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Abstract

We consider the problem of establishing reliable unicast connections across a communication network with non-
uniform edge capacities. Our goal is to provide instantaneous recovery from single edge failures. With instantaneous
recovery, the destination node can decode the packets sent by the source node even if one of the network edges
fails, without the need of retransmission or rerouting.

It has been recognized that for this problem the network coding technique offers significant advantages over
standard solutions such as disjoint path routing and diversity coding. Focusing on a practically important case in
which the sender needs to deliver two packets per communication round, we present an efficient network coding
algorithm over a small finite field (GF (2)). The small size of the underlying field results in a significant reduction
of the computational and communication overhead associated with the practical implementation of the network
coding technique. Our algorithm exploits the unique structure of minimum coding networks, i.e., networks that do
not contain redundant edges.

We also consider the related capacity reservation problem and present an algorithm that achieves an approxi-
mation ratio of two compared to the optimal solution.

Index Terms

Network coding, instantaneous recovery, unicast, reliable communication.

I. INTRODUCTION

In recent years, a significant effort has been devoted to improving the resilience of communication
networks to failures and increasing their survivability. Edge failures are frequent in communication net-
works due to the inherent vulnerability of the communication infrastructure [1]. With the dramatic increase
in data transmission rates, even a single failure may result in vast data losses and cause major service
disruptions for many users. Accordingly, there is a significant interest in network recovery mechanisms
that enable continuous flow of data from the source to the destination with minimal data loss in the event
of a failure.

Edge failures may occur due to several reasons, such as physical damage, misconfiguration, or a human
error. Networks are typically designed to be resilient against a single edge failure. Indeed, protection from
multiple failures incurs high costs in terms of network utilization, which is usually not justified by the
rare occurrence of such failures.

In this paper, we consider the problem of establishing reliable unicast (single-source single-destination)
connections across a communication network with non-uniform edge capacities. Our goal is to provide
instantaneous recovery from single edge failures. The instantaneous recovery mechanisms ensure contin-
uous flow of data from the source to the destination node, with no interruption and data loss in the event
of a failure. Such mechanisms eliminate the need of packets retransmissions and rerouting. Instantaneous
recovery is typically achieved by sending packets over multiple paths in a way that ensures that the
destination node can recover the data it needs form the received packets. Below, we discuss three major
techniques for achieving instantaneous recovery: dedicated path protection scheme, diversity coding, and
network coding.
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Fig. 1. (a) Dedicated path protection method (1 + 1 path protection); (b) Diversity coding method for h = 2.

Network model. We model the communication network as a directed graph G(V,E). We assume that
each packet is an element of a certain finite field F = GF (2m), where m is the packet length (in bits).
We also assume that the data exchange is performed in rounds, such that each edge e ∈ E can transmit
c(e) packets per communication round. We assume that c(e) is an integer number and refer to it as the
capacity of edge e. The goal of a unicast connection is to transmit data from the source node s ∈ V to
the destination node t ∈ V . The rate h of the unicast connection is defined to be the number of packets
that are delivered from s to t per communication round. The capacity of an (s, t)-path P ,from node s to
node t, is defined to be the minimum capacity of an edge that belongs to P . In the normal condition,
each edge represents a lossless delay-free communication channel. Network edges can fail, but at most
one of the network edges can be faulty at any given time. We assume that a failed edge cannot transmit
any data and that an edge failure can be detected by its head node.

Dedicated path protection scheme. There are several techniques for achieving instantaneous recovery.
A standard technique employed by today’s networks is the 1 + 1 dedicated path protection scheme [1].
This approach requires provisioning two disjoint paths P1 and P2 between s and t (see Fig. 1(a)). Each
packet generated by the source node is sent over both paths, P1 and P2. In the case of a single edge
failure, at least one of the paths remains operational, hence the destination node will be able to receive
the data without interruption. With this scheme both P1 or P2 must be of capacity at least h. While the
dedicated path protection scheme is simple and easy to implement, it incurs high communication overhead
due to the need to transmit two copies of each packet. In addition, it requires two disjoint paths which
include edges of high capacity.

The diversity coding technique. The diversity coding technique [2] extends the dedicated path protec-
tion scheme by using multiple disjoint paths for sending the data. Fig. 1(b) shows an example of a diversity
coding scheme that uses three disjoint paths P1, P2, and P3 between s and t. The first two paths, P1 and
P2 transmit the original packets, while P3 transmits parity check packets. More specifically, for h = 2,
paths P1 and P2 transmit packets p1 and p2, respectively, while path P3 transmits the packet p1 +p2, where
p1 and p2 are the packets that need to be transmitted during the current communication round. Note that
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Fig. 2. (a) A network coding approach for h = 2 (b) A list of the packets received by the destination t for each single edge failure scenario.

three disjoint paths can also be used for larger values of h by appropriate scaling of the edge capacities.
Specifically, suppose that h is an even number and let p1, p2, p3, . . . ph be a set of packets that need to
be transmitted during the current round. Then, path P1 transmits odd packets p1, p3, . . . , ph−1, path P2

transmits even packets p2, p4, . . . , ph, and path P3 transmits parity check packets p1 + p2, . . . , ph−1 + ph

(all operations are over GF (2)). Note that each path P1, P2, and P3 must have capacity of at least h
2
.

In general, the diversity coding scheme may include k > 3 disjoint paths. In this case, each of the paths
transmits d h

k−1
e packets per round, hence the capacity of each of the paths must be at least d h

k−1
e.

The network coding technique. While the disjoint coding technique offers more flexibility than the
dedicated path protection scheme, it is not the most general approach. For example, consider the network
depicted in Fig. 2(a). In this network, edges (s, v1) and (s, v2) have capacity two, while all other edges
have unit capacity. Our goal is to establish a unicast connection that delivers two packets from s to t
per communication round. We note that this network does not contain two disjoint paths of capacity
two between s and t, hence the dedicated path protection scheme cannot be used. Note also that the
diversity coding approach cannot be used as well, because this network does not have three disjoint paths
that connect s and t. However, instantaneous recovery from edge failures can be achieved by using the
network coding approach. With this approach, the intermediate node v3 combines packets received over its
two incoming edges. Fig. 2(b) shows that the destination node can decode the packets sent by the source
node in any single edge failure scenario. Note that without the encoding operation at the intermediate node
v3, instantaneous recovery would not be possible. In fact, network coding is the most general approach for
providing instantaneous recovery from edge failures. In particular, the network coding approach enables
instantaneous recovery for any settings where such recovery is possible.

Path diversity vs. capacity requirements. Note that in the diversity coding technique, there is a
trade-off between the path diversity and the capacity requirement of the disjoint paths. In particular, the
more disjoint paths are available between the source and the destination nodes, the less is the capacity
requirement on the paths, and, as a result, the smaller is the total communication overhead. Specifically,
with the diversity coding scheme with k disjoint paths, the capacity requirement is equal to d h

k−1
e, and

the total data sent over the network is equal to k · d h
k−1
e per round. We observe that for the purpose of the

analysis of the diversity coding technique with k disjoint paths we can assume, without loss of generality,
that h = k − 1. Indeed, the larger values of h can be handled by scaling edge capacities.

