning (round
0), the nodes start by having their private keys stored,
in addition to any original data, X1 or X2, that they
possess. At any subsequent round, the transmitter node
is indicated by a star “*” symbol, while the destination
node is labeled by the message it receives and stores. At
the end of the last round, the column below each node



round v1 v2 v3

0 X1, K1 X2,K2 K3

1 * K1

2 * X1 +K1

3 X2 +K1 +K2 *
4 * K1 +K2

TABLE I
AN OPTIMAL INTERACTIVE PROTOCOL FOR THE DISTRIBUTED

STORAGE SYSTEM OF FIGURE 1. THE STAR SYMBOL “*” INDICATES
THE TRANSMITTING NODE IN EACH ROUND.

indicates its stored content. It is easy to check that the
protocol proposed in Table I will allow the system to
satisfy the demands of any data collector while keeping
the information leaked to the eavesdropper limited to the
sources on the nodes he observes.

We will show later that this protocol is optimal,
and that at least four units of information need to be
transmitted in the system. Note that this protocol is
interactive since all the nodes cooperate together in order
to achieve the desired system requirements. For instance,
the messages sent by v2 in the third and fourth rounds
depend on the messages it has previously received from
v1 in the first round. Two important questions arise here.
First, what is the minimum amount of information that
should be exchanged in a distributed storage system
in order to satisfy the demand of the data collectors
and meet the secrecy constraint? Second, is interaction
necessary for achieving this optimum?

In this paper, we answer these two questions by
demonstrating that interaction is not needed to achieve
the minimum bandwidth. We show that there always ex-
ists a non-interactive bandwidth-optimal scheme where
each source encodes its data separately. For example,
for the system depicted in Figure 1, an alternative
optimal, but non-interactive, scheme would consist of v2
transmitting X2 +K2 and K2 to v1 and v3 respectively,
in the last two rounds. Subsequently, analyzing the non-
interactive protocols, we derive the expression for the
minimum needed bandwidth as a function of the system
parameters.

This paper is organized as follows. In Section II,
we describe the system model and define the security
problem. In Section III, we propose a non-interactive
protocol and analyze its performance. In Section IV,
we show that this non-interactive protocol is optimal
for a special family of distributed storage systems. We
generalize this result in Section V. Finally, we conclude
in Section VI.

II. MODEL

Consider a distributed storage system comprised of
n nodes v1, v2, . . . , vn. Each of these nodes is assumed
to have a large storage capacity1. At each of the first
k nodes vi, i = 1, . . . , k, is located an independent
information source represented by a random variable Xi

of unit entropy (H(Xi) = 1) and uniformly distributed
over a large finite alphabet A. For ease of reference, we
call the first k nodes source nodes, and the remaining
ones storage nodes. We assume that each node vi has
access to an independent random number generator, also
called a key, represented by the random variable Ki,
taking values from a large finite alphabet.
The nodes v1, v2, . . . , vn are fully connected in a mesh

network (complete graph) and communicate among
themselves in rounds. Initially, at round 0, the storage
content of each node consists of its corresponding in-
formation source, if any, and key. At round r, a single
node vtr can be chosen to transmit a message Yr to a
single destination node vdr

, dr != tr, through an error-
free link. Node vdr

then stores the received message
Yr. Due to the decentralized nature of the problem,
the message Yr should satisfy what we call the local
causality constraint, i.e., Yr should be a function of
only the content stored at node vtr which includes the
key Ktr , the messages received by vtr in the previous
r − 1 rounds, in addition to the source Xtr if vtr is a
source node.
Ultimately, the distributed storage system needs to

service users, also called data collectors, interested in
knowing X1, . . . , Xk and which can contact any set
of k out of the n nodes. We assume that a number
b < k of nodes, whose identity is not known, has
been compromised by an eavesdropper who can observe
their stored data, as well as their incoming and outgoing
messages. We are interested in finding the minimum
amount of information that needs to be communicated
among the nodes in the system in order to achieve the
following two conditions: (i) MDS property: any data
collector contacting k nodes should be able to recover
all the sources X1, . . . , Xk with no errors, (ii) perfect
secrecy : any eavesdropper observing b nodes should
gain no information about the sources at the other nodes
in the system.
Let V = {v1, v2, . . . , vn} be the set of storage nodes

and X = {X1, X2, . . . , Xk} the set of information
sources. For any positive integer n, we define the set
[n] := {1, 2, . . . , n}. For any subset S ⊆ [n], we
define VS := {vi : i ∈ S}, KS := {Ki : i ∈ S}
and XS := {Xi : i ∈ S ∩ [k]}. Suppose the system

