
Data Secrecy in Distributed Storage Systems under
Exact Repair

Sreechakra Goparaju, Salim El Rouayheb, Robert Calderbank and H. Vincent Poor

Abstract—The problem of securing data against eavesdropping
in distributed storage systems is studied. The focus is on systems
that use linear codes and implement exact repair to recover
from node failures. The maximum file size that can be stored
securely is determined for systems in which all the available
nodes help in repair (i.e., repair degree d = n − 1, where n is
the total number of nodes) and for any number of compromised
nodes. Similar results in the literature are restricted to the case
of at most two compromised nodes. Moreover, new explicit upper
bounds are given on the maximum secure file size for systems
with d < n − 1. The key ingredients for the contribution of
this paper are new results on subspace intersection for the data
downloaded during repair. The new bounds imply the interesting
fact that the maximum data that can be stored securely decreases
exponentially with the number of compromised nodes.

I. INTRODUCTION

We study the problem of making distributed storage systems
(DSS) information-theoretically secure against eavesdropping
attacks. These systems are witnessing a rapid growth in recent
years and include data centers and p2p cloud storage systems.
These systems use data redundancy to achieve data reliability
and availability in the face of frequent node failures. Three-
times (3x) data replication has been the industry standard to
achieve this goal. However, this solution does not scale well
with the large amounts of data (in the order of petabytes) that
these systems need to store. For this reason, data centers have
started utilizing more sophisticated erasure codes on part of
their data (typically the “cold” data that is not highly accessed)
to protect against data loss [1], [2].

Erasure codes can achieve the same reliability levels as 3x
replication with a much reduced storage overhead. However,
they result in other system costs consisting of higher repair
bandwidth, disk reads, computation complexity, etc. Moreover,
erasure codes present new challenges when trying to secure
the system. We illustrate this phenomenon with the example
in Fig. 1, which depicts an (n, k, d) = (4, 2, 2) DSS. The
parameter n = 4 represents the total number of nodes of unit
storage capacity each, and k = 2 is the number of nodes
contacted by a user to retrieve the stored file. A new node,
added to the system after a failure, contacts d = 2 other
nodes to download its data (d is referred to as the repair

S. Goparaju, S. El Rouayheb, and H. Vincent Poor are with the Department
of Electrical Engineering, Princeton University, USA (e-mails: goparaju,
salim, poor@princeton.edu).

R. Calderbank is with the Department of Computer Science, Duke Univer-
sity, USA (e-mail: robert.calderbank@duke.edu).

This research was supported by the U. S. National Science Foundation
under Grant CCF-1016671.

F: File K: Key

Fig. 1. An example of how repairing a DSS can compromise the system
security. The original DSS formed of nodes 1, . . . , 4 is secured against a
single compromised node using a secret sharing scheme or a coset code.
However, repairing failed nodes can break the security of the system. For
instance, consider the case when node 1 fails and is replaced by node 5,
which is already compromised. The eavesdropper can observe all the data
downloaded by node 5 and therefore decode the stored file F .

degree). Fig. 1 shows the failure and repair of node 1. Using
a maximum distance separable (MDS) code, such as a Reed-
Solomon code, the user can store a file of size 2 units in the
DSS, which is also the information-theoretically optimal size.
Now, suppose that we want to protect the system against an
eavesdropper that can observe at most one node in the DSS
unknown to us. If the system does not experience failures and
repairs, then one can store securely a file F of one unit on
the DSS by “mixing” the information file F with a randomly
generated unit sized key K using the code depicted in the
figure. This code can be regarded as a secret sharing scheme
[3], a coset code for the wiretap channel II [4], or as a secure
network code for the combination network [5], [6]. The code
allows a user contacting any 2 node to decode the file F and
leaks no information to the eavesdropper. A security violation
occurs, however, when a node fails and is replaced by a new
one. The replacement node has to download data from the
surviving nodes in the system to regenerate the lost data. Now,
if the new node is already compromised, this will reveal all
the downloaded data to the eavesdropper. For instance, the
figure depicts the case when node 1 fails and the coded data
chunk F +K is lost. The new replacement node downloads
the two data chunks K and F +2K to decode the lost packet

F + K. However, this may reveal these two packets to the
eavesdropper which can decode the file F . Therefore, even
if we start with a perfectly secure code, the repair process
can break the system security and result in data leakage. Our
goal in this paper is to quantify how much data can be stored
securely in a storage system even when the system experiences
failures and repairs.

