Secure Coded Cooperative Computation at the
Heterogeneous Edge against Byzantine Attacks

Yasaman Keshtkarjahromi*, Rawad Bitar!, Venkat Dasari*, Salim El Rouayheb! and Hulya Seferoglu®
yasaman.keshtkarjahromi @seagate.com, rawad.bitar @rutgers.edu, salim.elrouayheb@rutgers.edu, hulya@uic.edu
*Seagate Technology, Storage Research Group, TRutgers University, New Jersey,
tus Army Research Lab, §University of Illinois at Chicago

Abstract—Edge computing is emerging as a new paradigm
to allow processing data at the edge of the network, where
data is typically generated and collected, by exploiting multiple
devices at the edge collectively. However, offloading tasks to other
devices leaves the edge computing applications at the complete
mercy of an attacker. One of the attacks, which is also the
focus of this work, is Byzantine attacks, where one or more
devices can corrupt the offloaded tasks. Furthermore, exploiting
the potential of edge computing is challenging mainly due to the
heterogeneous and time-varying nature of the devices at the edge.
In this paper, we develop a secure coded cooperative computation
mechanism (SC?) that provides both security and computation
efficiency guarantees by gracefully combining homomorphic hash
functions and coded cooperative computation. Homomorphic
hash functions are used against Byzantine attacks and coded
cooperative computation is used to improve computation effi-
ciency when edge resources are heterogeneous and time-varying.
Simulations results show that SC® improves task completion
delay significantly.

I. INTRODUCTION

Edge computing is emerging as a new paradigm to allow
processing data at the edge of the network, where data is
typically generated and collected. This paradigm advocates
offloading tasks from an edge device to other edge/end devices
including mobile devices, and/or servers in close proximity.
Edge computing can be used in Internet of Things (IoT)
applications which connects an exponentially increasing num-
ber of devices, including smartphones, wireless sensors, and
health monitoring devices at the edge. Many IoT applications
require processing the data collected by these devices through
computationally intensive algorithms with stringent reliability,
security and latency constraints. In many scenarios, these
algorithms cannot be run locally on computationally-limited
ToT-devices, and are rather outsourced to other devices.

One of the promising solutions to handle computationally-
intensive tasks is computation offloading, which advocates
offloading tasks to remote servers or to cloud computing
platforms. Yet, offloading tasks to remote servers or to the
cloud could be a luxury that cannot be afforded by most edge
applications, where connectivity to remote servers can be ex-
pensive, energy consuming, lost or compromised. In addition,
offloading tasks to remote servers may not be efficient in terms
of delay, especially when data is generated and collected at

This work was supported in parts by the Army Research Lab (ARL) under
Grant WI911NF-1820181, National Science Foundation (NSF) under Grants
CNS-1801708 and CNS-1801630, and the National Institute of Standards and
Technology (NIST) under Grant 70NANB17H188.

the edge. This makes edge computing a promising solution to
handle computationally-intensive tasks.

However, offloading tasks to other devices leaves the edge
computing applications at the complete mercy of an attacker.
One of the attacks, which is the focus of this work, is Byzantine
attacks, where one or more devices (workers) can corrupt the
offloaded tasks. Furthermore, exploiting the potential of edge
computing is challenging mainly due to the heterogeneous
and time-varying nature of the devices at the edge. Thus, our
goal is to develop a secure, dynamic, and heterogeneity-aware
edge computing mechanism that provides both security and
computation efficiency guarantees.

Our key tool is the graceful use of coded cooperative com-
putation and homomorphic hash functions. Coded computation
advocates mixing data in computationally-intensive tasks by
employing erasure codes and offloading these tasks to other
devices for computation [1]-[13]. The following canonical
example demonstrates the effectiveness of coded computation.