A similar trade-off exists for the network coding approach. In this paper, we can restrict our attention
to the network topologies that correspond to h = 2. Intuitively, each network topology we consider can
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be divided into several parts, each part is either comprised of two disjoint paths of capacity two or three
disjoint paths of capacity one. The network coding operations must be performed on some of the nodes
that connect these parts. This has practical importance because in a typical network scenarios it is unlikely
that more than three disjoint paths will be used for a single connection. Note that our approach can be
used for sending more than two packets per time unit by appropriate scaling of edge capacities.

A. Related work
The network coding technique has been introduced in the seminal paper of Ahlswede et al. [3]. Initial

work on network coding has focused on multicast connections. It was shown in [3] that the maximum
rate of a multicast network is equal to the minimum total capacity of a cut that separates the source from
a terminal. This maximum rate can be achieved by using linear network codes [4]. Koetter and Médard
[5] developed an algebraic framework for linear network codes. Ho et al. [6] showed that the maximum
rate can be achieved by using random linear network codes. Jaggi et al. [7] proposed a deterministic
polynomial-time algorithm for finding feasible network codes in multicast networks. Network coding for
networks with cycles has been studied in [8] and [9]. Network coding algorithms resilient to malicious
interference have been studied in [10], [11], and [12]. Comprehensive surveys on the network coding
techniques are available in the recent books [13], [14], and [15].

The idea of using network coding for instantaneous recovery from edge failures was first described
by Koetter and Medard [5]. They showed that if the network has a sufficient capacity to recover from
each failure scenario (e.g., by rerouting) then instantaneous recovery from each failure scenario can be
achieved by employing linear network codes. Jaggi et al. [7] presented a polynomial-time algorithm for
finding robust linear network codes. In [16], an information-theoretic framework for network management
for recovery from edge failures has been presented. Using network coding for reliable communication was
also discussed in [17] and [18]. References [19] and [20] describe practical implementations of network
coding and demonstrate its benefits for improving reliability and robustness in communication networks.
The problem of minimizing the amount of network resources allocated to a coding network has been
considered in [21].

B. Our contribution
The paper makes the following contributions. First, we show that minimal coding networks, i.e.,

networks that do not include redundant edges or edges of excessive capacity, have a unique combinatorial
structure. More specifically, any minimal network can be decomposed into basic building blocks of types
A, B, and C, as depicted in Fig. 3(a). Fig. 3(b) depicts an example of such a network which consists of
five consecutive blocks of types A, C, B, A and B. Second, we exploit the combinatorial structure of
such networks to show the existence of efficient network codes that require a small finite field (GF (2)).
Finally, we present an algorithm that finds such network codes in an efficient way.

A robust network code for both unicast and multicast networks can be established through the standard
network coding algorithm presented in [7]. However, this algorithm is designed for the general case, and
as a result, requires a field size of O(|E|), where E is the set of network edges. In contrast, our scheme
requires a small field size (GF (2)), which does not depend on the size of the underlying communication
network. The size of the finite field is a very important factor in practical implementation schemes
[19] as it determines the amount of communication and computational overhead. Our algorithm has a
significantly smaller computational complexity associated with finding a feasible network code then the
existing solutions. Specifically, the computational complexity of our algorithm is O(|V |2) compared with
O(|E|2) incurred by application of the algorithm due to [7].

We also addresse the problem of efficient allocation of network resources for a robust coding network.
By exploiting the properties of minimal coding networks, we present an algorithm that finds a feasible
solution whose cost is at most two times more than the optimum. To the best of our knowledge this is
the best approximation ratio for the problem at hand reported in the literature.
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Fig. 3. (a) Basic building blocks for a unicast networks. (b) Block decomposition of a simple unicast network.

C. Paper outline
The rest of the paper is organized as follows. In Section II, we formulate the network model. In

Section III, we discuss the properties of minimal networks. In Section IV, we show the structure of the
minimum coding networks for the problem at hand. Next, in Section V, we describe an efficient algorithm
for finding a network code over a small finite field. In Section VI, we discuss the capacity reservation
scheme. Finally, conclusions and directions for future work appear in Section VII.

II. MODEL AND PRELIMINARIES

A. Network codes
For clarity of presentation, we define an auxiliary graph Ĝ(V,A) formed by the network graph G(V,E)

by substituting each edge e ∈ E by c(e) parallel arcs that have the same tail and head nodes as e; each
arc can transmit one packet per round. We denote by A(e) ⊆ A the set of arcs that correspond to edge
e. In what follows we only refer to packets sent at the current communication round. The packets sent in
the subsequent rounds are handled in a similar manner.

We denote by P = {p1, p2, . . . , ph} the set of h packets that need to be delivered from s to t at the
current communication round. A network code is defined by associating with each arc a(v, u) ∈ A in
the network an encoding function fa that specifies the packet transmitted on arc a each time unit. For
each arc a(s, u) ∈ A(E), fa is a function of the original h packets P, i.e., fa : Fh → F. For each arc
a(v, u) ∈ A(E), v 6= s, fa is a function of the packets received by node v at the current round, i.e.,
fa : Fl → F, where l is the number of incoming arcs of v in Ĝ. A network code C is a set of encoding
functions associated with the arcs in A(E), i.e., C = {fa | a ∈ A(E)}. In a linear network code all
packets are elements of a finite field and all encoding functions are also linear over that field.

As mentioned in the introduction, we assume that only one of the edges in the network can fail at any
time. Since a failed edge e cannot transmit packets, we assume that the encoding function fa of each arc
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a ∈ A(e) is identically equal to zero, i.e., fa ≡ 0. To guarantee instantaneous recovery, it is sufficient to
ensure that for each edge failure there exists a set of h linearly independent packets among the packets
received by t.

Definition 1 (Robust Network Code): A network code C is said to be robust, or resilient to single edge
failures, if for each e ∈ E it holds that the destination node t can reconstruct the h packets sent by the
source node s when all arcs in A(e) fail.

B. Flow and cut conditions
A cut C = (V1, V2) in graph G(V,E) is a partition of the nodes of V into two subsets V1 and V2 = V \V1.

We say that a cut C = (V1, V2) is an (s, t)-cut if it separates nodes s and t, i.e., if s ∈ V1 and t ∈ V2. We
say that an edge e ∈ E belongs to the cut (V1, V2) if its tail node belong to V1 and its head node belong
to V2. The capacity of the cut is defined to be the total capacity of all edges that belong to the cut.

An (s, t)-flow θ in a graph G(V,E) is a function θ : E 7→ R that satisfies the following two properties:
1) For all e(u, v) ∈ E, it holds that 0 ≤ θ(e) ≤ c(e);
2) For each internal node v ∈ V , v 6= s, v /∈ t it holds that∑

(w,v)∈E

θ((w, v)) =
∑

(v,w)∈E

θ((v, w)).

The value |θ| of a flow θ is defined as |θ| =
∑

(s,v)∈E

θ((s, v))−
∑

(v,s)∈E

θ((v, s)). The cost ω(θ) of a flow

θ is defined as ω(θ) =
∑

(u,v)∈E

θ((u, v)) ·me, where me is the cost of reserving unit capacity on edge e.