We consider systems that implement exact repair1 in which
the repair process regenerates an exact copy of the lost packet
(see Fig. 1). Exact repair is a requirement in many practical
systems for numerous reasons, such as preserving the system-
atic form of the data and allowing temporary reconstruction
of data stored on a “hot” (i.e. highly accessed) node [1].
We also focus on linear coding schemes since they are the
dominant class of codes employed in practice due to their
ease of implementation. For these systems we are interested in
quantifying the maximum amount of data that can be stored in
a DSS with a given storage and repair bandwidth budgets while
keeping the system perfectly secure. This means that we want
to guarantee that no information is leaked to an eavesdropper
that can observe a certain number of nodes in the system.

Contribution: We find an expression for the maximum
file size that can be stored securely on a DSS under the linear
coding and exact repair constraints. Our result holds for any
number of compromised nodes for a DSS with repair degree
d = n − 1. Similar results in the literature exist only for
systems in which at most two nodes can be compromised by an
eavesdropper. We also give new explicit upper bounds on the
maximum secure file size for systems with d < n−1. The key
ingredients for our contribution are new results on subspace
intersection for the data downloaded during repair. Our bounds
imply the interesting fact that the maximum secure file size in
the minimum storage regime decreases exponentially with the
number of compromised nodes in contrast with for example
the minimum-bandwidth regime [8], [9] or secret sharing
schemes where it decreases linearly.

Related work: Dimakis et al. studied in [7] the
information-theoretic tradeoff between storage overhead and
repair bandwidth in distributed storage systems. Pawar et al.
studied the problem of securing distributed storage systems
under repair dynamics against eavesdroppers and malicious
adversaries in [8], [10], [11]. They provided upper bounds
on the system secure capacity and proved its achiveability in
the bandwidth-limited regime for repair degree d = n − 1.
Shah et al. constructed secure codes based on the product-
matrix framework in [9] and [12]. These codes can achieve
the upper bound in [10] for the minimum-bandwidth regime
and for any repair degree d. Rawat et al. gave tighter bounds
on the secrecy capacity of a DSS in the minimum storage
regime [13] and proved the achieveability of their bound for
d = n − 1 and for certain system parameters. Dikaliotis et
al. studied the security of distributed storage systems in the
presence of a trusted verifier [14].

1See [7] for the other type of repair referred to as functional in the literature.

Organization: The paper is organized as follows. In
Section II, we describe the system and eavesdropper models
and set up the notation. In Section III, we state our main
results. We follow these by first providing an intuition behind
the results in Section IV and then the proofs in Section V. We
conclude with a summary of our results and open problems in
Section VI.

II. PROBLEM SETTING

A. System Model

A distributed storage system consists of n active storage
units or nodes {1, 2, . . . , n}, each with a storage capacity of
α symbols belonging to some finite field F. Nodes in a DSS
are unreliable and fail frequently. When a storage node fails,
it is replaced by a new node with the same storage capacity
α. A DSS storing a data file F of M symbols (in F) allows
any legitimate user called a data collector to retrieve the M
symbols and reconstruct the original file F by connecting to
any k out of the n active nodes. We term this the MDS property
of the DSS. Furthermore, we focus on single node failures
since they are the most frequent in such systems. A new node
added to the system to replace a failed one connects to d
arbitrary nodes chosen out of the remaining n− 1 active ones
and downloads β units from each. The repair degree d is a
system parameter satisfying k ≤ d ≤ n − 1, and the nodes
aiding in the repair are called helper nodes. The so-called
repair process usually demands a higher repair bandwidth dβ
than the amount of data α it actually stores. Moreover, the
reconstructed data can possibly be different from the original
data stored in the failed node. We define an (n, k, d)-DSS as
a DSS that uses d nodes for the repair of a failed node to
continuously maintain the k-out-of-n MDS property.