Example 1: Consider the setup where a master device
wishes to offload a task to 3 workers. The master has a large
data matrix A and wants to compute matrix vector product
Ax. The master device divides the matrix A row-wise equally
into two smaller matrices A; and As, which are then encoded
using a (3,2) Maximum Distance Separable (MDS) code' to
give By = A;, By = As and B3 = A;+ A, and sends each to
a different worker. Also, the master device sends x to workers
and ask them to compute B;x, ¢ € {1,2,3}. When the master
receives the computed values (i.e., B;x) from at least two out
of three workers, it can decode its desired task, which is the
computation of Ax. The power of coded computations is that
it makes B3 = A; + Az act as a “joker” redundant task that
can replace any one of the other two tasks if a worker ends
up straggling, i.e., being slow or unresponsive. (]

This example demonstrates the benefit of coding for edge
computing. However, the very nature of task offloading to
workers makes the computation framework vulnerable to
attacks. We focus on Byzantine attacks in this work. For
example, if workers 1 and 3 in Example 1 corrupt B;x and
Bsx, the master can only obtain a wrong value of Ax. Thus,
it is crucial to develop a secure coded computation mechanism
for edge devices against this type of attacks.

'An (n, k) MDS code divides the master’s data into k& chunks and encodes
it into n chunks (n > k) such that any k chunks out of n are sufficient to
recover the original data.



In this paper, we develop a secure coded cooperative
computation (SC?) mechanism which uses homomorphic hash
functions. Example 2 illustrates the main idea of homomorphic
hash functions in coded computation.

Example 2: Consider the same setup in Example 1, and as-
sume that worker 7 returns the computed value y; to the master
device. If worker ¢ is an honest worker, y; = B;x holds. The
master device checks the integrity of y; by calculating its hash
function h(y;), where h is a homomorphic hash function. (The
details of the homomorphic hash function which we use will
be provided in Section II.) The master also calculates h(B;x)
using its local information , i.e., using h(x). If the master finds
that h(y;) # h(B;x), it concludes that the computed value is
corrupted. Otherwise, it is declared as safe. O

The above example shows how homomorphic hash func-
tions can be used for coded computation. However, existing
hash-based solutions [14], [15] introduce high computational
overhead, which is not suitable for edge applications, where
computation power and energy are typically limited. In this
paper, we use homomorphic hash functions and coded compu-
tation gracefully and efficiently. In particular, we develop and
analyze light-weight and heavy-weight integrity check tools
for coded computation using homomorphic hash functions. We
design SC? by exploiting both light- and heavy-weight tools.
The following are the key contributions of this work:

o We use a homomorphic hash function in [15] and show
that the hash of a linear combination of computed values
can be constructed by the hashes of the original tasks.

« We develop light- and heavy-weight integrity check tools
for coded computation, and analyze these tools in terms
of computation complexity and attack detection proba-
bility. We also analyze the trade-off between using light-
and heavy-weight tools for different number of tasks.

e We design SC? by exploiting light- and heavy-weight
tools. If an attack is detected, SC3 can pinpoint which
tasks are corrupted.

o We evaluate SC? for different number and strength of ma-
licious (Byzantine) workers. The simulation results show
that our algorithm significantly improves task completion
delay as compared to the baseline.

The structure of the rest of this paper is as follows. Sec-
tion II presents our system model. Section III presents light-
and heavy-weight integrity check tools. Section IV presents
our secure coded cooperative computation (SC®) mechanism.
Section V provides simulation results of SC3. Section VI
presents related work. Section VII concludes the paper.

II. SYSTEM MODEL

Setup. We consider a master/worker setup at the edge of the
network, where the master device offloads its computationally
intensive tasks to workers w,, n € N (where [N| = N)
via device-to-device (D2D) links such as Wi-Fi Direct and/or
Bluetooth. The master device divides a task into smaller sub-
tasks, and offloads them to parallel processing workers.