1Upper bounds on the required storage capacity of the nodes will
be derived later.



implements a protocol consisting of N rounds, where in
round r the message Yr is transmitted by node vtr . Let
T and W be subsets of [n], we define Y r

T,W to be the
set of messages transmitted from the nodes in the set
VT to the nodes in the set VW during the first r rounds.
If T and W intersect non-trivially, Y r

T,W includes the
messages exchanged among the nodes in VT∩W during
the first r rounds. We will usually drop the index N
from Y N

T,W and write YT,W . For r = 1, ..., N , the local
causality constraint can be now written as

Yr =

{

fr(Xtr ,Ktr , Y
r−1
V,tr

) if tr ∈ [k]

fr(Ktr , Y
r−1
V,tr

) otherwise,
(1)

where fr(.) is a deterministic function, Y 0
T,W = ∅,

∀T,W ⊆ [n] and YV,tr = YV,{tr}. When the functions
fr do not depend on Y r−1

V,tr
for all r, we say that the

scheme is non-interactive. Denoting by D the set of
nodes that a data collector can contact, the MDS property
implies

H(XD̄|XD,KD, YV,D) = 0, ∀D ⊂ [n], |D| = k. (2)

Let E denote the set of compromised nodes, the perfect
secrecy condition can then be written as

H(XĒ |XE ,KE, YV,E) = H(XĒ), ∀E ⊂ [n], |E| = b,
(3)

where D̄ and Ē are respectively the complements of D
and E in [n].
The total amount of information transmitted in the

system is R :=
∑N

r=1 H(Yr). Our objective is to find
an optimal communication scheme that will lead to a
minimum value of R, denoted by R∗(n, k, b), while
satisfying the three conditions (1), (2), and (3).

III. THE NON-INTERACTIVE UPPER BOUND
In this section, we derive an upper bound on the

optimum bandwidth R∗(n, k, b) by analyzing a non-
interactive protocol where each source encodes its infor-
mation independently before distributing it to the other
nodes. In this case, from the standpoint of any single
source, the distributive storage system can be looked at
as a combination network [5, Chap. 4], and the problem
becomes a special case of designing secure multicast
network codes [6]–[8]. Figure 2 illustrates the system as
a combination network from the vantage point of source
X1 for the case of n = 5, k = 3 and b = 1.
It was shown in [7] and [8] that the coset codes

proposed by Ozarow and Wyner [9] for the wiretap
channel of type II can be generalized for multicast
networks with a single source to achieve perfect secrecy,
provided that the alphabet of the source is large enough.
We apply this scheme here to each source Xi separately

X1 = (X11, X12),K1
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v2 v3 v4 v5

DC DC DC DC

X11 +K1

X12 +K1 K1

X11 +X12 +K1

Fig. 2. The encoding of source X1 in a non-interactive protocol for
a distributed storage system with n = 5, k = 3 and b = 1. The other
sources X2 and X3 located at nodes v2 and v3 use a similar code.
Only the relevant data collectors, those who are not directly connected
to v1, are depicted here.

by taking Xi = (Xi1, . . . , Xi(k−b)) ∈ Fk−b
q and the key

Ki = (Ki1, . . . ,Kib) ∈ Fb
q, for a large prime power q.

A special coset code based on a linear MDS code then
takes Xi and Ki as inputs and outputs the codeword
(Ci

1, . . . , C
i
n−1) ∈ Fn−1

q . Node vi then transmits a
different symbol Ci

j to each of the (n − 1) remaining
nodes in the system. Such code is shown in Figure 2 for
the source X1 ∈ F2

2 which is split into k − b = 2 bits
X11, X12 ∈ F2 and encoded, using the key K1 ∈ F2 into
(C1

1 , C
1
2 , C

1
3 , C

1
4 ) = (X11 + K1, X12 + K1,K1, X11 +

X12 + K1). The other sources use a similar code. The
linear MDS code implies that H(Ci

j) =
1

k−b . Therefore,
using this scheme, each source node Xi transmits during
n − 1 rounds at a total rate of

∑n−1
j=1 H(Ci

j) = n−1
k−b

.
Summing over all the sources, we obtain the following
upper bound on R∗:
Lemma 1: R∗(n, k, b) ≤ k(n−1)

k−b .