Dimakis et al. [7] showed that there is a fundamental
tradeoff between the amount of data stored in each node α and
the minimum repair bandwidth dβ required to store a file in
the system. We focus on one extremity of this tradeoff, called
minimum storage, in which each node stores the minimum
possible α = M/k. An MDS code achieving the minimum
repair bandwidth for this α,

dβ =
dα

d− k + 1
, (1)

is referred to as an optimal bandwidth MDS code or a
minimum storage regenerating (MSR) code. Furthermore, in
this paper, we consider the case of exact repair, where the
replacement node is required to reconstruct an exact copy of
the lost data. In other words, the DSS consisting of n active
nodes (and the MSR code) is invariant with time. It has been
shown that optimal repair bandwidth is achievable for exact
repair [15].

We concentrate on the practical scenario of linear MSR
codes, which preserve the optimal repair bandwidth of (1).
Without loss of generality, we can separate the nodes in the
DSS storing an MDS code into systematic and parity nodes.
We designate the first k nodes as systematic, where node
i, i ∈ [k] := {1, 2, . . . , k}, stores the data vector wi of

column-length α. The data vector wk+i stored in parity node
i, i ∈ [n− k], is given by

wk+i =

k∑
j=1

Ai,jwj , (2)

where Ai,j ∈ Fα×α is the coding matrix corresponding to the
parity node i ∈ [n − k] and the systematic node j ∈ [k]. For
optimal bandwidth repair of a failed systematic node i ∈ [k],
all other nodes transmit β amount of information, i.e., a helper
node j 6= i transmits a vector of length β given by Vj,iwj ,
where Vj,i ∈ Fβ×α is the repair matrix used for the repair of
node i by node j. The vector Vj,iwj can also be interpreted as
a projection of wj onto a subspace of dimension β. We will
use Vj,i, interchangeably, to denote both the matrix and the
subspace obtained by the span of its rows.

B. Eavesdropper Model

We assume the presence of an eavesdropper Eve in the DSS,
which can passively observe but not modify the contents of
up to ` < k nodes of its choice. Eve can not only observe
the data stored in a node i, but also the repair data Vj,iwj
flowing into its replacement from a helper node j 6= i. In
other words, not only does Eve have complete knowledge of
wi, it can potentially infer a part of wj as well. In line with
our assumption of repair of only systematic nodes, we assume
that Eve can observe the repair data for only a subset of the
systematic nodes2, Ed, where Ed ⊆ [k], and denote the rest
of the observed nodes (for which it just observes the stored
data) as Es, Es ⊆ [n]. The size of these subsets are denoted
by `1 = |Es| and `2 = |Ed|, where `1 + `2 = `. Finally, we
assume that Eve has complete knowledge of the storage and
repair schemes implemented in the DSS.

C. Secrecy Capacity

Let U be a random vector uniformly distributed over FM(s)

,
representing an incompressible data file with H(U) = M (s).
Let Wi denote the random variable corresponding to the data
wi stored in node i, i ∈ [n]. Let us assume that a set D of
d helper nodes aid in the repair of node i. We denote the
random variable corresponding to the data transmitted by a
helper node m ∈ D for the repair of node i by Sim(D), and
the total repair data downloaded by node i by SiD. We drop
the D in the notation and call these Sim and Si, respectively,
when the context is clear.

Thus, Wi represents the data that can be downloaded by a
data collector when contacting node i and observable by Eve
when i ∈ Es, while Si represents the total data revealed to
Eve when accessing a node i ∈ Ed. Notice that the stored data
Wi is a function of the downloaded data Si. For convenience
let us denote {Wi : i ∈ A} by WA, {Sji : j ∈ A} by SAi , and
{Si : i ∈ A} by SA.

2Note that for securing the data, we do not store the original file on
the systematic nodes, but rather the original file data encoded with random
keys. However, we shall continue to refer to these nodes as systematic for
convenience.

The MDS property of the DSS can be written as

H (U |WA) = 0, (3)

for all A ⊆ [n], such that |A| = k. To store a file U on the
DSS perfectly secured from the eavesdropper Eve, we have
the perfect secrecy condition,

H
(
U
∣∣WEs , SEd) = H (U) , (4)

for all Es ⊆ [n], Ed ⊆ [k]\Es, and |Es|+ |Ed| < k.
Given an (n, k, d)-DSS with `1 and `2 compromised nodes

(as described above) its linear coding secrecy capacity Cs(α),
is then defined to be the maximum file size H(U) that can
be stored in the DSS using an optimal bandwidth MDS code
for exact repair, such that the reconstruction property and the
perfect secrecy condition simultaneously hold, i.e.,

Cs(α) := sup
A,Es,Ed:

(3),(4) hold

H(U). (5)

III. MAIN RESULTS

In this section, we state our main results. The proofs will
follow in Section V after give a rough idea behind the results
in Section IV. The following lemma provides a lower bound
on the sum of subspaces3 associated with the repair bandwidth
from a particular node, when it aids in the repair of multiple
nodes.