Task Model. Our focus is on computation of linear functions;
i.e., the master device would like to compute the multiplication

of matrix A with vector x; y = Ax, where A = (a;;) €
]FS”XC, x = (z;) € Fg“, and F, is a finite field. The
motivation of focusing on linear functions stems from matrix
multiplication applications where computing linear functions
is a building block of several iterative algorithms such as
gradient descent.

Coding. We divide matrix A into R rows denoted by A;,
i = 1,...,R. The master device applies Fountain coding
[16]-[18] across rows to create coded information packets
q = Zil%',in’ j = 1,2,...,R + ¢, where € is the
overhead required by Fountain coding?, and ~; ; € {0,1} are
coding coefficients of Fountain coding and the information
packet q; is a row vector with size C'. Rateless coding enabled
by Fountain codes is compatible with our goal to deal with
heterogeneity and time-varying nature of resources. In other
words, coded packets are transmitted to workers depending on
the amount of their resources (as described in Section IV-A)
and Fountain codes are flexible to achieve this goal.

Worker & Attack Model. The workers incur random delays
while executing the task assigned to them by the master device.
The workers have different computation and communication
specifications resulting in a heterogeneous environment which
includes workers that are significantly slower than others,
known as stragglers. Moreover, the workers cannot be trusted
by the master. In particular, we consider Byzantine attacks,
where one or more workers can corrupt the tasks that are
assigned to them.

Homomorphic Hash Function. We consider the following
hash function that maps a large number a to an output with
much smaller size

h(a) 2 mod (g ™o (®D p), (1)

where ¢ is a prime number selected randomly from the field
Fy4, r is a prime number that satisfies ¢|(r — 1) (i.e., 7 — 1 is
divisible by ¢) and ¢ is a number in F, which is calculated
as g = b("=1/4 for a random selection of b € F,,b # 1
[14], [15]. The defined hash function is a collision-resistant
hash function with the property that when ¢ increases, a is
compressed less; i.e., h(a) becomes a better approximation of
a for larger ¢. However, the computational cost of calculating
h(a) increases for larger ¢. Thus, there is a trade-off between
computational complexity and better approximation of a in
calculating h(a). Our goal is to exploit this trade-off in
the context of coded computation as described in the next
sections. Another property of the defined hash function is
homomorphism, i.e., h(>", c;a;) = ], h(a;)%, which we will
exploit in matrix-vector multiplication (in Section III).

Delay Model. Each packet transmitted from the master
to a worker w,, n = 1,2,..., N experiences the following
delays: (i) transmission delay for sending the packet from the
master to the worker, (ii) computation delay for computing
the multiplication of the packet by the vector x, and (iii)
transmission delay for sending the computed packet from

2The overhead required by Fountain coding is typically as low as %35 [18].



the worker w,, back to the master. We denote by [, ; the
computation time of the i packet at worker n.

III. LIGHT- AND HEAVY-WEIGHT INTEGRITY CHECK
TooLs FOR CODED COMPUTATION

In this section we present how homomorphic hash functions
considered in [14], [15] and defined in (1) are used gracefully
with coded computation. We first show that (1) can be applied
to coded computation. Then, we develop light- and heavy-
weight integrity check tools. The tools we develop in this
section will be building blocks of our secure coded cooperative
computation mechanism (SC?).

A. Homomorphic Hash Function for Coded Computation

Let us consider that Z,, coded information packets are
offloaded to worker w,,. The it packet offloaded to w,
is pni € {qQi,...,qr+c}, Which can be represented as
Pni = (Pnjis---sPnic)s Where py; ;i is the jN element of
vector p,, ;. Worker w,, calculates y,, ; = py X and sends it
back to the master device.