We want to show that this upper bound is tight and that
the non-interactive scheme described above is optimal.
This result is summarized in Theorem 2.
Theorem 2: For the distributed storage system de-

scribed above any protocol that simultaneously achieves
the MDS and the perfect secrecy conditions will need to
use a bandwidth of at least

R∗(n, k, b) =
k(n− 1)

k − b
, (4)

and the non-interactive scheme described above achieves
this bound.
To prove this theorem, we first show that it is true

for the special case of n = k + 1. Then, we reason by
induction on the total number of nodes n to prove it for
the general case.



IV. A SPECIAL CASE: n = k + 1

We consider in this section the simplest non-trivial
distributed storage systems which are the ones compris-
ing a single storage node. We want to show that the
non-interactive scheme of the previous section is optimal
in this case. To that end, we first note that any feasible
protocol should satisfy the following Markovian property
which is a direct consequence of the local causality
condition and the independence of the sources.
Lemma 3: For every i ∈ [k] and D = [n] \ {i}, Xi −

(YiD, YDi)− (XD,KD), is a Markov chain.
We can now write, for all i ∈ [n] and D = [n] \ {i}

H(Xi|Yi,D, YD,i)
(a)
= H(Xi|XD,KD, Yi,D, YD,i)
(b)
= H(Xi|XD,KD, Yi,D, YD,i, YDD)

= H(Xi|XD,KD, YV,D, YD,i)
(c)
= 0.

(5)

(a) follows from Lemma 3, (b) by the local causality con-
dition which implies that YDD is a deterministic function
ofXD,KD and Yi,D , (c) follows from the MDS property
of Eq. (2). Equation (5) implies that the information of
any sourceXi should be completely recoverable from all
the messages transmitted and received by node vi. Using
the chain rule, we can generalize it to any set S ⊆ [k]
of source nodes to get

H(XS |YS,S̄, YS,S , YS̄,S) = 0. (6)

The equivocation rate of the eavesdropper for any set
E ⊂ [n] corresponding to b compromised nodes can be
now written as

H(XĒ |XE ,KE, YV E)
(a)
= H(XĒ |XE ,KE, YV E , YE,Ē)
(b)
= H(XĒ |XE ,KE , YV E , YE,Ē)

−H(XĒ|XE ,KE , YV E , YE,Ē, YĒĒ)

= I(XĒ ;YĒĒ |XE ,KE, , YV E , YE,Ē)

≤ H(YĒĒ)

(7)

(a) since YE,Ē is a deterministic function ofXE ,KE and
YV,E , (b) the subtracted term is equal to zero by Eq. (6).
Equations (3) and (7) give the following property of the
desired protocol:
Lemma 4: Any protocol achieving the MDS and the

perfect secrecy conditions satisfies H(YĒĒ) ≥ H(XĒ),
i.e.,

H(YĒĒ) ≥ k − b, if n /∈ E, (8)

and
H(YĒĒ) ≥ k − b+ 1, if n ∈ E, (9)

where E is any subset of [n] of cardinality b.
Summing Eq. (8) over all possible choices of E ⊂ [k]
and |E| = b, we get

(

k − 2

b

)

∑

i,j∈[k]
i%=j

H(Yij)

+

(

k − 1

b

) k
∑

i=1

(

H(Yni) +H(Yin)
)

≥

(

k

b

)

(k − b).

(10)

Similarly, summing over all possible choices of E such
that n ∈ E, we get
(

k − 2

b− 1

)

∑

i,j∈[k]
i%=j

H(Yij) ≥

(

k

b− 1

)

(k − b+ 1). (11)

Adding Eqs. (10) and (11) and using the submodularity
of the entropy function, we get

N
∑

r=1

H(Yr) ≥
∑

i,j∈[n]
i%=j

H(Yij) ≥
k2

k − b
. (12)

The previous equality gives a lower bound on the opti-
mal bandwidth R∗ which matches the upper bound of
Lemma 1 for the special case of n = k + 1.
Lemma 5: For the case of n = k + 1, the non-

interactive scheme is optimal and the minimum required
bandwidth is

R∗(k + 1, k, b) =
k2

k − b
.