Lemma 1: Consider an (n, k, d)-DSS in the systematic
form with nodes having storage capacity α. Let nodes [k] be
the systematic nodes and let Vi,j be the β×α matrix associated
with the exact repair of node j by node i. Then, for d = n−1
and for each i ∈ [k], we have

dim

∑
j∈A

Vi,j

 ≥

(
1−

(
n− k − 1

n− k

)|A|)
α, (6)

where A ⊆ [k]\{i} and Vi,j is the subspace corresponding to
the matrix.

The next theorem gives an upper bound on the (linear
coding) secrecy capacity Cs(α) for a given number of com-
promised nodes.

Theorem 2: Consider an (n, k, d)-DSS with a node storage
capacity of α, which stores an optimal bandwidth linear
MDS code for exact repair of systematic nodes. Suppose an
eavesdropper gains access to the data stored in `1 nodes and
the data downloaded during the repair of `2 systematic nodes,
such that

`1 + `2 < k.

The achievable secure file size Ms for the given MSR code
is then upper bounded by

Ms ≤ (k − `1 − `2)
(
1− 1

d− k + 1

)`2
α. (7)

3The sum of subspaces B, C is defined as B+C = {b+c : b ∈ B, c ∈ C}.

node k

node `+ 3

node `+ 2

node `+ 1

node `

node 2

node 1

V`+1,1w`+1

Vk,`wk

Fig. 2. An (n, k, n− 1)-DSS in which nodes 1, . . . , ` have failed and have
been replaced by the ` compromised nodes in red (nodes on the right). Each
red node is repaired by contacting all of the other d = n − 1 nodes in the
system. For clarity, we only depict the edges between the red nodes and the
remaining k−` non-compromised systematic nodes (in blue, on the left). At a
high level, the upper bound in Theorem 2 is obtained by evaluating the amount
of information leaked to the eavesdropper in this scenario. This includes the
information stored in the red nodes, plus the information contained in their
downloaded data. The latter can be bounded using Lemma 1 which gives a
handle on the correlation among all the data downloaded for repair.

The next theorem establishes that the upper bound in
Theorem 2 is achievable when d = n− 1.

Theorem 3: For an (n, k, d)-DSS with d = n − 1, the
secrecy capacity for optimal bandwidth MDS codes such that
any systematic node is exact-repairable using a linear coding,
is achievable for α = (n− k)k and is given by

Cs(α) = (k − `1 − `2)
(
1− 1

n− k

)`2
α. (8)

Moreover, the capacity is achievable for all (`1, `2).
Proof: The proof follows from [13, Theorem 10] which

describes an achievability scheme by precoding a (n, k) zigzag
code [16] using a maximum rank distance code.

IV. SOME INTUITION

Before giving the formal proofs, we present in this section
some intuition behind the upper bound (7) on the maximum
achievable secure file size for a given DSS. We start with a
simple toy example. How much data can we store securely
in a system of 2 nodes of storage size α such that a user
can recover it in the presence of an eavesdropper which has
access to any one (unknown to us) node? We can quickly
upper bound the answer by α data units by arguing that if we
actually knew which node was compromised, we would not
store any information in that node. In fact, this upper bound
is achievable by using a random key r of size α and storing it
on node 1 and storing w+ r on node 2, where w is the data.
In other words, we subtract the amount of information visible
to the eavesdropper from the total storage size available to the
user. Then, by exploiting randomness this upper bound can be
achieve even without knowing the identity of the compromised
nodes.

We extend this argument to an (n, k, d)-DSS with nodes of
storage capacity α and repair bandwidth β per helper node.

