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Abstract

We introduce a new class of Exact Minimum-Bandwidth Regenerating (MBR) codes for distributed

storage systems, characterized by a low complexity uncoded repair process that is resilient to multiple

node failures. Our model for repair is table-based, and thus, differs from the random access model

adopted in the literature. We present code constructions based on regular graphs and Steiner systems

for a large set of system parameters. The resulting codes are guaranteed to achieve the storage capacity

for random access repair. We refer to these codes as Fractional Repetition codes since they consist of

splitting the data on each node into several packets and storing multiple copies of each on different

nodes in the system. The considered model motivates a new definition of capacity for distributed storage

systems, that we call Fractional Repetition capacity. We provide upper bounds on this capacity, while

a general expression remains an open problem.

I. INTRODUCTION

Despite being formed of nodes having a short lifespan, distributed storage systems (DSS) are required

to store data for long periods of time with a very high reliability. Typically, nodes in the system will

unexpectedly leave for different reasons, such as hardware failures in data centers, or peer churning in

peer-to-peer (p2p) systems. To overcome this problem, a two-fold solution can be adopted based on

redundancy and repair. Classical erasure codes can be used to introduce redundancy in the system to

protect the data from being lost when nodes fail. In addition, to maintain a targeted high reliability, the

system is repaired whenever a node fails by replacing it with a new one.

Erasure codes with repair capabilities for distributed storage systems (DSS), termed Regenerating codes,

were first introduced and studied in the original work of Dimakis et al. in [1]. A distributed storage system

is modeled as being formed of n nodes with certain storage capacities. The system gives the user the

flexibility to recover its stored file by contacting any k nodes, with k < n. We call this property the
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Fig. 1. An example of a distributed storage system with (n, k, d) = (4, 2, 3). Initially, the system is formed of n = 4 nodes

v1, . . . , v4 storing coded packets of a file. The user contacts any k = 2 nodes and should be able to decode the stored file.

When a node fails, it is replaced by a new one that contacts d = 3 nodes to download its data. The figure shows an instance

where node v1 fails and is replaced by node v′1, and a user connected to nodes v′1 and v4.

MDS property of the DSS, in reference to Maximum Distance Separable (MDS) codes. When a node

fails, the system is repaired by replacing the failed node by a new “blank” node. The new node contacts

d surviving nodes, downloads encodings of their data and stores it, possibly after compression. The data

stored on the new node should conserve the MDS property of the DSS. In analogy with classical codes

defined by the two parameters (n, k), a DSS, and the associated Regenerating codes, are specified by

the triplet (n, k, d), where the additional parameter d, referred to as the repair degree, accounts for the

additional repair requirement. Fig. 1 depicts a (4, 2, 3) DSS showing one repaired failure and one user.

In this work we are interested in constructing Exact Regenerating codes with bandwidth-optimal repair,

known in the literature as Exact Minimum-Bandwidth Regenerating (MBR) codes. Exactness is a much

desired property of Regenerating codes and refers to their ability to reproduce an exact copy of the lost

data on a new replacement node. In the minimum-bandwidth regime, a replacement node obtains this

exact copy by downloading data from d surviving nodes and storing it with no compression.

The common model adopted in the literature for repair is random access, where a new replacement

node can contact any d arbitrarily chosen surviving nodes to download its data. In this case, the repair

degree d indirectly determines the number ρ′ of simultaneous failures that the repair process can tolerate,

which is here ρ′ = n−d. Since large number of nodes failing together is a rare event, the DSS should be

designed for small values of ρ′ (compared to n), in addition to a small values of d to reduce the repair

delay and protocol overhead. These two ranges of d and ρ′ seem to be conflicting under this model, and

we risk over-provisioning the system for unreasonable large number of failures when designing codes

with low repair degree. In this paper, we present a new approach that decouples d and ρ′ by abandoning
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the random access model of repair and adopting a scheme that is based on a repair table. The repair table

specifies for each failure pattern a list of nodes that can be contacted together for repair. This table-based

model is very attractive from a practical point of view and goes along with existing tracker-based p2p

systems. As a result of this relaxation, we are able to construct Exact MBR codes for the desired ranges

of d and ρ′, possessing low complexity repair capabilities that do not involve encoding during repair: a

replacement node simply downloads a single packet from each of the d node it contacts and stores it.

These codes are very well suited for large scale systems with strict requirement on the permitted system

downtime and where multiple nodes simultaneously leaving the system is not a rare event.