Assume that the master receives ¥y, ; from w,,, where ¥, ; =
Yn,i if packet is not corrupted. The master device checks the
integrity of packets calculated at w,, according to the following
rule. First, it calculates

Zn
Oy = h’(z Cz’?jn,i% (2)
i=1
using the hash function defined in (1), where ¢;’s are coeffi-
cients (We will discuss how c; is selected later in this section.).
Next, it calculates

C
8, = mod (Hh(%) mod (( o Cipn.,i,j)ﬂ])’r), 3)
j=1

where x; is the 4™ element of vector x, and ¢ and r are the
parameters of the hash function defined in (1). 8, in (3) is
calculated by the master device using its local data p, ; and
X. B is used to check a,, as described in the next theorem.
Theorem 1: If w,, does not corrupt packets, i.e., Yn; = Yn.i»
Vi, and ¢; is a nonzero integer, then «,, = (3, holds.
Proof: The proof is provided in our technical report [19]. W
We note that Theorem 1 is necessary, but not sufficient con-
dition to determine if w,, is malicious or not. The sufficiency
condition depends on how c; is selected as explained next.

B. Light-Weight Integrity Check (LW Function)

The light-weight integrity check (LW function) uses The-
orem | to determine if workers corrupt packets or not. In
particular, LW function calculates «a,, in (2) and 3, in (3)
by selecting ¢; randomly and uniformly from {—1,1}. LW
function concludes that packets processed by w, are not
corrupted if «,, = f3,,. However, as we discussed earlier, this
condition is not always a sufficient condition, so LW function
detects attacks with some probability, which is provided next.

1) Probability of Attack Detection: We first consider a pair-
wise Byzantine attack, where malicious worker w,, corrupts
two packets out of Z,, packets by adding and subtracting terms.
For example, 4, ; = Yni + 0; and §n ; = yn ; — 05, for any
arbitrary i,j < Z,, satisfying ¢ # j. In this attack pattern, if
|0;] # 10;], and considering that the coefficients are selected
from {—1,1} in LW function, the attack is detected with 100%
probability. On the other hand, if attack is symmetric, i.e.,
|0;] = |0;], the probability of detecting the attack is 50%. As
symmetrical attacks are the most difficult ones to detect, we
focus on this scenario in the next lemma.

Lemma 2: Consider an attack where the malicious worker
w,, selects an even number Zn randomly out of Z, packets
and corrupt them by adding § to half of them, and subtracting
0 from the other half. The probability of attack detection by
LW function is

PLW 1—

detect —

(i)
220 ((Za)2)V)"
Proof: The proof is provided in our technical report [19]. W

As seen from Lemma 2, the probability of attack detection
increases with increasing number of corrupted packets. This
result intuitively holds for any attack pattern as the coefficients
(c;) are selected randomly for each packet and estimating
these values by an attacker becomes difficult for larger set
of corrupted packets. The other attack patterns and detection
probabilities are provided in our technical paper [19].

Lemma 3: The probability of attack detection when LW
function is used and for any attack pattern is lower bounded
by PV > 0.5.

Proof: The proof is provided in our technical report [19]. W

2) Computational Complexity:

Theorem 4: The computational complexity of LW func-
tion for checking Z, packets calculated by w, is
O(CM(r)log, q), where C' is the size of each information
packet, M (r) is the complexity of multiplication in F,., and r
and q are the parameters of the hash function defined in (1).

Proof: The complexity of LW function consists of two parts;
calculation of «, in (2) and 3, in (3). We first analgze com-
putational complexity of calculating a,. The sum » ;") ¢;Un ;i
only has addition and subtraction as ¢; € {—1,1}, and can be
ignored. The complexity of the modular exponentiation while
calculating the hash function is O(M (r)log, ¢) by using the
method of exponentiation by squaring.