Throughout the paper, except for Section VI, we assume that me = 1 for all e ∈ E.
A necessary condition for instantaneous recovery is that for each e ∈ E a network Ge formed from G

by removing e must admit an (s, t)-flow of value h. By the max-flow min-cut theorem [22] this condition
is equivalent to

min
C

 ∑
e∈E(C)

c(e)− max
e∈E(C)

c(e)

 ≥ h, (1)

where the minimum is taken over all (s, t)-cuts C(V1, V2) that separate s and t in G, and E(C) is the
set of edges that belong to C, i.e., the set of edges that connect a node in V1 to a node in V2. In [5] it
was shown that this condition is also sufficient for providing instantaneous recovery from edge failures.
Moreover, it was shown that the instantaneous recovery can be achieved by using linear network codes.
Therefore, we refer to a graph G(V,E) that satisfies this condition as a feasible graph or network.

III. MINIMAL AND SIMPLE NETWORKS

A network G(V,E) is said to be minimal with respect to the the capacity function c(e) if it satisfies
the following two conditions:
• G(V,E) is a feasible network;
• The removal of an edge or a reduction in its capacity results in a violation of the network feasibility

property.

A. Reduced capacity function
Networks can be made minimal by iteratively removing redundant edges and decreasing the capacity of

the remaining edges. However, this approach may incur a significant computational overhead. Accordingly,
we introduce the reduced capacity function c̄ that allows to identify minimal networks in a very efficient
way through the application of network flow techniques. This function is also instrumental for establishing
the unique combinatorial structure of simple networks.
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The reduced capacity function c̄ is defined as follows.

c̄(e) =

{
1.5 if c(e) ≥ 2;
1 otherwise

(2)

We refer to c̄(e) as a reduced capacity of e, as opposed to the original capacity c(e) of e.
The following theorem establishes a connection between the feasibility of network G(V,E) with respect

to the capacity function c and the existence of a flow of value three in the network G(V,E) with reduced
edge capacities.

Theorem 2: Let G(V,E) be a network , s ∈ V be a source node, t ∈ V be a destination node. Then,
the network G(V,E) is feasible with respect to capacity function c if and only if it admits a flow of value
three with respect to the reduced capacity function c̄.

Proof: First, we show if G(V,E) is feasible, then it admits a flow of value three with respect to
reduced capacity function c̄. Let C be an (s, t)-cut in G(V,E), we show that the reduced capacity of this
cut is at least three. The lemma will then follow from the max-flow min-cut theorem. We observe that by
Equation (1), C contains at least two edges. If C contains exactly two edges, then both edges much be
of capacity two; hence their reduced capacity is equal to 1.5, or three in total. If C contains more than
three edges, then their total reduced capacity is also at least three.

Second, suppose that network G(V,E) admits flow of value three with respect to reduced capacities.
This implies that the reduced capacity of any (s, t)-cut C in G(V,E) is at least three. Since the reduced
capacity of any edge is at most 1.5, the cut C has at least two edges. If C contains exactly two edges,
then the reduced capacity of each edge is equal to 1.5, which implies that their original capacity is equal
to 2. If C contains there edges, then the original capacity of each edge is at least one. In both cases, the
conditions of Equation (1) is satisfied for h = 2.

The function c̄ can be used to verify whether a given network G(V,E) is feasible with respect to a
given capacity function c. This function will also serve as a building block for the algorithm that finds
minimal networks.

Suppose that G(V,E) admits a flow of value three with respect to the reduced capacity function. Then,
by the integrality property [22, Theorem 9.10], there always exists a minimum cost flow of value three
such that θ(e) ∈ {0, 0.5, 1, 1.5} for each e ∈ E. We refer to such flow as a half-integral flow.

The following lemma establishes a relation between the original capacities in a minimal network and
the corresponding edge flow in the network with reduced capacities.

Lemma 3: Let G(V,E) be a minimal network and let θ be a half-integral flow of value three in the
network G(V,E) with the reduced capacity function c̄. Then, the following conditions hold:

1) For each edge e ∈ E for which c̄(e) = 1.5 it holds that θ(e) = 1.5;
2) For each edge e ∈ E for which c̄(e) = 1 it holds that either θ(e) = 0.5 or θ(e) = 1.

Proof: Suppose that there exists an edge e such that c̄(e) = 1.5 and θ(e) ≤ 1. Let c′ be the capacity
function formed from c by reducing the capacity of e by one. Then, the network G(V,E) will be feasible
with respect to c′, which contradicts the minimality assumption. Using a similar argument it can be shown
that the existence of an edge e such that c̄(e) = 1 and θ(e) = 0 also contradicts the minimality of the
network.

The next lemma shows that a minimal network G(V,E) is acyclic.
Proposition 4: Let G(V,E) be a minimal network with respect to the capacity function c. Then G(V,E)

does not contain cycles.
Proof: Suppose, by way of contradiction, that G(V,E) contains a cycle W . Let θ be a minimum

cost flow in G(V,E) with reduced capacities. The Negative Cycle Optimality condition [22, Theorem 9.1]
implies that there does not exists a cycle in G(V,E) with strictly positive flow on each edge. Thus, there
exists an edge e ∈ W for which it holds that θ(e) = 0, in contradiction to Lemma 3.
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Fig. 4. (a) Node v of degree eight; (b) The intermediate step in constructing gadget Γv; (c) The final step in constructing gadget Γv .

B. Simple networks
As mentioned in the Introduction, our goal is to establish the combinatorial structure of minimal

networks. For clarity of presentation, we focus on a special class of such networks, referred to as simple
networks. For any minimal network a corresponding simple network can be constructed trough a simple
and efficient procedure.

Definition 5 (Simple Unicast Network): A unicast network G(V,E) is said to be simple with respect
to the capacity function c if it satisfies the following conditions:

1) G(V,E) is a minimal network with respect to c;
2) The source node s has exactly three outgoing edges of capacity one; the destination node t has

exactly three incoming edges of capacity one;
3) The degree of each node v /∈ {s, t} is exactly three;
4) For every two nodes u and v, there is at most one edge in E from u to v, i.e., E does not contain

parallel edges.
We proceed to describe an algorithm that transforms any arbitrary network G(V,E) with capacity

function c into a simple network. The transformation includes a sequence of steps that remove redundant
edges and reduce excessive edge capacities. The transformation preservers the feasibility of the graph.
Moreover, any feasible network code for the simple network can be used for the original network as well,
with some straightforward modifications. Our algorithm includes the following steps:

1) Add a new source node ŝ to G and connect it to s by three edges of capacity one. Similarly, add
a new destination node t̂ and connect t to t̂ by three edges of capacity one.

2) Find a minimum cost half-integral flow θ of value three with respect to unit edge costs and with
respect to reduced capacity function c̄ (as defined by Equation (2)).

3) Remove redundant edges and decrease capacities:
a) Remove from G(V,E) all edges e for which it holds that θ(e) = 0;
b) For each edge e ∈ E for which it holds that θ(e) ∈ {0.5, 1} set c(e)← 1;
c) For each edge e ∈ E for which it holds that θ(e) ∈ {1.5} set c(e)← 2.