Next, we show that the non-interactive optimal scheme
also minimizes the rate RSto of messages transmitted
to the storage node vn. This result will constitute an
important step in proving Theorem 2 for the general
case. Define RSto :=

∑

r:dr=n H(Yr), and let R∗
Sto be

the minimum value of RSto over all bandwidth-optimal
protocols.
Lemma 6: R∗

sto = k
k−b

.
Proof: Consider a relaxed version of this problem

with the same setting, but where the message sent by
a node can be a function of all the messages that has
been previously transmitted in the system, and not only
the ones stored at the transmitting node. Let R∗

rel and
R∗

Sto,rel be the minimum bandwidth used in the system,
and the minimum rate of the messages sent to vn for
the relaxed problem. Since any protocol for the original
problem will also be feasible for the relaxed version, we
have R∗

rel ≤ R∗ and R∗
Sto,rel ≤ R∗

Sto. It can be seen that
Lemmas 3, 4, and 5 still hold for the relaxed version.
Therefore, we have R∗

rel = R∗.



In the relaxed problem, there is always an optimal
protocol where node vn does not transmit any message.
Indeed, since vn does not have any information source,
any other node can take its place in transmitting in the
relaxed version of the problem. Therefore, we can set
H(Yni) = 0, i = 1, . . . , k in Eq. (10) with no loss
of generality. Then, taking equalities and subtracting
Eq. (11) from Eq. (10), we get R∗

Sto,rel ≥
k

k−b
. Thus,

R∗
Sto ≥ k

k−b , and the non-interactive scheme can achieve
this bound.

V. THE GENERAL CASE
In this section we prove Theorem 2 by showing that

the non-interactive scheme described in Section III is
optimal for distributed storage systems with arbitrary
number of sources k and nodes n > k. To that end,
we reason by induction on the total number of nodes n
to show that the non-interactive scheme is optimal for
the relaxed problem. The result then follows immediately
since any protocol for the original problem is feasible for
the relaxed one.
We want to show that R∗

rel(n, k, b) = k(n−1)
k−b

. In
the previous section, we proved that this is true for
n = k + 1. Suppose now that it is true for any system
of n = n0 nodes, we will show that this implies that the
statement will also hold for a system for n = n0 + 1
nodes. Consider a protocol that achieves the MDS and
the perfect secrecy conditions for the relaxed problem in
a distributed storage system of n0+1 nodes. Suppose it
consists of transmitting N messages Y ′

1 , . . . , Y
′
N , where

message Y ′
r is transmitted by node vtr to node vdr

during round r. Again, without loss of generality, we can
assume that only the source nodes transmit messages,
i.e., tr ∈ [k] for r = 1, . . . , N . Therefore, the transmitted
messages in the system can be partitioned into those
transmitted by the source nodes to the the first n0 nodes,
and those transmitted by the source nodes to the last
node, vn0+1. Therefore, we can write:

N
∑

r=1

H(Y ′
r ) ≥

∑

r:tr∈[k]
dr∈[n0]

H(Y ′
r ) +

∑

r:tr∈[k]
dr=n0+1

H(Y ′
r ). (13)

Note that at the end of this protocol, the system formed
by the first n0 nodes, v1, . . . , vn0

, satisfies the MDS and
the perfect secrecy conditions. Since these nodes did not
receive any transmissions from the last node vn0+1, we
can use the induction hypothesis to get:

∑

r:tr∈[k],dr∈[n]

H(Y ′
r ) ≥ R∗

rel(n0, k, b) =
k(n0 − 1)

k − b
.

(14)
Similarly, the system formed by the k + 1 nodes

v1, . . . , vk in addition to the last node vn0+1 satisfies

the MDS and the perfect secrecy conditions. Therefore,
by Lemma 6 we have

∑

r:tr∈[k],dr=n0+1

H(Y ′
r ) ≥ R∗

Sto,rel =
k

k − b
. (15)

Adding Equations (14) and (15), we get R∗
rel(n0 +

1, k, b) ≥ kn0

k−b
. The equality follows from the fact that

the non-interactive protocol achieves this bound.

VI. CONCLUSION
We studied in this paper the problem of securing a

distributed storage system with decentralized sources,
i.e., sources that are located on different nodes, against
an eavesdropper that can observe the content of a fixed
number of the system nodes not known in advance. Our
objective was to protect the data from being leaked to the
eavesdropper while minimizing the total bandwidth used
in the system. A relevant question that emerges here is
whether interaction among the nodes can help reduce the
bandwidth necessary for achieving the security require-
ment. We answered this question in the negative and
showed that interaction is not needed when the sources
are independent and all the nodes have random keys. To
that end, we demonstrated that, in this case, it is always
optimal to decouple the problem into achieving security
for each source independently. For further research, it is
interesting to see how this result would extend to the
case of correlated sources or the case where not all the
nodes can generate random keys.
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