Similarly, we can calculate the computational com-
plexity of calculating f3,,. The complexity for computing
ZiZ:”'l CiPn,i,; corresponds to the complexity of addition and
subtraction, which is negligible. The complexity of com-
puting mod (Hf:1 h(z;) mod (CZyeipnisd) p) has two
components: (i) Calculating the modular exponentiations
h(x;) mod (CZ eipniid) Wj = 1,2, ...,C: The complexity
for this calculation is O(M (r)log,q) for one modular ex-
ponentiation and O(CM (r)log, q) for all C' modular expo-
nentiations. (ii) Multiplying all the calculated modular expo-
nentiations, i.e., [[5_, h(z;) ™°d (37 epnis9) in F,: The

j=1"\Ly T
complexity for this calculation is O((C' — 1)M (r)). Thus, the

“4)



total complexity of LW function becomes O(CM (r)log, q).
This concludes the proof. |
Noting that the computational complexity of calculating
the original matrix multiplication is O(RCM (v)), where
M (%) is the complexity of multiplication in F,,. As seen, the
complexity of the LW function is significantly low, compared
to the original task. This means LW function provides security
check with low complexity. However, the probability of attack
detection using LW function could be as low as 50%, which
may not be acceptable in some applications. Thus, we provide
a heavy-weight integrity check tool (HW function) in the next
section. Our ultimate goal is to use LW and HW functions
together for higher attack detection probability while still
having low computational complexity.
C. Heavy-Weight Integrity Check (HW Function)

The heavy weight integrity check (HW function) uses Theo-
rem 1 similar to the LW function, but chooses the coefficients
¢; from a larger field F, rather than {—1,1}. This selection,
i.e., choosing coefficients from a larger field, comes with larger
attack detection probability and computational complexity as
described next.

1) Probability of Attack Detection:

Lemma 5: The probability that HW function detects a
Byzantine attack with any attack pattern is expressed as

1
PN =1-= ©)

detect q
where ¢ is the parameter of the hash function in (1).
Proof: The proof is provided in our technical report [19]. W

As seen from Lemma 5, the attack detection probability in-
creases with increasing q. Next, we present the computational
complexity of HW function.

2) Computational Complexity:

Theorem 6: The computational complexity of HW function
for checking Z,, packets calculated by w, is O(CZ,, M(¢)).
Proof: The proof follows the same logic of the proof of
Theorem 4, i.e., the complexity of HW function depends on
calculating o, in (2) and f3,, in (3). The difference as compared
to the proof of Theorem 4 is that ¢;’s are selected from a larger
field, so reducing multiplication to addition in ZiZ:'H CiYn,i of
(2) and ZZ-Z;H CiPn,i,; of (3) cannot be made. In particular,
the complexity of calculating these terms is O(Z, M (¢)).
Following the similar steps in the proof of Theorem 4, we can
conclude that the computational complexity of HW function
becomes O(C' M (r) log, q)+O(CZ, M(¢)). Since the second
term dominates the computational complexity for large R
(hence Z,,), we calculate the computational complexity as
O(CZ,M(¢)). This concludes the proof. [ |

We can approximate Z,, to (R + €)/N on average assum-
ing that coded information packets are distributed homoge-
neously across workers, where R is the number of information
packets, € is the Fountain coding overhead, and N is the
number of workers. Thus, the computational complexity of
HW function across all workers becomes N O(WM (9)).
As we discussed earlier, the computational complexity of
the original matrix multiplication is O(RCM (v)). We also

note that M(¢)) >> M(¢). This means that even though
HW function is computationally complex as compared to LW
function, it is still computationally-efficient with respect to the
original matrix multiplication (considering that € is small and
approaches to 0 with increasing number of packets).

D. Light- versus Heavy-Weight Integrity Check

In this section, we investigate employing LW function multi-
ple rounds/times to achieve higher attack detection probability
with low computational complexity. LW function is used to
check Z,, packets computed by w,, by selecting ¢; uniformly
randomly from {—1,1}. Let us call this the first round. In
the second round, we can use LW function again, but selected
values of ¢; will be different from the first round. Thus, if an
attack is not detected in the first round, it may still be detected
in the next round. Thus, using LW function over multiple
rounds will increase the attack detection probability. The next
theorem characterizes the performance of LW function when
used in multiple rounds as compared to HW function.

