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Abstract—In this paper we study the problem of data ex-
change, where each node in the system has a number of linear
combinations of the data packets. Communicating over a public
channel, the goal is for all nodes to reconstruct the entire set
of the data packets in minimal total number of bits exchanged
over the channel. We present a novel divide and conquer based
architecture that determines the number of bits each node should
transmit. This along with the well known fact, that it is sufficient
for the nodes to broadcast linear combinations of their local
information, provides a polynomial time deterministic algorithm
for reconstructing the entire set of the data packets at all nodes
in minimal amount of total communication.

I. INTRODUCTION

In the cooperative data exchange problem, m nodes each
have part of the data and the goal is for all nodes to learn all
of the data using the minimum number of transmissions (i.e.
bits) on a fully public, noiseless broadcast channel. We focus
on a particularly simple yet attractive source model called the
finite linear source. Consider a large file that is split into a
total of N packets each belonging to some finite field, say Fq.
Each node holds a part of the information in the form of a
collection of linear combinations of the data packets.
To motivate this particular problem, assume that m users

wish to download a large file. At the base station the file
is divided into N chunks. The base station transmits coded
packets (linear combinations of the packets) to all users over
an unreliable wireless channel. As a result, after the base
station stopped transmitting, each node received only a subset
of the coded packets. Co-located mobile users have a broadcast
channel among themselves which can be better than individual
channels to the base station. In this scenario assuming that
among themselves they have the complete file, question is
how can these terminals cooperate to learn the whole file. An
example of this scenario for m = 3 nodes and N = 4 packets
is presented in Figure 1.
We propose a deterministic and computationally efficient

(polynomial in the number of system nodes and in the number
of data packets) algorithm that solves this problem by spec-
ifying the number of bits and actual transmission for each
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Fig. 1. Finite linear source model: An example where the base station
transmits coded packets of N = 4 underlying data packets w1, w2, w3 and
w4 to m = 3 users. Each of them receives some subset of the transmitted
coded packets.

node in order successfully accomplish data exchange using
the minimum total number of bits exchanged.
The data exchange problem described above invites the fol-

lowing questions of interest. First, what is the order in which
the nodes should transmit in an optimal scheme (with the
possibility of the need for interaction where nodes take several
turns). Second, how many bits should each node transmit
during its scheduled broadcast transmission. Third, is there a
polynomial time algorithm to determine an optimal schedule
and transmission such that all the nodes can reconstruct the
file.
A complete solution to our problem necessarily involves

answering all the above questions. The first question of de-
termining optimal schedule has been addressed in the broader
context of the seminal work of Csiszár and Narayan [1] on
determining the secrecy capacity for a multi-terminal problem.
In [1], authors showed that interaction is not needed and
optimal solution can be achieved by a non-interactive one-shot
communication by each node.
Second, on the question of how many bits each node should

send, again Csiszár and Narayan [1] partially resolved this
issue by providing minimum amount of total communication
needed to accomplish the data exchange but rates for indi-
vidual nodes in optimal scheme is still an open question.
They formulated the problem as an optimization problem with
an exponential number of rate-constraints corresponding to
all possible cut-sets that need to be satisfied. Csiszár and
Narayan [1] also provided an alternative characterization of
a lower bound to the omniscience sum-rate by relating it
to a more intuitively appealing notion of so-called mutual-



dependence. This bound was subsequently shown to be tight
in the work of [2].
This paper contributes to the literature by addressing part of

the second question and the third one posed above, describing
a deterministic polynomial-time algorithm to achieve optimal
data exchange. Our algorithm uses as a key building block
some recent interesting results from the theoretical Computer
Science literature. Specifically, the total communication rate
needed for the data exchange can be solved by relating our
problem to the minimum average cost clustering problem
which can be solved in polynomial time [3]. The key challenge
is in decomposing the (well-understood) omniscience sum-
rate into the optimal per-node rate allocations in polyno-
mial time, while also specifying the content of these per-
node broadcasted information in order to achieve minimum-
rate data exchange. Using a simple but powerful divide-and-
conquer strategy built on this, together with some important
observations on the necessary conditions for optimality (to
be described in the sequel), and integrating this with well-
known results from the network coding community [4], our
algorithm provides a polynomial-time optimal solution to the
data exchange problem.
Related Work
The cooperative data exchange problem was introduced in