4) Substitute each internal node v ∈ V , v /∈ {ŝ, t̂}, in the resulting network of degree larger than three
by a gadget Γv, constructed as follows:

a) Let Ein
v and Eout

v be the incoming and outgoing edges of v, respectively. For each edge
(x, v) ∈ Ein

v we add a node x′ to Γv and substitute edge (x, v) by edge (x, x′) (of the same
capacity). Similarly, for every edge (v, y) ∈ Eout

v we add a node y′ to Γv and substitute edge
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(v, y) by edge (y′, y) (of the same capacity). Next, for each edge (x, v) ∈ Ein
v and each edge

(v, y) ∈ Eout
v we connect the nodes x′ and y′ by edges of capacity two. Fig. 4(b) depicts an

example of the resulting gadget;
b) Each node whose in-degree is equal to one and out-degree is more than two is substituted by

by a binary tree as depicted in Fig. 4(c). A similar operation is performed for nodes whose
out-degree is equal to one and whose in-degree is more than one. Note that in the resulting
network, the total degree of each node is at most three.

5) For each edge e ∈ E we check if the removal of e from E would result in a violation of the
feasibility condition as per Equation (1). To this end we check whether there exists an (s, t)-flow
of size three in the network G(V,E) with respect to reduced capacities. A similar procedure is
performed to reduce the capacity of each edge to the minimum possible amount while keeping the
network feasible.

6) If v ∈ G(V,E) is of degree two, then v has one incoming edge (u, v), and one outgoing edge
(v, w). For each such node v, we substitute edges (u, v) and (v, w) by a single edge (u,w) of the
same capacity and removing node v.

7) For every two nodes v and u ∈ V \ {s, t} connected by two parallel edges e′(v, u) of capacity c′

and e′′(v, u) of capacity c′′, we substitute the edges e′(v, u) and e′′(v, u) by a single edge e(v, u) of
capacity c′ + c′′.

The purpose of Step 1 is to ensure that the source node s has exactly three outgoing edges and the
destination node t has three incoming edges of capacity one. In Step 2 we find a minimum cost flow of
value three which is used in Step 3 to remove redundant edges and decrease the capacity of other edges.
The goal of Step 4 to ensure that the degree of each node is bounded by three. The goal of Step 5 is
to ensure the minimality of the resulting graph. In Step 6, we remove nodes of degree two. In Step 7
we substitute parallel edges by a single edge of larger capacity. Note that the transformation to a simple
network is not unique in general.

We note that constructing a simple network can be accomplished in O(V 2) time. Indeed, Step 1 requires
linear time, while steps 2 and 3 require O(E) time. We also note that after Step 2, the network contains
only O(V ) edges. This implies that the computational complexity of Steps 5, 6, and 7 is O(V ). Finally,
Step 4 requires O(V 2) time.

IV. STRUCTURE OF SIMPLE NETWORKS

A. Node properties of simple unicast networks
Let G(V,E) with source node s and destination node t be a simple network with respect to the capacity

function c. We say that a node v ∈ V is of Type I if it has one incoming edge and two outgoing edges,
all of capacity one; of Type II if it has two incoming edges and one outgoing edge, all of capacity one;
of Type III if it has one incoming edge of capacity two and two outgoing edges of capacity one; of Type
IV if it has two incoming edges of capacity one and one outgoing edge of capacity two. Fig. 5 depicts
nodes of types I-IV.

The next theorem proves that each node v ∈ V \ {s, t} in a simple network is either of Type I, II, III,
or IV.

Lemma 6: Let G(V,E) be a simple network. Then, each node v ∈ V \ {s, t} belongs to one of the
types I, II, III, or IV.

Proof: Since G(V,E) is a feasible graph, Theorem 2 implies that there exists a flow of value three
in the G(V,E) with reduced edge capacities. Let θ be a minimum cost half-integral flow in G(V,E) with
respect to c̄. Let v ∈ V \ {s, t} be an internal node of the network. Since the network is simple, the
total degree of v is equal to three. Assume first that v has one incoming edge e and two outgoing edges.
If the capacity of e is equal to one, then, by Lemma 3 it holds that θ(e) ∈ {0.5, 1}. It easy to verify
that θ(e) = 1, otherwise one of the outgoing edges has zero flow, in contradiction to the minimality of
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Fig. 5. The four types of nodes in a simple unicast network.

G(V,E). In this case, the flow on the outgoing edges of v is equal to 0.5 and by Lemma 3 their capacity
is equal to one, which implies that v is a Type I node. If the capacity of e is equal to two, then, by
Lemma 3, it must be the case that θ(e) = 1.5. Then, the outgoing edges of v have flow of value 0.5 and
1. Thus, by the same lemma, the capacity these edges is equal to one and, which implies that v is a Type
III node.

By using a similar argument, we can show that if v has two incoming edges and one out-going edge
than it is either of Type II or IV.

B. Residual graphs and residual cycles
Let G(V,E) be a simple network, and let θ be a minimum cost half-integral flow of value three in

G(V,E) with respect to reduced capacity function c̄.
We define the set Ê ⊆ E as follows:

Ê = {e ∈ E | c̄(e) = 1 and θ(e) = 0.5}. (3)

Note that Ê includes every edge e ∈ E for which θ(e) ≤ c̄(e), i.e., these edges have residual capacity
and can take up more flow. Let E1 be a certain subset of Ê. We define the subset E2 as follows:

E2 = {e ∈ E | θ(e) = 1.5} ∪ {e ∈ Ê | e /∈ E1} (4)

Note that the set E2 depends on set E1. Intuitively, the set E2 includes edges for which the amount of
flow can be reduced by adding more flow to edges in E1.

Definition 7 (Residual Graph): Let E1 be a subset of Ê. Then, the residual graph GE1(θ) of G(V,E)
is formed from G(V,E) by reversing all edges in E \ E1.

Let W be a cycle in the residual graph. Since the graph network is acyclic, W must contain at least
one edge in E1. By augmenting the flow θ along W we can increase the flow on edges in W ∩ E1 and
decrease flow on other edges of W . A cycle in the residual graph that includes an edge in E2 is referred
to as a residual cycle. An existence of a residual cycle implies that the amount of flow on some edge in
E2 can be reduced. The following lemma shows that if G(V,E) is minimal, then GE1(θ) does not contain
a residual cycle.

Lemma 8: Let G(V,E) be a simple network, let θ be a minimum cost half-integral flow of value three
in G(V,E) with respect to capacity function c̄, and let E1 be a subset of Ê. Then, the residual graph
GE1(θ) does not contain a residual cycle.

Proof: Suppose, by way of contradiction, that there exists a residual cycle W in GE1(θ). Such cycle
must include at least one edge e ∈ E2. Let θ′ be the flow obtained by augmenting θ along W , i.e.,

θ′(e) =

 θ(e) + 0.5 if e ∈ E1 ∩W ;
θ(e)− 0.5 if e ∈ W \ E1;
θ(e) otherwise.
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Fig. 6. (a) A graph G(V,E) with edges of unit capacity and a flow θ of value three. Each edge e ∈ E is labeled with the amount of flow θ(e) it
carries. Set Ê includes edges (v1, v4), (v1, v5), (v2, v4), (v2, v6), (v3, v5), (v3, v6). (b) Residual graph for E1 = {(v1, v5), (v2, v4), (v3, v6)}.
The graph contains a residual cycle W = {v1, v5, v3, v6, v2, v4, v1}. (c) The flow θ′ obtained from θ by augmenting along cycle W . Note
that edges (v1, v5), (v2, v4), and (v3, v6) are redundant and can be removed from the network without violating its feasibility.