Theorem 7: The attack detection probability of multiple-
round LW function is equal to the attack detection probability
of HW function in (5) when LW function is used for log,(q)
rounds. Furthermore, the computational complexity of log, (q)-
round LW function is lower than HW function if the following
condition is satisfied.

M(r)

Lp 2 WIOgQ q(1 +log, q), (6)

Proof: The proof is provided in our technical report [19]. W

IV. SC?: SECURE CODED COOPERATIVE COMPUTATION

In this section, we present our secure coded cooperative
computation (SC?) mechanism. SC? consists of packet offload-
ing, attack detection, and attack recovery modules.

A. Dynamic Packet Offloading

The dynamic packet offloading module of SC? is based on
[1]. In particular, the master offloads coded packets gradually
to workers and receives two ACKs for each transmitted packet;
one confirming the receipt of the packet by the worker, and
the second one (piggybacked to the computed packet) showing
that the packet is computed by the worker. Then, based on
the frequency of the received ACKs, the master decides to
transmit more/less coded packets to that worker. In particular,
each packet p,, ; is transmitted to each worker w,, before or
right after the computed packet p, ;—1x is received at the
master. For this purpose, the average per packet computing
time E[f3, ;] is calculated for each worker w,, dynamically
based on the previously received ACKs. Each packet p,, ; is
transmitted after waiting E[f3,, ;] from the time p,, ;1 is sent
or right after packet p,, ;—1x is received at the master, thus
reducing the idle time at the workers. This policy is shown to
approach the optimal task completion delay and maximizes the
workers’ efficiency and is shown to improve task completion
delay significantly compared with the literature [1].



B. Attack Detection

Assume that the set of received packets from worker n is Z,,
(Z,, = |Z,|) at the master device at time ¢ while the dynamic
packet offloading process continues. If a new calculated packet
Yn,i 18 received, the following updates are made; Z,, = Z,,+1,
and Z,, = Z,,Jgn,. The attack detection module of SC3 is
applied on Z,, periodically and consists of two phases.

The first phase applies LW function on the packets in Z,
for any worker n € NV Let us assume that attack is detected in
the packets coming from w,,~. Then, all the packets in Z,~ are
discarded and the malicious worker w,,« is removed from the
set of workers, i.e., N =N — w,-. As we discussed earlier,
the attack detection probability of LW function increases with
increasing corrupted packets. Thus, if an attack is detected in
this phase, it can be considered that most of the packets are
corrupted, so we can discard all the received packets.

The goal of the second phase is to detect any attacks, which
are not detected in the first phase. Both HW and multiple-
round LW functions are used in this phase. In particular, if
the inequality in Theorem 7 is satisfied, LW function is used
for log,(q) times. Otherwise, HW function is used. If an attack
is not detected, all the packets in Z,, are labeled as verified
packets. Otherwise, i.e., if an attack is detected, the attack
recovery module, which is described later in this section, starts.
The attack detection module stops when the number of verified
packets from all workers reaches R + €.

C. Attack Recovery

If an attack is detected in the second phase of the attack
detection module of SC3, we consider that a small number of
packets are corrupted. Otherwise, the first phase of the attack
detection module could have detected the attack and discarded
all the packets. Thus, the goal of the attack recovery module
is to recover from small number of corrupted packets without
discarding all the packets.

Let us assume that an attack is detected among the packets
sent from w,,, i.e., in Z,,«. In order to pinpoint the packets that
are corrupted, we use a binary search algorithm. In particular,
Z,,~ is divided into two disjoint sets; Z}. and Z2.. The second
phase of the attack detection module is run over these two
sets. If an attack is not detected on any of these sets, all the
packets in that set are verified. Otherwise, the binary search
(this set splitting) continues over the sets that an attack is
detected. When the size of a splitted set is one, i.e., it has one
packet in it, and an attack is detected, the packet in that set is
declared a corrupted packet and discarded. As seen, the attack
recovery module can still verify some of the packets coming
from a malicious worker. This is important to efficiently utilize
available resources while still providing security guarantees.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our al-
gorithm; Secure Coded Cooperative Computation (SC?) via
simulations. We consider master/worker setup, where some
of the workers are malicious. Each computed packet y,, ; is
corrupted by the malicious worker w,, with probability p.