[5] by El Rouayheb et al. for the case when each node
observes some subset of the data packets. In subsequent
work, Sprinston et al. [6] proposed a randomized algorithm
that achieves (with high probability) the minimum number
of transmissions over the public channel, provided that the
field size is large enough. Courtade et al. [7] proposed an LP
formulation of this problem. In most general setting the LP
formulation has exponential number of constraints, but in [7]
authors considered a special case where each node observes
simply a subset of the underlying packets. For this special
case authors showed that the proposed LP can be solved in
polynomial time.

II. SYSTEM MODEL AND PRELIMINARIES
Consider m nodes n1, n2, . . . nm which observe dis-

crete memoryless multiple sources (DMMS) as in [1]. Let
X1,X2, . . . ,Xm, m ≥ 2,, denote these sources. In [1] authors
studied the case where the correlations among these sources
can be specified by an arbitrary joint distribution. Here we
focus on a simple yet interesting correlation model called finite
linear source introduced in [2].
Next, we briefly describe the finite linear source model.

Let q = pm, where p is a prime number and m ∈ Z+.
Consider the N -dimensional q-ary random vector W ∈ FN

q

whose components are independent and uniformly distributed
over the elements of Fq. Then, in the linear source model, the
ith source component is simply given by

Xi = AiW, i ∈ M, (1)

where Ai ∈ F!i×N
q is a fixed matrix that specifies the

correlation between the sources, and we use M to denote the
set {n1, n2, . . . , nm}.

It is easy to verify that for the finite linear multiple source,

H(Xi) = rank{Ai}, (2)

where the entropy is computed in base q. Without loss of gen-
erality we assume that the rank of A !

[

A1 . . . Am

]T

is equal to N (if not, then let N ′ = rank{A}, and one can
obtain a uniformly random vector W′ ∈ FN ′

q from W using
a linear transformation and then relabel N = N ′,W = W′).
Since we focus on a finite linear multiple source, we will use
the entropy of the observations and the rank of the observation
matrix interchangeably.
The terminals are allowed to communicate over a noiseless

public broadcast channel in multiple rounds and thus, may use
interactive communication, meaning that they can incorporate
what they have received so far over the public broadcast
channel into their future transmissions. The first result that is
of fundamental importance to our work is that such interactive
communication is not necessary, which was established by
Csiszár and Narayan [1] for the general DMMS, and hence
for the simple finite linear source considered here. Moreover,
from [2], we know that for the finite linear source, it is
sufficient to transmit linear combinations of the source infor-
mation. Therefore, without loss of generality, we can describe
transmissions Fi of the node ni ∈ M, as a collection of Ri

linear equations generated fromXi. The value of Ri and actual
transmissions Fi which result in an optimal linear scheme will
be determined in the subsequent sections. We will use F to
denote the total communication over the public channel, i.e.
F = (F1,F2, . . . ,Fm). Thus, our goal is to devise a poly-
nomial time algorithm that solves the omniscience problem
using the minimal amount of communication. More formally,
we are interested in a efficient scheme that determines F such
that H(F) is minimal and H(XM|F,Xi) = 0 ∀ni ∈ M,
where XM = (X1,X2, . . . ,Xm). The minimum number of
transmissions needed to attain our goal (i.e., the minimum
value of H(F)) will be referred to as the communication
for omniscience rate and denoted by RCO(M) for the set
M. Denoting Ri = H(Fi) the transmission rate of node
ni, it is straightforward to show that for any optimal scheme
H(F) =

∑m
i=1 Ri. The latest statement is obvious since any

correlation among transmissions is considered to be redundant
and does not lead to the minimal amount of communication
needed for the data exchange.
We stress that the value of RCO(M) in terms of optimiza-

tion problem was given in [1]. An alternative version of this
formula, which turns out to be very useful for this work, is
given by the following theorem in [2]:

Theorem 1 (Chan). Provided that the field size |Fq| is large
enough, the communication for omniscience rate of the set M
is given by

RCO(M) = H(XM)−min
P

∑

S∈P H(XS)−H(XM)

|P|− 1
,

(3)
where P = {S1,S2, . . . ,S|P|} denotes a partition of the node
set indexed by M into |P| disjoint sets where 2 ≤ |P| ≤ m.