It is easy to verify that θ′ is a feasible half-integer flow of value three in G(V,E) with respect to c̄. Let
e be an edge of the residual cycle that belongs to E2. Then one of the two following conditions hold:

1) c̄(e) = 1 and θ′e = 0;
2) c̄(e) = 1.5 and θ′e = 1.

By Lemma 3, this contradicts the minimality of G(V,E).
Fig. 6 shows an example of a non-minimal network, the construction of a residual graph, and the result

of augmenting flow θ along a residual cycle.

C. Block decomposition
Let G(V,E) be a simple unicast network with at least one node other than s and t. We show that this

network can be decomposed into a set of blocks of Type A, B, and C, as depicted in Fig. 3(a).
Theorem 9: Let G(V,E) be a simple unicast network with |V | > 2. Then, G(V,E) can be decomposed

into blocks A, B and C, as depicted in Fig. 3(a). The blocks can be appear in an arbitrary order, subject
to the following rules:

1) The first block is of Type A, and s is incident to its input edges;
2) The last block is of Type B, and the destination node t is incident its output edges;
3) A block A is followed by a block of Type B or C;
4) A block B is either followed by a block of Type A or connected to the destination;
5) A block of Type C is followed by a block of Type B or C.
Let G(V,E) be a simple network and let C(V1, V2) be an (s, t)-cut of G(V,E). We denote by E(C) ⊆ E

the set of edges that belong to C, i.e., the set of edges that connect nodes in V1 to nodes in V2. We say
that C(V1, V2) is a cut of Type 1 if E(C) includes three edges of unit capacity. A cut C(V1, V2) is said
to be of Type 2 if it includes two edges of capacity two. Fig. 7 shows examples of cuts of types 1 and 2.

In what follows we prove two lemmas that capture the properties of simple networks. The first lemma
implies that any cut of Type 1 is followed by either the destination node t or a block of Type A.

Lemma 10: Let G(V,E) be a simple network. Let C = (V1, V2) be a cut of Type 1 in G(V,E), i.e.,
E(C) contains three unit capacity edges e1(v1, u1), e2(v2, u2), and e3(v3, u3), originating at V1 and ending
in V2. Then, either u1 = u2 = u3 = t or one of the nodes u1, u2, or u3 is of Type I, while two other
nodes are of Type IV, and the node of Type I is adjacent to the two other nodes as depicted in Fig. 7(a).

The second theorem implies that any cut of Type 2 is followed by either a block of Type B or C.
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Fig. 7. (a) and (b) Examples of cuts of Type 1; (c) and (d) Examples of cuts of Type 2.

Lemma 11: Let G(V,E) be a simple network. Let C = (V1, V2) be a cut of Type 2 in G(V,E), i.e.,
E(C) includes two edges e1(v1, u1), e2(v2, u2), each one of them is of capacity two. Then, there exist
either a Type II node w ∈ V2 and two edges (u1, w) and (u2, w) of unit capacity, or two nodes w1 and
w2 of Type IV and four edges (u1, w1), (u1, w2), (u2, w1), and (u2, w2) of unit capacity 1, as depicted in
figures 7(c) and (d).
The theorem implies that any cut of Type 2 is always followed by a block of Type B or C.

The proof of Lemma 10 appears in Section IV-D, while the proof of Lemma 11 appears in Appendix A.
It is easy to verify that lemmas 10 and 11 are sufficient for proving the correctness of Theorem 9.

D. Proof of Lemma 10
Let G(V,E) be a simple network, and let θ be a flow of value three with respect to reduced edge

capacities c̄. Also, let C(V1, V2) be an (s, t)-cut C(V1, V2) of Type 1 in G(V,E). We denote by
E(C) = {(v1, u1), (v2, u2), (v3, u3)} the set of the edges that belong to C.

First, we observe that each of the nodes ui, 1 ≤ i ≤ 3, is either a destination node or a node of types
I or IV. Indeed, ui cannot be of Type III because the capacity of edge (vi, ui) is equal to one unit. Also,
in flow θ for each edge ei = (vi, ui) ∈ E(C) it must hold that θ(ei) = 1, which implies that any of ui

cannot be of Type II.
Next, we assume that t /∈ {u1, u2, u3} and show, by way of contradiction, that at most one of the nodes

u1, u2, and u3 is of Type I. We consider two cases. In the first case, all three nodes u1, u2, and u3 are
Type I nodes. In the second case, two of the nodes are of Type I, while the other node is of Type IV.

Case 1. Suppose that all three nodes u1, u2, and u3 are of Type I. In this case, all of the outgoing
edges of u1, u2, and u3 belong to Ê (as defined by Equation (3)). Since the in-degree of any node of
G \ {s, t} is either 1 or 2, we can always pick three edges e1, e2, and e3, such that, for 1 ≤ i ≤ 3, ei is
an outgoing edge of ui, and e1, e2, and e3 are independent, i.e., there does not exist a node v which is
incident to any two edges ei, ej (i 6= j). For example, in Fig. 6, we can chose e1 = (v1, v5), e2 = (v2, v4),
and e3 = (v3, v6).

Let E1 = {e1, e2, e3} and let E2 be the set defined by Equation (4). Let GE1(θ) be the residual graph
of G(V,E) with respect to E1, and let G′ be the subgraph of GE1(θ) induced by nodes in V2. We observe
that each node in G′ has out-degree at least one due to the following conditions:

1) None of the edges incident to the terminal node t belongs to E1, hence t has three outgoing edges
in G′;

2) Any node in G′ \ t which is not a head or a tail of an edge in E1, has at least one incoming edge
that does not belong to E1, hence its out-degree in G′ is at least one.

3) Nodes u1, u2 and u3 have outgoing edges e1, e2 and e3, respectively. Since these edges belong to
E1 they have the same direction as in the original graph G.



13

(a)

v2 v3

1

1 1

1 1

2
2

u2

u1

u3

v1

1 1

11

x y

(b)

1
1

2 2

u2

u1

u3

1
1

11

x y

Fig. 8. (a) An example of Type 1 cut with two nodes of Type I and one node of Type IV. (b) The corresponding graph G′ with
E1 = {(u2, x), (u3, y)}.

4) Lemma 3 implies that any head node v of an edge in E1 is either of Type II or IV. In both cases,
v have an outgoing edge that does not belong to E1, hence its out-degree in G′ is at least one.

We conclude that G′ contains a cycle. Such a cycle must include at least one edge ei, for some 1 ≤ i ≤ 3,
because G′ \{e1, e2, e3} is an acyclic graph. This implies, that this cycle includes at least one edge in E2,
which is the edge incident to ui. Therefore, G′ and, in turn, GE1(θ), include a residual cycle, which, by
Lemma 8 contradicts the minimality of G(V,E).

Fig. 6 depicts a reduced capacity network with a cut C(s, E \ s) of Type I in which all the nodes u1,
u2 and u3 are of Type I. The corresponding residual graph contains a residual cycle, and thus the original
unicast network is not minimal.