We explain our results for the specific case of two parity
nodes and d = n− 1 for which the optimal repair bandwidth
β = α/2. This means that each helper node sends half of
its “information” to a replacement node. We also restrict our
attention to the more-compromised nodes for which Eve can
observe the repair data, i.e., let ` = `2 = |Ed|, where Ed ⊆ [k].
As in the 2-node example, we first try to find an upper bound
on the maximum secure file size by asking how much would
we store if we knew that the first ` nodes were compromised,
or Ed = [`]. We do not store any information on these ` nodes.
We know however that Eve also gains some information about
the nodes aiding in the repair of the compromised nodes if
they were to fail. We assume that in a large enough length of
time, each node fails at least once, and is repaired by the rest
of the nodes. In particular, Eve has access to the information
flowing to each of the compromised nodes from each of the
remaining nodes. Fig. 2 shows the information flows which
we shall focus on.

The information observable by Eve about node i, i ∈
{`+1, . . . , k}, is obtained by the vectors Vi,jwi communicated
from node i to each compromised node j ∈ [`]. The total
knowledge Eve has about node i is therefore equivalent to
the combined information present in {Vi,jwi}`j=1, or in other
words, equivalent to the rank of the β × `α matrix,[

Vi,1 | Vi,2 | · · · | Vi,`
]
.

If instead, we view Vi,j to be a subspace spanning the rows
of the matrix Vi,j , this rank can also be represented as the
dimension of the sum of subspaces,

dim (Vi,1 + Vi,2 + · · ·+ Vi,`) .

In this paper, we provide explicit bounds for the dimension
of these sums of subspaces. For two parity nodes, we show
that an addition of each repair subspace from a node reveals
half of the information (about the helper node) which was
unrevealed before the addition. To clarify, all subspaces reveal
half of the information by design (β = α/2). If we add two
subspaces, because any two of these subspaces, say Vi,1 and
Vi,2, cannot intersect in more than α/4 dimensions [17], [13],
their sum has to be more than

α

2
+
α

4

dimensions. Lemma 1 implies that for ` subspaces, a lower
bound of

α

2
+
α

4
+ · · ·+ α

2`
=

(
1− 1

2`

)
α

dimensions has to be revealed by node i in repairing the `
compromised nodes.

This calculation thus gives us the amount of information
visible to Eve, which is `α from the compromised nodes and

(k − `)
(
1− 1

2`

)
α

from the (k − `) non-compromised nodes. As in the 2-node
example, it can be proved that using randomness (maximum

rank separable codes, [13]), we can securely store a total of
kα minus the information visible to Eve, i.e.,

(k − `) 1

2`
α

data units in the presence of ` compromised nodes.

V. PROOFS

Proof of Lemma 1: We prove the lemma for the case
of two parity nodes, i.e., n = k + 2. The proof can easily
be extended to the case of more than two parity nodes. For
the corresponding (k, k + 2, d = k + 1)-DSS, as in Section
II, we represent the symbols stored in the nodes [n] by the
column-vectors w1, . . . , wn of length α, and assume the first
k nodes to be systematic. For convenience, we rename the
coding matrices for parity node 1, A1,j , j ∈ [k] as Aj , j ∈ [k],
and those for parity node 2, A2,j , j ∈ [k] as Bj , j ∈ [k].

When node j fails, node i transmits the matrix Vi,jwi in
order to repair node j. When the number of parity nodes is
2, Vi,j is an α/2 × α matrix. For notational simplicity, we
represent the matrices Vk+1,j and Vk+2,j by S1,j and S2,j for
all j ∈ [k]. It can be shown that an optimal bandwidth exact
repair of systematic nodes necessitates interference alignment
[18] and leads to the following subspace conditions (e.g. [17]):

S1,jAi w S2,jBi, (9)
w Vi,j , (10)

S1,jAj + S2,jBj w Fα, (11)

for all j ∈ [k], i ∈ [k]\{j}, and w denotes an equality
of subspaces. In other words, the above subspace equalities
specify the conditions required for the repair of a systematic
node j by the set of helper nodes [n]\{j}.

We prove the result stated in the lemma using induction.
Base case: For |A| = 1, we have dim (Vi,j) ≥ α/2, which
follows from the model constraints on the given DSS4.

Inductive step: Suppose the claim holds for |A| = m − 1.
We shall prove that the claim also holds for |A| = m. Without
loss of generality, let A = [m].