However, Theorem 1 does not say what is the individual rate
allocation for each node, and hence, it does not immediately
lead to the optimal transmission scheme. It can be shown with
some effort that the minimizer in Equation (3), and thus, the
partition attaining RCO(M), is not unique. To this end, we
define the following:

Definition 1. Define the set of optimum partitions in Equation
(3) as QM.

Remark 1. Note that in general RCO(M) can be a ratio-
nal number. Now consider some optimal partition PM and
split the packets into |PM| chunks (since we allow packet
splits). Then, the new RCO(M) rate becomes equal to the
old RCO(M) rate multiplied by |PM|, which is an integer
number. Therefore, without loss of generality in this paper we
assume that the optimal communication for omniscience rate
is always an integer number.

In [3] it is shown that the minimization problem (3) can be
computed in O(m2 · SFM(m)) time along with one optimal
partitioning P of the set M. SFM(m) denotes the time
required to minimize a submodular function defined on the
power set 2M. For arbitrary submodular functions SFM(m) =
O(m5 · γ + m6) (see [8]), where γ is the complexity of
computing the submodular function.

III. AN EXAMPLE
In this section we provide an example that sheds some

light on the necessary condition for any scheme to be optimal
in terms of sum rate. In [1] it was shown that a non-
interactive scheme is sufficient for achieving omniscience in
the optimal number of communication rounds. However, in
order to gain more understanding about this problem, we
use the interactive greedy scheme introduced in [5]. The
idea behind this algorithm is very simple; in each round
of communication a node with the highest observation rank
transmits some linear combination of its current observations.
But the main problem with this scheme is determining the
actual transmissions; it is tempting to assume that it is enough
for the transmitting node to increase the observation rank of
all receiving nodes. In the following example we show that
this approach is sometimes suboptimal. Hence, the question
still remains: How to design optimal transmissions. To answer
this, we break our problem into two parts: first, we devise
an algorithm that determines optimal communication rates of
each node, and then, to determine actual transmissions of each
node we convert our problem to a matrix completion problem
[4], [9].

Example 1. Consider a system with m = 4 terminals M =
{n1, n2, n3, n4}. For convenience, we express the underlying
vector asW =

[

a b c d e f g h
]T

∈ F8
q , where

a, b, c, d, e, f, g, h are independent uniform random variables
in Fq . Let us consider the case where each node has the
following observations:

X1 =
[

a b c e
]T

, X2 =
[

a b d e
]T

,

X3 =
[

c d f g h
]T

, X4 =
[

c f
]T

.

The task is to construct a deterministic communication scheme
for which all the nodes achieve omniscience in the min-
imum number of transmissions over the public channel.
From Theorem 1, we find that RCO(M) = 6. Two dif-
ferent partitions both lead to this optimal rate, are P(1) =
{{n1, n2}, {n3, n4}}, and P(2) = {{n1, n2}, {n3}, {n4}}.
Without loss of generality, let us assume that each transmitting
node sends one symbol in Fq at a time. In [5] the authors
proposed a communication scheme which picks the node with
the largest observation rank (or one of them, if non-unique),
in this case node n3, and lets it transmit one symbol in
the form of a linear combination of its observations, where
the coefficients are chosen so as to increase the resulting
rank of each of the receiving nodes. In our example, this
means that we could let node n3 transmit c + d. After this
transmission, each node increases its observation rank, and
updates its observations as follows:

X1 =
[

a b c d e
]T

, X2 =
[

a b c d e
]T

,

X3 =
[

c d f g h
]T

, X4 =
[

c f d
]T

.