Case 2. In this case, one of the nodes, say u1 is of Type IV, while the two other nodes u2 and u3 are
of Type I. We choose E1 = {e2, e3} ⊆ Ê such that e2 is an outgoing edge of u2, e3 is an outgoing edge
of u3, neither one of them is incident to u1, and no node is incident to both e2 and e3. It can be verified
that such choice is always possible. Let E2 be the set defined by Equation (4). An example of this cases
is depicted in Fig. 8.

Following the same argument as above, we define by GE1(θ) the residual graph of G(V,E) with respect
to E1 and by G′ the subgraph of GE1(θ) induced by nodes in V2. It is easy to verify that each node in G′

has out-degree at least 1, hence G′ includes a cycle. Such a cycle must include either e2 or e3, or both.
This implies that the cycle includes an edge in E2, which, by Lemma 8, contradicts the minimality of the
network.

Next, we prove that if one of the nodes in {u1, u2, u3} is of Type I, then it must be adjacent to the two
other nodes which are of Type IV. We assume, without loss of generality, that u1 is a Type I node and
u2 and u3 are of Type IV. Suppose, by way of contradiction, that u1 is not adjacent to at least one of the
nodes u1 and u2. We denote by e an outgoing edge of u1 which is not adjacent u2 and u3. Let E1 = {e}
and let E2 be set defined by Equation (4).

Let GE1(θ) be the residual graph of G(V,E) with respect to E1 and let G′ be the subgraph of GE1(θ)
induced by nodes in V2. It is easy to verify that the out-degree of each node in G′ is at least one, hence
hence G′ includes a cycle. Such a cycle must include edge e, and, in turn, one edge in E2 which is
incident to u1. As a result, G′ and, in turn, GE1(θ) include a residual cycle, in contradiction to Lemma 8.

It can be proven, by using a similar argument that if one of the nodes {u1, u2, u3} is identical to t, then
all other nodes in {u1, u2, u3} are identical to t, otherwise at least one of the nodes {u1, u2, u3} must be
of Type I, in contradiction to the minimality of the original network.

We have shown that all cases other than that mentioned in the condition of the theorem contradict the
minimality of the coding network, hence the theorem follows.
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Fig. 9. Network code for simple unicast networks: (a) Encoding for blocks of Type A; (b) Encoding for blocks of Type B; Encoding for
blocks of Type C.

V. NETWORK CODES FOR SIMPLE NETWORKS

In this section, we present a robust network code over GF (2) for the coding network consisting of a
simple network G, source node s and the destination node t and prove its correctness.

As shown in the previous section, a simple unicast network consists of a sequence of the blocks of
types A, B, and C, depicted in Fig. 3(a). The source node s has three outgoing edges of capacity one,
connected to a block of Type A. We denote by p1, p2 ∈ GF (2) the two packets that the source node has
to transmit to the destination t at the current round. Our network code can be specified as follows. First,
the source node sends packets p1, p2, and p1 + p2 on its outgoing arcs. Second, the encoding function for
each arc that belongs to blocks A, B, and C is depicted in Fig. 9. The figure shows for each edge ei of
capacity one the corresponding arc ai, and for each edge ei of capacity two the two corresponding arcs
a1

i and a2
i . We choose the notation in such a way that if edge ei of block X coincides with edge ej of

block Y , then arcs a1
i and a2

i of block X coincide with arcs a1
j and a2

j of block Y , respectively. Note that
all the arcs that belong to the blocks of Type A and C just forward their incoming packets, while each
block of Type B has two encoding nodes.

We proceed to prove that the network code described above is robust, i.e., the destination node can
recover the original packets even if one of the edges in the original network fails. Consider a simple
network G(V,E) that contains n blocks of Type A. Recall that each node of Type A is either followed
by block of Type B, or by several blocks of Type C, which, in turn, are followed by a block of Type B.
We denote by Ai, 1 ≤ i ≤ n, the ith block of Type A from the source. We also denote by Bi, 1 ≤ i ≤ n,
the ith block of Type B from the source such that B1 is the first block of Type B after A1.

We define IAi
= (pi

a1
, pi

a2
, pi

a3
) to be the vector of packets entering block Ai, where pi

a1
, pi

a2
and pi

a3
are

the packets carried by arcs a1, a2 and a3 of block Ai, respectively. We also define OAi
= (pi

a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
)

to be the vector of packets leaving block Ai, where pi
a1
6
, pi

a2
6
, pi

a2
7
, and pi

a1
7

are the packets carried by arcs
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a1
6, a

2
6, a

2
7 and a1

7 of block Ai, respectively. Similarly, we let IBi
= (pi

a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) and OBi

= (pi
a5
, pi

a6
, pi

a7
)

be the vectors of packets leaving block Bi, respectively.
Recall that if edge e fails, then the encoding function of each arc a ∈ A({e}) that corresponds to e is

identically equal to zero, i.e., fa ≡ 0.
Lemma 12: Consider a block Ai, 1 ≤ i ≤ n. Suppose that there are no failures in Ai, Bi, and blocks

of Type C located between Ai and Bi. Suppose also that the input vector IAi
of Ai is a permutation of

(p1, p2, p1 + p2). Then, the output vector OBi
of Bi is a permutation of (p1, p2, p1 + p2).

Proof: The proof immediately follows from the network code for blocks of types A, B, and C,
depicted in Fig. 9.

From Lemma 12 it follows that if there are no failures in blocks located between s and Bi, then the
output vector OBi

of Bi is a permutation of (p1, p2, p1 +p2). The following lemma characterizes the output
of block Bi in the case of an edge failure in the blocks Ai, Bi, or a block of Type C located between Ai

and Bi.
Lemma 13: Consider a block Ai, 1 ≤ i ≤ n. Suppose that there is an edge failure in Ai, Bi, or one

of the blocks of Type C located between Ai and Bi. Suppose also that the input vector IAi
of Ai is a

permutation of (p1, p2, p1 + p2). Then, one of the following holds:
1) The output vector OBi

of Bi is a permutation of (p1, p2, p1 + p2);
2) The output vector OBi

of Bi includes two distinct elements from the set {p1, p2, p1 + p2} and a
zero;

3) The output vector OBi
of Bi includes two distinct elements from the set {p1, p2, p1 + p2}, one of

which appears twice.
Proof: First, we consider a case in which the failed edge belongs to block Ai. Let OAi

= (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
)

be the output vector of block Ai and let IBi
= (pi

a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) be the input vector of block Bi. For all

failure scenarios in block Ai, one of the following conditions holds:
1) Vector (pi

a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) includes two distinct elements from the set {p1, p2, p1 +p2} and two zeros;

2) Vector (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) includes three distinct elements from the set {p1, p2, p1 +p2} and one zero;

3) Packets pi
a1
6

and pi
a2
6

carry two distinct elements from the set {p1, p2, p1 + p2}, pi
a2
7

= pi
a2
6
, and pi

a1
7

is
zero;

4) Packets pi
a1
7

and pi
a2
7

carry two distinct elements from the set {p1, p2, p1 + p2}, pi
a2
6

= pi
a2
7
, and pi

a1
6

is
zero.