For [k] 3 i 6∈ [m], we have

dim

 m∑
j=1

Vi,j

 = dim

 m∑
j=1

S1,jAi

 , (12)

= dim

 m∑
j=1

S1,j

 , (13)

= dim

 m∑
j=1

S1,jAm

 , (14)

≥ dim

m−1∑
j=1

S1,jAm ∩ S2,mBm

+dim (S1,mAm) , (15)

4It can be shown from the MDS property of the storage code that all the
coding matrices {Ai, Bi}, i ∈ [k] have full rank, and from the subspace
conditions that all the subspaces Vi,j have full rank as well.

where (12) follows from (10), (13) and (14) follow from
distributivity and the fact that the matrices Ai and Am are
invertible, and therefore dim (SAi) = dim (S) = dim (SAm),
for any subspace S. For (15), notice that the subspacesm−1∑

j=1

S1,jAm

 ∩ S2,mBm,

and S1,mAm intersect only in the zero vector, see (11).
Furthermore, both are contained in the subspace m∑

j=1

S1,jAm

 ,

and hence so is their direct sum.
Using the identity for arbitrary subspaces Sa and Sb,

that dim (Sa + Sb) + dim (Sa ∩ Sb) = dim (Sa) + dim (Sb),
and the fact that the subspaces S2,mBm and S1,mAm have
dimension α/2 (Am and Bm being nonsingular), we obtain
from (15),

dim

 m∑
j=1

Vi,j

 ≥ dim

m−1∑
j=1

S1,jAm

+ α (16)

−dim

m−1∑
j=1

S1,jAm + S2,mBm

 .

The third term on the right hand side in inequality (16)
equals the term on the left hand side, because

dim

m−1∑
j=1

S1,jAm + S2,mBm

= dim

m−1∑
j=1

S1,jAmB
−1
m + S2,m

= dim

m−1∑
j=1

S2,j + S2,m

= dim

 m∑
j=1

Vi,j

 , (17)

where the steps follow from similar reasons as in (12)–(15).
Also, similarly,

dim

m−1∑
j=1

S1,jAm

 = dim

m−1∑
j=1

Vm,j

 . (18)

Using the induction hypothesis and (16)–(18), we have

2 dim

 m∑
j=1

Vi,j

 ≥ dim

m−1∑
j=1

Vm,j

+ α

≥
(
1− 1

2m−1

)
α+ α,

which completes the inductive step.

For the sake of completeness, we present here the
information-theoretic proof given in [13] which transitions into
the proof of Theorem 2 via Lemma 1. However, our notation,
described in Section II, is inspired by [19].

Proof of Theorem 2: Let R be any set of k − `1 − `2
systematic nodes not in Es or Ed. In order to store a file U of
entropy M (s) securely in the DSS, we have

M (s) = H
(
U
∣∣WEs , SEd) , (19)

= H
(
U
∣∣WEs , SEd)−H (U ∣∣WEs , SEd ,WR) , (20)

= I
(
U ;WR

∣∣WEs , SEd) , (21)

≤ H
(
WR

∣∣SEd) , (22)

≤
∑
i∈R

H
(
Wi

∣∣∣SEdi) , (23)

=
∑
i∈R

(
H
(
Wi, S

Ed
i

)
−H

(
SEdi

))
, (24)

=
∑
i∈R

(
H (Wi)−H

(
SEdi

))
, (25)

where (20) is the same as (4), (21) follows from (3) and the
fact that W i is a function of Si, and (26) from the fact that
Smi is a function of Wi, for any m 6= i. Using the linearity of
the MDS code being used, we have

H
(
SEdi

)
= dim

∑
j∈Ed

Vi,j

 , (26)

where because i ∈ R, we have E2 ⊆ [k]\{i}. Thus, we have,

M (s) ≤ (k − `1 − `2)
(
1− 1

n− k

)`2
α. (27)

For d < n− 1, we focus on the first d+ 1 nodes, viewing
it as an (n′ = d + 1, k, d = n′ − 1)-DSS. The conditions
of exact repair for this restricted system form a relaxation of
the original problem, and thus an upper bound on M (s) for
this system also holds for the latter. By the optimal bandwidth
condition (1), and because exact repair requires interference
alignment, from Lemma 1, we obtain for i ∈ [k],

dim

∑
j∈A

Vi,j

 ≥

(
1−

(
d− k

d− k + 1

)|A|)
α,

for A ⊆ [k]\{i}. Note that our helper set of nodes is D =
[n′]\{i} for repairing node i. We therefore obtain the required
bound on M (s) using a similar set of equations as for d =
n− 1.