Our codes are based on a generalization of the construction of Rashmi et al. in [2] and are formed by

the concatenation of two constituent codes: an outer MDS code to ensure the required MDS property of

the DSS, and an inner repetition code to guarantee efficient uncoded repair (see Fig. II). The design of

the inner code represents the challenging task in this construction. We call the inner code a Fractional

Repetition (FR) code since, in our proposed solution, the stored content of each node is split into d

packets, each of which is repeated ρ times in the system, where ρ = ρ′ + 11 is a design parameter

representing the repetition degree of the FR code. We study the design of FR codes that can achieve the

DSS capacity under random access repair. For single failures, i.e., ρ = 2, we provide a construction based

on regular graphs for all feasible values of d for a fixed n. For the general case of multiple failures, i.e.,

ρ > 2, we devise code constructions based on Steiner systems. Of particular importance is a construction

for DSS for small values of ρ and a repair degree that is a fraction of the surviving nodes. The table-based

repair model motivates a new concept of storage capacity for distributed storage systems, referred to as

Fractional Repetition (FR) capacity, which we define and study.

The rest of the paper is organized as follows. In Section II, we give two examples of Fractional Repe-

tition Codes, then briefly summarize previous related work in Section III. We describe code constructions

for the single failure case in Section IV, and for multiple failures in Section V. In Section VI, we define

the Fractional Repetition capacity of a DSS and provide some bounds. We conclude in Section VII and

discuss related open problems.

II. EXAMPLES AND MODEL

An interesting tradeoff was shown to exist between nodes storage capacity and repair bandwidth, i.e., the

total amount of data downloaded by a replacement node for repair, in a DSS [3]. An important operation

point in this tradeoff corresponds to, what is known in the literature as, the Minimum-Bandwidth Regime.

This regime is characterized by a minimum repair bandwidth, making it very appealing for practical

systems where bandwidth is in general a more costly resource than storage. Under this regime, a new

1An extra copy is needed to achieve resilience to ρ′ failures.
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Fig. 2. An Exact Regenerating code for a (4, 3, 3) DSS formed by an (10, 9) outer MDS code followed by a Fractional

Repetition code of repetition degree ρ = 2. The content of each node is split into d = 4 packets, each is repeated twice in the

system. This code can achieve the MDS property of the DSS, along with exact and uncoded repair in the case of one failure.

replacement node stores all the the data it downloads, without any compression, from the surviving nodes

it contacts. We assume a symmetric repair where a replacement node downloads the same amount of

data, referred to as a packet, from each node it contacts. In this case, the storage capacity CMBR(n, k, d),

in packets, of a DSS with parameters (n, k, d) was proven in [3] to be

CMBR(n, k, d) = kd−
(
k

2

)
, (1)

assuming a functional repair model. Under functional repair, the only constraint on the data stored on

a new replacement node is that it should maintain the MDS property of the DSS. It is, however, very

desirable to have the replacement node store an exact copy of the lost data. In this case, the regenerating

codes are called Exact. It was recently shown [4] that Exact MBR codes can always achieve the DSS

capacity CMBR of (1). These codes in general require that a node contacted for repair forward coded

packets, consisting of linear combination of its data, to a new node.

Next, we present two constructions of Exact Regenerating codes that can also achieve the above

capacity with the additional property of achieving uncoded repair. The first example is based on the code

construction of exact codes for d = n− 1 of Rashmi et al. [2].

Example 1: Consider a (5, 3, 4) DSS with storage capacity equal to 9 packets as given by (1). Let

X = (x1, . . . , x9) ∈ F9
q denote the file of 9 packets to be stored on the system. Figure II depicts an

Exact MBR code [2] that can achieve the above storage capacity. This code consists of the concatenation

of two constituent codes: an outer (10, 9) parity check MDS code, followed by a special repetition code.

The MDS code takes the file X as an input and outputs the codeword Y = (y1, . . . , y10), where yi =

xi, i = 1, . . . , 9, and y10 is a parity check packet, i.e., y10 =
∑9

i=1 xi. The coded packets y1, . . . , y10 are

then placed on the 5 storage nodes following the pattern of the inner code in Fig. II. I.e., nodes v1, . . . , v5
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store, respectively, {y1, y2, y3, y4}, {y1, y5, y6, y7}, {y2, y5, y8, y9}, {y3, y6, y8, y10} and {y4, y7, y9, y10}.
A user contacting a node can download all its stored data. Therefore, any user connecting to k = 3

nodes will be able to download exactly 9 distinct packets; 12 in total, of which 3 are repeated twice.