Due to the structure and the form of the encoding functions of blocks of Type C, it holds that the same
condition holds if we substitute packets pi

a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7

by input packets (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) of block

Bi, respectively. It can be easily verified that the output vector OBi
of Bi satisfies the condition of the

lemma.
Next, we consider the case in which the failed edge belongs to one of the blocks of Type C located

between Ai and Bi. Let Ĉ be a block with a faulty edge. We denote by pa1
1
, pa2

1
, pa2

2
, and pa1

2
the packets

that arrive to arcs a1
1, a2

1, a2
2, and a1

2 of Ĉ, respectively. Since the preceding blocks of Ĉ do not contain
failed edges it holds that the vector (pa1

1
, pa2

1
, pa2

2
, pa1

2
) contains three distinct packets from (p1, p2, p1 +p2)

and pa2
1

= pa2
2
. Let pa1

7
, pa2

7
, pa2

8
, and pa1

8
the packets carried by the output arcs a1

7, a2
7, a2

8, and a1
8 of Ĉ. It

is easy to verify that these packets satisfy one of the following conditions:
1) Vector (pa1

7
, pa2

7
, pa2

8
, pa1

8
) includes two distinct elements from the set {p1, p2, p1 +p2} and two zeros;

2) Vector (pa1
7
, pa2

7
, pa2

8
, pa1

8
) includes three distinct elements from the set {p1, p2, p1 +p2} and one zero.

Due to the structure and the form of the encoding functions of blocks of Type C, it holds that the came
condition holds if we substitute packets pa1

7
, pa2

7
, pa2

8
, pa1

8
by input packets (pi

a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) of block

Bi, respectively. It can be easily verified that the output vector OBi
of Bi satisfies the condition of the

lemma.
Finally, we consider the case in which the failed edge belongs to block Bi. Let (pi

a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) be

the input packets of block Bi. Since the preceding blocks of Ĉ do not contain failed edges, it holds that
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the vector (pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
) contains three distinct packets from the set {p1, p2, p1 + p2} and pi

a2
1

= pi
a2
2
.

It can be easily verified that the output vector OBi
of Bi satisfies the condition of the lemma.

Lemma 14: Consider a block Ai, 1 ≤ i ≤ n. Suppose that there is no edge failure in Ai, Bi, and each
of the blocks of Type C located between Ai and Bi. Suppose also that the output vector IBi−1

of the
previous block Bi+1 satisfies the conditions of Lemma 13. Then the output vector IBi

of block Bi also
satisfies the conditions of that lemma.

Proof: First, we note that if the output vector OBi−1
of Bi−1 is a permutation of (p1, p2, p1 + p2),

then by Lemma 12 the same holds for the output vector IBi
of Bi.

Next, we consider the case in which the output vector OBi−1
of Bi−1 includes two distinct elements of

(p1, p2, p1 + p2) and a zero. Note that this case is equivalent to the failure of one of the incoming edges
of block Ai, hence by Lemma 13 the output vector IBi

of Bi satisfies the conditions of the lemma.
Finally, we consider the case in which the output vector OBi−1

of Bi−1 includes two distinct elements
of (p1, p2, p1 + p2), one of which appears twice. In this case the output vector OAi

= (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
)

of Ai satisfies the following conditions:
1) Vector (pi

a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) includes two distinct elements of the set {p1, p2, p1 + p2};

2) Packet pi
a2
6

is equal to pi
a2
7
;

3) Vector (pi
a1
6
, pi

a2
6
, pi

a2
7
, pi

a1
7
) does not contain zero packets.

The structure of blocks C imply that the same holds if the packets OAi
or substitute by packets from

IBi
= (pi

a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2
). Thus, there are two possible cases

• Case 1: pi
a1
1

= pi
a2
1

= pi
a2
2
, pi

a1
2
6= pi

a2
2
,

• Case 2: pi
a2
1

= pi
a2
2

= pi
a1
2
, pi

a1
1
6= pi

a2
1
.

In both cases, all packets pi
a1
1
, pi

a2
1
, pi

a2
2
, pi

a1
2

are non-zero. It can be verified that the encoding functions of
block B ensure that the output vector IBi

of Bi satisfies the conditions of the lemma.
We conclude by the following theorem:
Theorem 15: The proposed network code guarantees an instantaneous recovery from edge failures.

Proof: Follows from lemmas 12, 13, and 14.
Network coding algorithm. The algorithm for finding a feasible network code includes the following

steps. First, we identify the corresponding simple network using the algorithm described in Section III-B.
Then, we visit nodes of the graph in topological order and group them into blocks of types A, B, and C.
Next, for each block we apply the coding scheme as described above. Finally, we determine the network
code for the original network. The computation complexity of the algorithm is O(V 2).

VI. MINIMIZING THE REQUIRED AMOUNT OF NETWORK RESOURCES

In this section we present an efficient algorithm for capacity allocation for robust unicast networks. Our
algorithm takes advantage of the properties of minimum networks, established in the previous section. In
the general case, the capacity reservation problem can be formulated as follows. Consider a directed graph
G(V,E) with a source node s ∈ V a destination node t ∈ V and where each edge e ∈ E is associated
with two parameters:

1) ce- the capacity of e, i.e., the upper bound on the number of packets that can be transmitted by ce
at each communication round;

2) me - the cost a reserving a unit capacity on edge e.
A reservation x in the graph G(V,E) is a map x : E → {0, 1, . . . , }, that assigns to each edge e the

non-negative integer value xe and satisfies the following conditions
• The reservation xe on each edge cannot exceed its capacity, i.e., xe ≤ ce;
• For every (s, t)-cut C that separates nodes s and t it must hold that:∑

e∈E(C)

c(e)− max
e∈E(C)

c(e) ≥ h. (5)
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The problem consists of finding an optimum reservation x̂ that minimizes the total cost
∑

e∈E xe ·me.
The problem of efficient allocation of network resources for coding networks has been considered in

[21]. The approach presented in this paper is based on the linear programming techniques and does not
provide provable performance guarantees for integral capacity reservations. Resilient capacity reservations
has been addressed in [23], [24]; however, the case of h = 2 has not been addressed. In [23] it was shown
that the general version of this problem is NP-hard. In what follows we present a simple algorithm that
finds the capacity reservation scheme whose cost is at most two times more than the optimum for the
special case of h = 2. The algorithm is a variation of the algorithm presented in Section III-B and includes
the following steps:

1) Find a minimum cost integral flow θ of value three with respect to reduced capacity function c̄ (as
defined by Equation (2)) and with respect to edge costs {me |e ∈ E}.

2) For each edge e ∈ E set x(e)← dθ(e)e.
In the following theorem we show that the resulting reservation is 2-optimal.

Theorem 16: The algorithm above provides a capacity reservation vector whose cost is at most two
times more than the optimal one.

Proof: Let x̂(e), e ∈ E be the optimal capacity reservation scheme and let OPT to be the cost of
x̂. We define the reduced capacity function ĉ as follows:

ĉ(e) =

 1.5 if x̂(e) = 2;
1 if x̂(e) = 1;
0 otherwise

(6)

Note that since ĉe ≤ x̂e, it holds that
∑

e∈E ĉe · me ≤
∑

e∈E x̂e · me = OPT . Since x̂ is a feasible
reservation vector, Theorem 2 implies that the reduced capacity function admits a flow θ̂ of value three
from the source to the destination. Moreover the cost of this flow is at most

∑
e∈E ĉe ·me ≤ OPT .