However, as we will now explain, this transmission cannot
be part of an optimal communication scheme. Namely, if we
recompute RCO(M) after the first transmission, we again get
RCO(M) = 6, meaning that nothing has been gained by the
above transmission: we still need 6 transmissions to achieve
omniscience. Thus, the greedy approach of increasing rank of
all nodes in every transmission is not optimal.
In Lemma 2, we show that the necessary condition for

any data exchange scheme to be optimal is to increase the
observation rank of all receiving sets in all optimal partitions
of set M. This condition is stronger than merely increasing
the observation rank of every node. In our current example,
there are two optimal partitions, and in both of them nodes n1

and n2 are clubbed together. This means that the transmission
from node n3 should be selected such as to increase the
observation rank of the “supernode” resulting from combining
nodes n1 and n2, i.e. it should increase the observation rank of
X{1,2} =

[

a b c d e
]T

. Clearly, transmitting c+d as
considered above does not increase the rank of this collection.
As we can see from the example above, constructing an

optimal transmission of any given node requires knowledge
of all optimal partitions of the setM. This problem is hard in
general. One way to get around this problem is to first solve
for an optimal rate allocation of all nodes, and then determine
the actual transmissions.
Let us start with the rate allocation. A crucial observation

to determine these individual rates is that for any optimal
partition PM ∈ QM the transmission rates of each set that
belongs to PM are fundamental. For example, according to
Theorem 1 there are 2 optimal partitions of the setM: P(1) =
{{n1, n2}, {n3, n4}}, and P(2) = {{n1, n2}, {n3}, {n4}}.
Now, irrespective of the scheme the sum rates of each set in all
the optimal partitions are fundamental, i.e., for this example,
it can be shown that partition P(1) imposes R1 +R2 = 3 and
R3 + R4 = 3 while partition P(2) imposes R1 + R2 = 3,
R3 = 3 and R4 = 0. Although these fundamental constraints
allow us to conclude the values for R3 and R4, it is not clear
what is the split between R1 and R2. Here we employ what we
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Fig. 2. Algorithm flow graph. We start with the set M and compute an
optimal partition PM = (S1,S2) and corresponding communication rates
RS1

= 3 and RS2
= 3. For both S1 and S2, we compute optimal partitions

PS1
= {{n1}, {n2}} and PS2

= {{n3}, {n4}}, corresponding rates r1 =
1, r2 = 1, r3 = 3, r4 = 0 which achieve local omniscience within S1

and S2, and excess rates ∆S1
= 1, ∆S2

= 0. Then, we obtain R1 =
r1 +∆S1

= 2, R2 = 2, R3 = r3 +∆S2
= 3 and R4 = r4 = 0.

call divide and conquer approach. For this approach we only
need one optimal partition of the setM, say P(1) = {S1,S2},
where S1 = {n1, n2} and S2 = {n3, n4}. The idea is
that we know that the total budget of the set S1 is 3, and
we show that achieving a local omniscience of information
in the set S1 is part of some globally optimal scheme.
For this example it is clear that both n1 and n2 need to
send at least 1 symbol to achieve local omniscience, since
H(X1,X2|X1) = H(X1,X2|X2) = 1. However we know
that the total transmission budget of the set S1 is 3. Now after
local omniscience, since both nodes n1 and n2 are equivalent
in terms of information, the remaining difference ∆S1

= 1
symbol can be transmitted by either of them. Thus, we have
R1 = 2, R2 = 1. Using the same analysis, one can show
that R3 = 3 and R4 = 0. Thus in more general case, we
first determine the budget of each set in an optimal partition
and then focus on each individual set as a new problem of
achieving optimal local omniscience and so on. Divide and
conquer procedure is schematically presented in Figure 2.
Now, once we determine the transmission rate of each node,
we focus on finding the actual transmissions. Let us observe
node n1. We know that it is receiving 1 symbol from node n2

and 3 symbols from node n3. In the most general setting node
n2 transmits a linear combination of all of its observations:
f2 = xa ·a+xb ·b+xd ·d+xe ·e, which can be represented in
a vector form as F2 = [ xa xb 0 xd xe 0 0 0 ].
Similarly, node n3 transmits