Thus, due to the MDS property of the outer code, it can recover the whole file X . Moreover, the outer

code is such that every storage node shares a distinct packet with each of the remaining nodes in the

system, which guarantees exact repair in the case of a single node failure. Indeed, whenever a node fails,

its stored data can be exactly recovered by contacting the four surviving nodes and downloading a single

packet from each. For instance, when node v1 fails, a replacement node contacts nodes v2, . . . , v5, and

downloads packets y1, . . . , y4 from each, respectively. �

In the inner code of the previous example, each packet yi is repeated twice in the system. Due to this

property, we call this inner code a Fractional Repetition code of repetition degree ρ = 2. In a Fractional

Repetition code for an (n, k, d) DSS, the content of each node is split into d packets, where each is

stored on ρ different nodes in the system. In addition to being exact and optimal, the code obtained

by the above construction is characterized by uncoded repair. When contacted by a new node upon a

failure, a survivor node simply forwards a particular packet depending on which nodes have failed. This

uncoded repair mechanism is more restrictive than the original model of [3] where a node contacted for

repair sends linear combinations of its stored packets to the replacement node. Despite being restrictive,

uncoded repair is capacity achieving in this case.

From a system point of view, uncoded repair is a very desirable property since it allows a fast and low

complexity repair of the system. In this paper, we assume that it is a design requirement for the repair

process to be uncoded in addition to being exact, and we investigate the construction of Regenerating

codes with these properties. The Exact MBR codes devised in [2] are an example of such codes, however,

they are specialized to the case of d = n− 1 and require contacting n− 1 nodes in the case of a single

failure. This may not always be feasible due, for example, to multiple failures occurring simultaneously,

or certain nodes being busy serving the users. It is then important to build Exact MBR codes with uncoded

repair for smaller values of d where a new replacement node contacts just a fraction of the nodes in

the system. The next example describes such a code for a (7, 3, 3) DSS that can achieve exact uncoded

repair in the case of two nodes failure. This code is based on the projective plane PG(2, 2) (Fig. 3(b))

and gives a hint on our general construction techniques that will be detailed in the following sections.

Example 2: The code that we propose for the (7, 3, 3) DSS is also constructed by concatenating two

constituent codes: an outer (7, 6) MDS code followed by the Fractional Repetition code of degree ρ = 3

depicted in Fig. 3(a). It can be seen that each of the 7 packets that form the output of the MDS code

is repeated 3 times in the DSS on 3 distinct nodes. Therefore, there is always a surviving copy of any

packet in the system whenever two nodes fail. The code then guarantees exact uncoded repair for up to

two node failures.
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Fig. 3. (a) The Projective plane PG(2, 2), also known as the Fano matroid. (b) The corresponding Fractional Repetition

code with repetition degree ρ = 3 for a DSS with (n, k, d) = (7, 3, 3). Each of the 7 lines in PG(2, 2), including the circle,

represents a storage node. The points lying on that line correspond to the packets that are stored on the node. This code can

achieve the capacity CMBR = 6 for this DSS, and has an exact and uncoded repair process.

The structure of the Fractional Repetition code is deduced from the projective plane PG(2, 2) (Fig 3(b))

of order 2, of 7 points and 7 lines (including the circle), also known as the Fano matroid. Each line in

PG(2, 2) corresponds to a storage node in the DSS, and the three points belonging to that line give the

indices of the packets stored on the node. In the projective plane, any two lines intersect in exactly one

point. This implies that any user that contacts 3 nodes can get at least 3× 3−
(
3
2

)
= 6 distinct packets.

For instance, a user contacting nodes v2, v4 and v5 will get exactly 6 different packets, namely the ones

having indices {1, 2, 3, 4, 5, 7}, whereas another user contacting v1, v3 and v4 will get all the 7 packets.

In general, we are limited by the user that gets the least number of packets, which is 6 here. Therefore,

the outer MDS code allows any user to recover a stored file of 6 packets which is exactly the capacity

CMBR(7, 3, 3) of (1). �

In the code of Example 2, a replacement node has to contact a specific set of d nodes for repair,

depending on which nodes have failed. For example, when node v1 fails, a replacement node can recover

the lost packets by connecting to nodes {v4, v5, v6}, but not {v2, v3, v4}. We assume, therefore, that there

is a repair table maintained in the system that is available to all the nodes in the DSS. The repair table

indicates for each possible failure pattern the set of nodes that can be contacted for repair, and which

packet to download from each. This repair model based on a repair table is inspired by tracker-based

p2p file distribution systems and will be adopted throughout this paper. It differs from the random access

model adopted in the literature where repair can be performed by contacting any d surviving node. Table I

summarizes the differences between the repair model adopted here and the original model of [3].

The previous two examples suggest a general method for constructing Exact MBR codes with uncoded
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Original repair model in [3] Repair model of FR codes

Functional: replacement data should satisfy

MDS property.