We note that since ĉe ≤ ĉe, the cost of the flow θ found by the algorithm is less than that of θ̂. Since
θ is a half-integer flow, and since x(e) = dθ(e)e we conclude that∑

e∈E

xe ·me ≤ 2 ·
∑
e∈E

θe ·me ≤ 2 ·
∑
e∈E

θ̂e ·me ≤ 2 ·OPT.

VII. CONCLUSION

In this paper we addressed the problem of constructing robust network codes for unicast networks, i.e.,
codes that enable instantaneous recovery from single edge failures. We proved that for the case of h = 2,
i.e., when two packets are sent from the source to destination nodes in each communication round, it is
possible to efficiently construct a network code over a small finite field (GF (2)). To that end, we have
exploited the special properties of minimal coding networks, i.e., networks that do not contain redundant
edges. We have also addressed the problem of efficient resource allocation for this case. As a future
research direction, we plan to generalize our results for multicast connections.

The open question that arises in this context is whether it is possible to characterize the structure of
feasible coding networks in the case of h > 2 or in the case of multiple edge failures. Another open
question is whether it is possible to construct robust network codes for h > 2 over a finite field whose
size depends only on h and does not depend on the number of edges in the network.

APPENDIX

A. Proof of Lemma 11
Let G(V,E) be a simple network, and let θ be a flow of value three with respect to the reduced edge

capacities c̄. Also, let C(V1, V2) be an (s, t)-cut C(V1, V2) of Type 2 in G(V,E). We denote by
E(C) = {(v1, u1), (v2, u2)} the set of the edges that belong to C.
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We note that nodes u1 and u2 must be of Type III, since only Type III nodes have incoming edges of
capacity two. Thus, nodes u1 and u2 have two outgoing edges each of unit capacity. By Lemma 3, one
of the outgoing edges of u1 carries a flow of one unit; we denote it by e11 = (u1, u

1
1). The other outgoing

edge of u1 carries a flow of 0.5 units; we denote it by e21 = (u1, u
2
1). Similarly, one of the outgoing edges

of u2 curries a flow of one unit, we denote it by e12 = (u2, u
1
2). The other outgoing edge of u2 carries a

flow of 0.5 units, we denote it by e22 = (u2, u
2
2). A cut of Type 2 is depicted in Fig. 10.

First, suppose that none of the uj
i nodes coincide with the terminal node t. Then, since simple networks

do not have multiple edges between two nodes, we have u1
1 6= u2

1 (i.e., u1
1 and u2

1 are two distinct nodes)
and u1

2 6= u2
2. Moreover, u1

1 6= u1
2 due to flow constraints. We are then left with four possible cases.

1) All the nodes u1
1, u2

1, u1
2 and u2

2 are distinct;
2) u2

1 = u1
2 and u1

1 6= u2
2. In other words, node u2

1 coincides with node u1
2, but u1

1 and u2
2 are distinct;

3) u2
1 = u1

2 and u1
1 = u2

2;
4) u2

1 = u2
2.

We prove, by way of contradiction, that only the last two cases are possible in simple networks. Consider
the first case, and suppose that all the nodes u1

1, u
2
1, u

1
2 and u2

2 are distinct. We choose E1 = {e21, e22}. Let
GE1(θ) be the residual graph of G(V,E) with respect to E1, and G′ be the subgraph of GE1(θ) induced
by nodes in V2. Also, let E2 be set defined by Equation (4). Each node in G′ has out-degree at least one,
for the following reasons:

1) The terminal t is of out-degree three in G′;
2) All nodes in G \ {u1

1, u
2
1, u

1
2, u

2
2, t}, have at least one incoming edge that does not belong to E1. In

G′ these edges become outgoing edges. Thus, these nodes have out-degree at least one;
3) Nodes u1 and u2 have respectively the following outgoing edges e21 and e22 that belong to E1.
4) Nodes u1

1 and u1
2 have both incoming edges in G that do not belong to E1. Such edges will become

outgoing edges in G′.
5) Consider node u2

1 in G. This node is either a Type II or IV. If u2
1 is of Type IV, then u2

1 has an
incoming edge that does not belong to E1. In G′, this edge becomes an outgoing edge of this
node. If u2

1 is of Type II, then it has an incoming edge of capacity one and carrying a flow of 0.5
units. This incoming edge does not belong to E1, since u2

1 and u2
2 do not coincide. Thus, u2

1 has an
incoming edge that belong to E2, which in G′ becomes an outgoing edge. The same holds for u2

2.
Therefore, G′ includes a cycle. This cycle should include either e21 or e22 (or both) and, in turn, e11 or e12

(or both). Suppose, without loss of generality, it is e11. Thus, the cycle should include an incoming edge
of u1

1. In G, u1
1 is either of Type I or IV. In both cases u1

1 cannot have an incoming edge in E1 since u1
1,

u2
2 and u2

1 are distinct by assumption. Thus, all the incoming edges of u1
1 belong to E2. Thus, G′ must

have a cycle that includes an edge in E2, i.e. a residual cycle. Hence, G′ is not minimal.
For example, consider the network depicted in Fig. 11(a). The corresponding residual graph is depicted

in Fig. 11(a). This graph has a cycle W = {u1, u
2
1, u

2
2, u

1
1, u1}. This cycle includes the Type I node u1

1

and its incoming edge (u2
2, u

1
1). Since (u2

2, u
1
1) ∈ E2, W is a residual cycle.

Thus, at least two of the nodes uj
i ’s should coincide. Note that no more than two non-terminal nodes

can coincide in a simple graph because of the restriction on the total degree of the nodes.
Consider now the second case, i.e. when u2

1 and u1
2 coincide, but u1

1 and u2
2 do not. We can similarly

prove here, by taking E1 = {e21, e22}, that the graph is not minimal. Fig. 11(c) shows an example of this
case. Thus, if u2

1 = u1
2, we must have u1

1 = u2
2. Also, symmetrically, if u1

1 = u2
2, we must have u2

1 = u1
2.

Now, if u1
1 6= u2

2 and u2
1 6= u1

2, then by elimination, it follows that the only possible case left is when
u2

1 = u2
2.

In the case when u1
1 or u1

2 coincide with the terminal node, then we can show, by following the same
steps as before, that both u1

1 and u1
2 coincide with the terminal node, and u2

1 = u2
2.
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Fig. 10. A cut of Type 2. Each edge is labeled by the amount of flow it carries.
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Fig. 11. Examples of subgraphs of non-minimal unicast graph that include a cut of Type 2. The labels on the edges represent the amount
of flow they carry. Edge in E1 are depicted by dashed lines. (a) An example of the case when all the nodes adjacent to u1 and u2 are
distinct. (b) The corresponding residual graph with residual cycle W = {u1, u

2
1, u

2
2, u

1
1, u1}. (c) An example of the case when u1

1 coincide
with u2

2, but u2
1 and u1

2 are distinct nodes. The residual cycle in this case is W = {u2, u
1
1, u1, u

2
1, v, u

1
2, u2}.
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