VI. CONCLUSION

We have studied the problem of securing data in distributed
storage systems against eavesdropping. Our focus has been
on systems that implement linear codes and exact repair. We
have determined the maximum file size that can be stored
securely in these systems for any number of compromised
nodes, when the repair degree d = n− 1. For the other cases,
i.e., when d < n − 1, we have given new upper bounds on

the amount of secure data that can be stored in the system.
Many questions remain open, such as constructing codes that
can achieve our upper bound (7) for d < n− 1, and finding a
general expression of the system secrecy capacity without the
linearity and exactness assumptions.

REFERENCES

[1] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in Proc. 2012
USENIX Annual Technical Conference (ATC), (Boston, MA), 2012.

[2] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing Elephants: Novel
Erasure Codes for Big Data,” in arXiv:1301.3791, 2013.

[3] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[4] L. H. Ozarow and A. D. Wyner, “Wire-tap channel-II,” AT&T Bell Lab
Tech. Journal, vol. 63, no. 10, 1984.

[5] N. Cai and R. W. Yeung, “Secure network coding on a wiretap
secure network coding on a wiretap network,” IEEE Transactions on
Information Theory, vol. 57, no. 1, pp. 424–435, 2011.

[6] S. El Rouayheb and E. Soljanin, “Secure network coding for wiretap
networks of type ii,” IEEE Transactions on Information Theory, vol. 58,
no. 3, pp. 1361–1371, 2012.

[7] A. Dimakis, P. Godfrey, Y. Wu, M. Wainright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Transactions
on Information Theory, vol. 56, pp. 4539–4551, Sep. 2010.

[8] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic
distributed storage systems against eavesdropping and adversarial at-
tacks,” IEEE Transactions on Information Theory, vol. 58, pp. 6734–
6753, March 2012.

[9] N. B. Shah, K. V. Rashmi, and P. V. Kumar, “Information-theoretically
secure regenerating codes for distributed storage,” in Proc. IEEE Global
Communications Conference, (Houston, TX), December 2011.

[10] S. Pawar, S. El Rouayheb, and K. Ramchandran, “On secure distributed
data storage under repair dynamics,” in Proc. IEEE International Sym-
posium on Information Theory, (Austin, TX), 2010.

[11] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic
distributed storage systems from malicious nodes,” in Proc. IEEE In-
ternational Symposium on Information Theory, (St. Petersburg, Russia),
2011.

[12] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Regenerating Codes for
Errors and Erasures in Distributed Storage,” in Proc. IEEE International
Symposium on Information Theory (ISIT), (Cambridge, MA), 2012.

[13] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” in arXiv:1210.6954, 2013.

[14] T. K. Dikaliotis, A. G. Dimakis, and T. Ho, “Security in distributed
storage systems by communicating a logarithmic number of bits,” in
Proc. IEEE Internat. Symp. Inform. Th. (ISIT’10), (Austin, TX), 2010.

[15] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” arXiv:1004.4438, 2010.

[16] I. Tamo, Z. Wang, and J. Bruck, “Zigzag Codes: MDS Array Codes
With Optimal Rebuilding,” Information Theory, IEEE Transactions on,
vol. 59, pp. 1597 –1616, march 2013.

[17] I. Tamo, Z. Wang, and J. Bruck, “Access vs. bandwidth in codes
for storage,” in Information Theory Proceedings (ISIT), 2012 IEEE
International Symposium on, pp. 1187 –1191, july 2012.

[18] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran, “Interference
alignment in regenerating codes for distributed storage: Necessity and
code constructions,” Information Theory, IEEE Transactions on, vol. 58,
pp. 2134 –2158, april 2012.

[19] N. Shah, K. Rashmi, P. Vijay Kumar, and K. Ramchandran, “Distributed
Storage Codes With Repair-by-Transfer and Nonachievability of Interior
Points on the Storage-Bandwidth Tradeoff,” IEEE Transactions on
Information Theory, vol. 58, pp. 1837 –1852, March 2012.