Exact: replacement data is an exact copy of the

lost one.

Coded: new node downloads linear combina-

tion of packets.

Uncoded: new node downloads specific packet

with no coding.

Random Access: the new node contacts any d

surviving nodes.

Repair Table: a table specifies the set of d

nodes to be contacted for repair.

TABLE I

A COMPARISON BETWEEN THE MODEL FOR REPAIR IN THE ORIGINAL WORK OF DIMAKIS ET AL. IN [3] AND THE MODEL

FOR REPAIR FOR THE FRACTIONAL REPETITION CODES PROPOSED HERE.

repair process that is resilient to up to ρ′ failures, by concatenating an outer MDS code with an inner

Fractional Repetition code with repetition degree ρ = ρ′ + 1. Since MDS codes exist for all feasible

parameters provided that the packets are taken from an alphabet of large enough size, the challenging

part of the suggested construction is designing the Fractional Repetition code. Assuming all the packets

in the system are to be equally protected, we are motivated to provide the following general definition

of FR codes:

Definition 3 (Fractional Repetition Codes): A Fractional Repetition (FR) code C, with repetition de-

gree ρ, for an (n, k, d) DSS, is a collection of n d-subsets2, C = {V1, V2, . . . , Vn}, |Vi| = d, i = 1, . . . , n,

of a set Ω = {1, . . . , θ}, such that each element of Ω belongs to exactly ρ sets in the collection.

In this definition, each set Vi contains the indices of the packets that are stored on node vi, i = 1, . . . , n

and which are output by the MDS code. The value of θ, which will be determined later, corresponds to

the length of the codewords of the outer MDS code. For example, following this definition, the FR code

of Example 2 can be written as C = {V1, . . . , V7} with V1 = {1, 2, 3}, V2 = {3, 4, 5}, V3 = {1, 5, 6}, V4 =

{1, 4, 7} V5 = {2, 5, 7}, V6 = {3, 6, 7}, V7 = {2, 4, 6}, where Ω = {1, . . . , 7}.

III. RELATED WORK

The pioneering work of Dimakis et al. in [1], [3], [5] introduced and studied Regenerating codes for

storage and repair in distributed storage systems. The authors showed that there exists a tradeoff between

storage capacity and repair bandwidth in these systems. Moreover, they determined their storage capacity

using network coding techniques and showed that random linear Regenerating codes are optimal under

a functional repair model.

2A d-subset is a subset of cardinality d.
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Fig. 4. The complete graph K5 on 5 vertices. The labeling of the edges from 1 to
(
5
2

)
= 10 gives the FR code with ρ = 2

for the DSS (5, 4, 3) depicted in Fig. II. The edges adjacent to vertex ui give the indices of the packets stored on node vi in

the DSS.

Subsequent works focused on the design of Exact Regenerating codes that can repair the system by

regenerating an exact copy of the data lost as a result of a failure. Rashmi et al. constructed Exact MBR

codes first in [2] for the special case of d = n− 1, and then for all feasible values of the repair degree d

in [6]. The existence of Exact Regenerating codes for another important regime, known as the Minimum

Storage Regime (MSR), was demonstrated in [7], [8], and deterministic constructions were investigated

in [9], [10], [11], [2]. The design of Regenerating codes that can protect the distributed storage system

from eavesdropping or data corruption by malicious adversaries was studied in [12], [13], [14].

IV. FRACTIONAL REPETITION CODES FOR SINGLE FAILURES

In this section, we study Fractional Repetition codes with repetition degree 2 that can guarantee exact

and uncoded repair in the case of only a single node failure. We provide a code construction based on

regular graphs that can achieve the capacity CMBR of (1) for all feasible values of n and d. To that

end, we define the rate RC(k) of an FR code C as the maximum file size, i.e., the maximum number of

distinct packets, that the code can deliver to any user contacting k nodes.

Definition 4 (FR Code Rate): The rate RC(k) of an FR code C = {V1, V2, . . . , Vn} for a DSS with

parameters (n, k, d) is defined as

RC(k) := min
I⊂[n]
|I|=k

| ∪i∈I Vi|. (2)
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As it can be seen in the examples in the previous section, the DSS parameter k specifying the number

of nodes contacted by a user, is not intrinsically related to the construction of the FR code. An FR code

designed for a DSS with parameters (n, k1, d) can be directly used for another with parameters (n, k2, d).

An FR code C is said to be a universally good code if its rate is guaranteed to be no less then the capacity

CMBR of the DSS under functional, coded and random access repair, i.e.,

RC(k) ≥ CMBR(n, k, d), (3)

for all k = 1, . . . , d. The inequality in the previous definition is justified by the fact that FR code can

have rates that exceed CMBR, a property that will be investigated more in Section VI.