©-sc?
120 -5-HW-only 1]

Task Completion Delay

n
o

0
50 60 70 80 90 100 110 120
Number of Malicious Workers

Fig. 1. Task completion delay of SC3 as compared to HW-only with
increasing number of malicious workers.

The computing resources are heterogeneous and vary across
workers, where per packet computing delay £, ; is an i.i.d.
random variable following a shifted exponential distribution.
We compare SC? with the baseline HW-only that uses HW
function to detect corrupted packets, while SC® uses both
LW and HW functions gracefully. In HW-only, if a worker is
detected as malicious, all the packets coming from that worker
are discarded.

Task Completion Delay vs. Number of Malicious Workers.
Fig. 1 compares the task completion delay of SC? with HW-
only for increasing number of malicious workers. The task
completion delay is the time that takes to collect R + €
computed and verified packets (yy ;’s). In this setup, the total
number of workers is NV = 150, the number of rows in matrix
A is R = 1K, the number of columns is C = 1K, the
overhead of Fountain codes is 5%, the probability of packet
corruption is p. = 0.3, and per-packet computing delay is a
shifted exponential random variable with the mean selected
uniformly between 1 and 6 for each worker.

The task completion delay of SC®> and HW-only increases
with increasing number of malicious workers. When the
number of malicious workers increases, there will be more
corrupted packets in the system. These corrupted packets are
detected and discarded by SC® and HW-only. As more packets
are discarded when the number of malicious workers is higher,
the task completion delay increases. The increase in the task
completion delay of SC? is less than HW-only thanks to (i)
using both LW and HW functions to reduce computational
complexity, and (ii) attack recovery module of SC3.

Task Completion Delay versus Packet Corruption Proba-
bility. Fig. 2 compares the task completion delay of SC3
with HW-only for different values of p., the probability that
a delivered packet by a malicious worker is corrupted. The
number of workers, the number of rows in A, Fountain coding
overhead, and per-packet computing delay are the same as the
previous setup above. The number of malicious workers is 50.

The task completion delay of HW-only does not change with
increasing packet corruption probability. The reason is that
HW-only does not have attack recovery feature and discards
all the packets coming from a malicious worker. On the other
hand, task completion delay of SC? is significantly lower than
HW-only especially when the packet corruption probability is
low thanks to using both LW and HW functions and employing
the attack recovery module.



'S
a

'
(=)

g8 &
T T —-

N
D

Task Completion Delay

20 . . . . . .
01 015 02 025 03 035 04

Probability of Packet Corruption
Fig. 2. Task completion delay of SC3 as compared to HW-only with
increasing probability of packet corruption.

VI. RELATED WORK

045 05

Coded computation, advocating mixing data in compu-
tationally intensive tasks by employing erasure codes and
offloading these tasks to other devices for computation, has
recently received a lot of attention, [1]-[13]. For example,
coded cooperative computation is shown to provide higher
reliability, smaller delay, and reduced communication cost in
MapReduce framework [20], where computationally intensive
tasks are offloaded to distributed server clusters [21]. The
effectiveness of coded computation in terms of task completion
delay has been investigated in [1], [7], [11]. In [22], the
same problem is considered, but with the assumption that
workers are heterogeneous in terms of their resources. In [1], a
dynamic and adaptive algorithm with reduced task completion
time is introduced for heterogeneous workers. As compared to
this line of work, we consider secure coded computation by
focusing on Byzantine attacks.