In total, an (n, k, d) DSS stores nd packets. When an FR code of degree ρ is used, θ distinct packets

are stored in the system, where each is repeated exactly ρ times. Therefore, the following relation exists

between the FR code parameters:

Proposition 5: The parameter θ in Def. 3 of an FR code of degree ρ for an (n, k, d) DSS is given by,

nd = θρ. (4)

As an application of Prop. 5, consider the design of an FR code with ρ = 3 for a (7, 3, 3) DSS. This

code should make use of θ = 7×3
3 = 7 distinct packets, which is exactly the number of packets used in

Example 2.

The Exact MBR codes of Rashmi et al. were proposed in [2] as capacity achieving codes for the special

case of d = n−1. In this case, when a node fails, all the remaining nodes in the system are contacted by

the replacement node, which implies that the random access and table-based repair models are equivalent.

These codes can be viewed as special FR codes as shown in Example 1. Their general construction can

be described with the assistance of the complete graph Kn defined on n vertices u1, . . . , un, with edges

indexed from 1 to
(
n
2

)
. Prop 5 gives θ = n(n−1)

2 =
(
n
2

)
distinct packets. The FR code is then obtained by

storing on node vi, i = 1, . . . , n, the packets indexed by the edges adjacent to vertex ui in Kn. Figure IV

depicts the complete graph K5 with its edges indexed in a way to give the FR code of Fig. II.

For the above codes, the repair process is very costly since it involves contacting all the nodes that are

“up” in the system. This may not be always feasible for systems with a large number of nodes. Thus,

it is important to provide constructions of FR codes for smaller values of d. For ρ = 2, Prop. 5 gives a

necessary condition for the existence of FR codes, that is nd should be even. Next, we show that this is

also a sufficient condition, and provide a general code construction based on regular graphs.

A d-regular graph Rn,d on n vertices is a simple graph where all vertices have the same degree d.

The graph Rn,d has nd/2 vertices, and exists whenever nd is even 3.

3This follows, for example, from Gayle-Ryser theorem [15, Th. 2.1.3]
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Fig. 5. (a) R6,3 a 3-regular graph on 6 vertices with edges indexed from 1 to 6×3
2

= 9. (b) The corresponding universally

good FR code with ρ = 2 obtained by Construction 6 for a DSS with n = 6 an d = 3.

Construction 6: An FR code with repetition degree ρ = 2 can be constructed for an (n, k, d) DSS,

with nd even, in the following way:

1) Generate a d-regular graph Rn,d on n vertices u1, . . . , un.

2) Index the edges of Rn,d from 1 to nd
2 .

3) Store on node vi in the DSS the packets indexed by the edges that are adjacent to vertex ui in the

graph Rn,d.

The regular graph in step 1 can be randomly generated using efficient randomized algorithms that

are well-studied in the literature, see for example [16]. The fact that the FR codes obtained by this

construction have repetition degree ρ = 2 is a direct consequence of the graph being simple with edges

being adjacent to exactly two vertices. This also implies that any two nodes cannot have in common more

than one packet. Therefore, among any k nodes observed by a user, at most
(
k
2

)
packets are duplicated.

Therefore, we have the following lemma.

Lemma 7: The FR codes with repetition degree ρ = 2 obtained by Construction 6 are universally good

codes.

Note that Construction 6 subsumes that described in [2] since a complete graph is a regular graph for

which d = n−1. Note that the existence condition of FR codes for single failures, i.e., nd is even, is not

restrictive, since from a system designer perspective, n can be always chosen to be even. In this case,

Construction 6 results in FR codes for all possible values of d. Fig. IV shows a 3-regular graph R6,3 and

the corresponding universally good FR code obtained by Construction 6 for the DSS with n = 6 and
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d = 3.

The next lemma shows that for small values of k the rate of any Universally Good FR code with

ρ = 2, including those obtained by Construction 6, is exactly CMBR.

Lemma 8: For any Universally Good FR code C having a repetition degree ρ = 2 for an (n, k, d) DSS

with k ≤ n
n−d , the rate of the code is

RC(k) = kd−
(
k

2

)
.

Proof: Consider an FR code C = {V1, . . . , Vn} with ρ = 2 for an (n, k, d) DSS. Since C is Universally

Good, two different subsets Vi and Vj intersect in at most one element. Construct a graph G on n vertices

u1, . . . , un by connecting two different vertices ui and uj if Vi ∩ Vj 6= ∅. The graph G is d-regular and

contains nd
2 edges. By Turan Theorem [21], G has clique of size least n

n−d . Therefore, there exists a

collection of k sets in C such that any two intersect in distinct elements.

V. FRACTIONAL REPETITION CODES FOR MULTIPLE FAILURES

In this section, we propose constructions for universally good FR codes with ρ > 2 characterized by

an uncoded repair process that is resilient to more than one failure. While the FR codes with ρ = 2

described in the previous section were based on regular graphs, the constructions in this section will be

based on a combinatorial structure known as Steiner System which can be thought of as a generalization

of the projective plane of Example 2.

A. Steiner Systems

Definition 9 (Steiner System): A Steiner system S(t, k′, v) is a collection of k′-subsets, B1, . . . , Bb,

called blocks, of a set V of cardinality |V| = v, with the property that any t-subset of V is contained in

exactly one block.

It can be shown that in a Steiner system every element of V belongs to the same number of blocks

denoted by r [17, p. 60]. We will be mostly interested in Steiner systems with t = 2. Simple counting

arguments give the following two properties of S(2, k′, v).

Proposition 10: The parameters b and r of a Steiner system S(2, k′, v) are given by:

bk′ = vr, (5)

v − 1 = r(k′ − 1). (6)

Equation (5) is equivalent to (4) for FR codes. The Fano matroid of Fig. 3(a) is an example of a

Steiner system where V is the set of 7 points and the blocks are the lines (including the circle). The

Fano matroid is indeed S(2, 3, 7) since there is a single line that goes through any two points. Prop. 10
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gives r = 3, i.e. each point belong to exactly 3 lines, and b = 7, i.e., the non-Fano matroid contains 7

lines, which can be easily checked on the figure.

For a Steiner system S(t, k, v) to exist, it is necessary that the parameters b and r given in Prop. 10

be integers. Wilson proved in [18] that this condition is also sufficient for a sufficiently large v.

Theorem 11: Given a positive integer k′, Steiner systems S(2, k′, v) exist for all sufficiently large

integers v for which the congruences

vr ≡ 0 mod k′ (7)

v − 1 ≡ 0 mod k′ − 1 (8)

are valid.

B. Code Constructions

In this section we present two constructions of universally good FR codes derived from Steiner systems.

Example 2 suggests the following direct construction:

Construction 12: Given a Steiner system S(2, d, θ) with blocks B1, . . . , Bn ⊂ V = [θ], an FR code C
with repetition degree ρ for a DSS (n, k, d) can be obtained by taking C = {B1, . . . , Bn}. The parameters

n and ρ as given by Prop 10 are n = θ(θ−1)
d(d−1) and ρ = θ−1

d−1 .

By definition, any two blocks in S(t, k, v) cannot intersect in more than t− 1 elements. This implies

that in the FR codes obtained by Construction 12, two nodes can have at most one packet in common.

Thus, among any k nodes there are at most
(
k
2

)
packets that are repeated twice. Therefore, the obtained

FR codes can achieve the capacity CMBR for all k = 1, . . . , d.

Lemma 13: The FR codes obtained by Construction 12 are universally good.

Construction 12 is simple, however, it has the disadvantage that the two important parameters of the

code design, n and ρ, cannot be explicitly chosen beforehand. Typically, an FR code should be designed

for a given large number of nodes n, a small repetition degree ρ since it is very unlikely that many

nodes fail simultaneously, and a repair degree d that is just a fraction of the surviving nodes. The second

construction satisfies these requirements.

Construction 14: Given a Steiner system S(2, ρ, n) with blocks B1, . . . , Bθ ⊂ V = [n], an FR code

C = {V1, . . . , Vn} with a repetition degree ρ for a DSS (n, k, d) can be obtained by taking

Vi = {j|i ∈ Bj}.

The parameters d and θ as given by Prop 10 are d = n−1
ρ−1 and θ = n(n−1)

ρ(ρ−1) .

We refer to the codes obtained by this construction as Transpose codes since the role of the blocks

and the elements of V are reversed. The blocks correspond to the stored packets in the DSS and the

elements of V to the storage nodes. Therefore, any two nodes have exactly one packet in common, and

the rate of Transpose codes can be exactly determined as given by the following lemma.
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Fig. 6. (a) FR code with ρ = 4 for a DSS with n = 12 and d = 3 derived from the Steiner system S(2,3,9) using Construction 12.

(b) FR code with ρ = 3 for a DSS with n = 9 and d = 4 derived from the same Steiner system using Construction 14.

Lemma 15: The rate of the Transpose codes C obtained by Construction 14 is exactly

RC(k) = kd−
(
k

2

)
,

and these codes are universally good.