There is existing work at the intersection of coded computa-
tion and security by specifically focusing on privacy [2], [23]-
[25]. As compared to this line of work, we focus on Byzantine
attacks and use homomorphic hash functions. Homomorphic
hash functions have been widely used for transmission of
network coded data. Corrupted network coded packets are
detected by applying homomorphic hash functions that we
consider in this work [14]. The hash function is applied to
random linear combinations of network coded packets in [15].
SC3, although similar to these work, is more efficient in terms
of computational efficiency, which was not the main concern
of [14], [15] as their focus was on transmitting network coded
packets, not computation.

VII. CONCLUSION

In this paper, we focused on secure edge computing against
Byzantine attacks. We considered a master/worker scenario
where honest and malicious workers with heterogeneous re-
sources are connected to a master device. We designed a
secure coded cooperative computation mechanism (SC?) that
provides both security and computation efficiency guarantees
by gracefully combining homomorphic hash functions, and
coded cooperative computation. Homomorphic hash functions
are used against Byzantine attacks and coded cooperative
computation is used to improve computation efficiency when
edge resources are heterogeneous and time-varying. Simula-
tions results show that SC® improves task completion delay
significantly.

(1]

[2

—

(3]

[4

—_

%
A

(6]

(71

[8

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-
aware coded cooperative computation at the edge,” in 2018 IEEE 26th
International Conference on Network Protocols (ICNP), Sept 2018.

R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for
secure distributed computing,” in Information Theory (ISIT), 2017 IEEE
International Symposium on. IEEE, 2017, pp. 2900-2904.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Globe-
com Workshops (GC Wkshps), 2016 IEEE. 1EEE, 2016, pp. 1-6.

S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for par-
allel and distributed computing within a deadline,” arXiv preprint
arXiv:1705.03875, 2017.

Y. Yang, P. Grover, and S. Kar, “Computing linear transformations with
unreliable components,” IEEE Trans. on Information Theory, 2017.

W. Halbawi, N. Azizan-Ruhi, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using reed-solomon codes,” arXiv preprint
arXiv:1706.05436, 2017.

Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in NIPS, 2016,
pp. 2092-2100.

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368-3376.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental tradeoff
between computation and communication in distributed computing,” in
IEEE International Symposium on Information Theory (ISIT), 2016.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514-1529, 2018.
C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Advances in Neural
Information Processing Systems, 2017, pp. 5434-5442.

M. FE. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation:
Which clones should attack and when?” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 45, no. 2, pp. 12-14, 2017.

M. N. Krohn, M. J. Freedman, and D. Mazieres, “On-the-fly verification
of rateless erasure codes for efficient content distribution,” in IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004. 1EEE,
2004, pp. 226-240.

C. Gkantsidis and P. Rodriguez, “Cooperative security for network
coding file distribution.” in INFOCOM, vol. 3, no. 2006, 2006.

M. Luby, “Lt codes,” in The 43rd Annual IEEE Symposium on Founda-
tions of Computer Science, 2002. Proceedings., Nov 2002, pp. 271-280.
A. Shokrollahi, “Raptor codes,” IEEE/ACM Transactions on Networking
(TON), vol. 14, no. SI, pp. 2551-2567, 2006.

D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications, vol.
152, no. 6, pp. 1062-1068, 2005.

Y. Keshtkarjahromi, R. Bitar, V. Dasari, S. E. Rouayheb,
and H. Seferoglu, “Secure coded cooperative computation
at  the  heterogeneous edge against Dbyzantine  attacks,”

https://www.dropbox.com/s/cnfqspd4wtzo6qn/SC3.pdf?d1=0.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-113,
2008.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,”
in 2015 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton). 1EEE, 2015, pp. 964-971.

A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, 2019.

H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 1, pp. 141-150, Jan 2019.

Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded
computing: Optimal design for resiliency, security and privacy,” arXiv
preprint, arXiv:1806.00939, 2018.

R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. El Rouayheb, and
H. Seferoglu, “Prac: Private and rateless adaptive coded computation at
the edge,” in SPIE Defense + Commercial Sensing, 2019.