To highlight the difference between these two constructions, we give an example in Figure V-B when

they are both applied to the (unique) Steiner system S(2,3,9) [19, p. 27]. Construction 12 gives an FR

code with ρ = 4 for a DSS with n = 12 and d = 3, whereas Construction 12 gives an FR code with

ρ = 3 for a DSS with n = 9 and d = 4. It can be seen that Construction 12 gives a better handle on the

parameters n and ρ of the FR code, since ρ = k′ and n = v for a Steiner system S(2, k′, v). Note that

these two constructions will give the same FR code (up to relabeling) when applied to the Fano matroid

of Fig. 3(b).

The next result strengthens Lemma 15 by showing that Transpose codes are rate optimal in the sense

that no other Universally Good FR codes with the same family of parameters satisfying d = n−1
ρ−1 , can

achieve higher rates.

Lemma 16: Any Universally Good code C with repetition degree ρ and d = n−1
ρ−1 has a rate given by

RC(k) = kd−
(
k

2

)
Proof: Consider an FR code C = {V1, . . . , Vn} with repetition degree ρ and d = n−1

ρ−1 . Since C is

Universally Good, two different subsets in C are either disjoint, or have exactly one element in common.

Moreover, the average number of distinct packets observed by a user contacting k = 2 distinct nodes is
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2d− 1 packets, i.e., (
n

2

)−1∑
i 6=j
|Vi ∪ Vj | = 2d− 1,

as given by Lemma 19 which will be proven in the next section. Therefore, any two sets in C cannot be

disjoint and intersect in exactly one packet. Therefore, RC(k) ≤ kd−
(
k
2

)
.

The previous two constructions assume the existence of the Steiner system with the desired parameters,

which is not always true. However, Steiner systems S(2, k, v) are known to exist for small values of

k, namely k = 2, . . . , 5, whenever the integrality conditions given by Prop. 10 are satisfied. This result

in conjunction with Construction 14 gives the necessary and sufficient conditions for the existence of

Transpose codes with low repetition degree, which is indeed the range of ρ that we are interested in.

Lemma 17: Transpose codes with repetition degree ρ = 2, . . . , 5 exist if and only if

n− 1 ≡ 0 mod ρ− 1 (9)

n(n− 1) ≡ 0 mod ρ(ρ− 1) (10)

The second dominant failure pattern, after single node failures, is the simultaneous failure of two

nodes. FR codes for this case having a repetition degree ρ = 3 always exist whenever n ≡ 1, 3 mod 6

by the previous lemma. These codes can be obtained by Construction 14 using Steiner systems S(2, 3, n),

known as Steiner triple systems. Steiner triple systems are historically the most investigated systems in

the literature and explicit constructions, such as Bose and Skolem constructions, exist for all feasible

values of n [20].

VI. CAPACITY UNDER EXACT UNCODED REPAIR

The Universally Good FR codes constructed in the previous sections are guaranteed to have a rate

greater or equal to the capacity CMBR, achieved by random Regenerating Codes as demonstrated in [3].

However, there exist cases where FR codes can achieve a storage capacity that exceeds CMBR. Figure VI

depicts an FR code for the (6, 3, 3) DSS based on a 3 × 3 grid. The points in the grid represent the

packets, and the lines the storage nodes. Since this grid does not contain any triangles, any user contacting

3 nodes have access to at least 7 distinct packets. Therefore, this code has a rate R(3) = 7 > CMBR = 6.

We refer to the maximum file size that a DSS with parameters (n, k, d) can store under exact and

uncoded repair as its Fractional Repetition (FR) capacity CFR defined as follows:

Definition 18 (Fractional Repetition Capacity): The Fractional Repair (FR) capacity, denoted by CFR
of a distributed storage system with parameters (n, k, d) when the repair process in the system is required

to be uncoded, exact and resilient to ρ− 1 failures is defined for all ρ satisfying nd ≡ 0 mod ρ as

CFR(k, ρ) := max
C

RC(k),

where C is any FR code with repetition degree ρ for an (n, k, d) DSS.
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Fig. 7. (a) A 3×3 grid of 9 points and 6 lines. (b) The corresponding FR code achieving a storage capacity exceeding CMBR.

The condition on ρ in the definition above is needed by Prop. 10 to guarantee the existence of an FR

code C. The code constructions of the previous sections imply lower bounds on the FR capacity. Next,

we derive two upper bounds on CFR. The first is based on an averaging argument and is presented in

Lemma 19.

Lemma 19: For a DSS with parameters (n, k, d),

CFR(k, ρ) ≤

⌊
nd

ρ

(
1−

(
n−ρ
k

)(
n
k

) )⌋ .
Proof: Let C = {V1, . . . , Vn} be an FR code with repetition degree ρ, where Vi ⊂ [θ], |Vi| = d and

θ = nd
ρ as given by Prop. 5. Define the set U as

U := {UI = ∪i∈IVi : I ⊂ [n], |I| = k}.

The set UI represent the set of packets observed by a user contacting the nodes in the DSS indexed by

the elements in I . We want to show that the term on the right in the inequality is the average cardinality

of the sets in U under uniform distribution. We denote this average by UI . To find UI , we count the

following quantity
∑

UI∈U |UI | in two ways. First, we have by definition∑
UI∈U

|UI | =
(
n

k

)
UI .

But, each element in [θ] belongs to exactly
(
n
k

)
−
(
n−ρ
k

)
sets in U . Therefore,∑

UI∈U
|UI | = θ

((
n

k

)
−
(
n− ρ
k

))
.

The upper bounds follows then from the fact that there must be in U at least one set of cardinality less

that the average.
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For instance, for the DSS D(7, 3, 3), Lem. 19 implies that R(3, 3) ≤ b6.2c = 6. Therefore, the FR

code of Example 2 is optimal and CFR(3, 3) = 6. However, the above upper bound has the disadvantage

of becoming very loose for large values of n and k since the FR capacity is by definition a worst case

measure.

Next, we give a second upper bound on the FR capacity of a DSS that is defined using a recursive

function, and which is usually tighter than the previous one.

Lemma 20: For a DSS D(n, k, d), the FR capacity is upper bounded by the function g(k),

CFR(k, ρ) ≤ g(k),

where g(k) is defined recursively as

g(1) = d, (11)

g(k + 1) = g(k) + d−
⌈
ρg(k)− kd
n− k

⌉
. (12)

Proof: (sketch) The proof is established by induction on k. It is evident that the statement is true

for k = 1. Let us assume that it is true for k = k0, and prove it for k = k0 + 1. Consider an FR

code C = {V1, . . . , Vn} of repetition degree ρ for an (n, k, d) DSS. Pick k0 sets from C. Without loss of

generality, let these sets be V1, . . . , Vk0 , and their union U := ∪k0i=1Vi. By the induction hypothesis, we

have |U | ≤ g(k0).

Now, since each element in U is repeated ρ times, there are ρg(k0) − k0d copies of the elements in

U that should be stored on the remaining n − k0 nodes in the system. Therefore, there must exist one

storage node vj , j ∈ {k0 + 1, . . . , n}, where |Vj ∩ U | ≥ dρg(k0)−k0dn−k0 e. Therefore, a user contacting the

k0 + 1 nodes v1, . . . , vk0 in addition to node vj will observe

|U ∪ Vj | ≤ g(k0) + d− dρg(k0)− k0d
n− k0

e,

distinct packets.

For storage systems with d = n−1
ρ−1 , the previous lemma implies that for small values of k, (k =

O(n1/2)), Transpose codes achieve the FR capacity which is exactly CMBR:

Corollary 21: For a DSS (n, k, d) with d = n−1
ρ−1 and n > k + (ρ− 2)

(
k
2

)
,

CFR(k, ρ) = kd−
(
k

2

)
.

VII. CONCLUSION AND OPEN PROBLEMS

We proposed a new class of Exact Minimum-Bandwidth Regenerating (MBR) codes for distributed

storage systems, that we call Fractional Repetition (FR) codes, characterized by a low complexity

uncoded repair process. An FR code with repetition degree ρ is resilient to ρ− 1 failures, and consists

of splitting the data on each node into multiple packets and storing ρ copies of each on distinct nodes
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in the system. An additional outer MDS code guarantees that a user contacting a sufficient number of

storage nodes will be able to recover the stored file.

For single node failures, i.e. ρ = 2, we presented a construction of FR codes based on regular graphs

for all feasible system parameters. For the multiple failures case, i.e., ρ > 2, we presented two code

constructions based on Steiner systems. Of particular importance are the constructed Transpose codes

where the nodes contacted for repair are just a fraction of the surviving ones. All the obtained codes are

guaranteed to achieve the storage capacity under random access repair. The adopted table-based repair

model motivates a new concept of Fractional Repetition (FR) capacity for distributed storage systems,

which we studied and derived some upper bounds.

This work constitutes the first step in the study of Fractional Repetition codes and many important

questions remain open. For instance, it is not known whether FR codes with ρ > 2 exist for system

parameters not covered by our constructions. Moreover, a general expression of the FR capacity is still

an open problem, as well as codes that can achieve it.
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