F3 =

[

0 0 yc yd 0 yf yg yh
0 0 zc zd 0 zf zg zh
0 0 uc ud 0 uf ug uh

]

. (4)

All entries of the matrices F2 and F3 belong to the finite field
Fq. After receiving transmissions from nodes n2 and n3, node
n1 has the following observation matrix

A1 =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
xa xb 0 xd xe 0 0 0
0 0 yc yd 0 yf yg yh
0 0 zc zd 0 zf zg zh
0 0 uc ud 0 uf ug uh















. (5)

Since node n1 wishes to reconstruct all the packets, we need
to choose unassigned entries of the matrix A1 such that it
is a full rank. In the literature this problem is known as
a matrix completion problem [4]. Moreover, here for each
node ni, i ∈ M we can construct its observation matrix
Ai based on its initial observations, and the information
it receives from the other nodes. Now, the idea is to pick
unknown entries in all these matrices such that the full rank
property is simultaneously satisfied. This problem is known as
a simultaneous matrix completion problem. In [4] polynomial
time algorithm was devised for the case when all unknown
entries of the matrices Ai can be chosen independently. In
our problem this approach works when the initial observations
of all nodes are some subsets of W. Since we assume more
general model, where the initial observations are some linear
combinations of W, the unknown entries of the matrix Ai,
i ∈ M which belong to the same row cannot be chosen
independently anymore. Polynomial time algorithm that solves
for this version of matrix completion problem is provided in
[9]. This procedure also suggests that a field size greater than
or equal to the number of nodes guarantees a deterministic
solution to this problem. Using the above matrix completion
approach for this example one of the solutions we get is that
node n1 sends c+ e, b, node n2 transmits a+ d and node n3

transmits d+ f , g and h.
IV. DETERMINISTIC ALGORITHM

As illustrated by the example in the previous section, our al-
gorithm has two parts: first, it finds an optimal communication
rate allocation Ri, ni ∈ M, and then it finds transmissions
by solving a simultaneous matrix completion problem [4],
[9]. Due to space constraints, we focus on the optimal rate
allocation, denoting the rate to be used by the ith terminal
by Ri. One of the results we extensively use concerns the
minimum average cost clustering problem. In particular, it
is shown in [3] that the minimization in (3) in Theorem 1
along with finding one optimal partition PM ∈ QM can be
computed in polynomial time. For future reference, we will
refer to this operation as the function 1-MAC(M) whose
output is a pair (RCO(M),PM). Now, we provide a formal
description of the algorithm we already explained in the
previous section using a simple example.
Theorem 2. If |Fq| ≥ m, then Min Sum Rate Algorithm
generates an achievable rate allocation for the data exchange
problem which is optimal according to Theorem 1. The com-
plexity of this algorithm is O(m3 · SFM(m)).

To show optimality of the proposed scheme, we first identify
the optimal number of symbols in Fq sent from each set that
belongs to some optimal partitioning PM ∈ QM.

Lemma 1. For every optimal partition PM ∈ QM, an optimal
communication scheme (i.e., attaining RCO(M)) must satisfy,
for every set S ∈ PM,

RS = RCO(M)−H(XM|XS), (6)
where RS =

∑

ni∈S Ri.

An important observation can now be made: The optimum
partition provided by the 1-MAC function may contain a few



Algorithm 1 Min Sum Rate
1: Initialize V = M, ∆V = 0
2: Compute 1-MAC(V) = (RCO(V),PV)
3: If V != M then ∆V = RV −RCO(V).
4: for ∀S ∈ PV do
5: Compute local omniscience rates rS of set V as follows

rS = RCO(V)−H(XV |XS)

6: end for
7: Pick a set, say U from PV and compute communication rates for
all sets S ∈ PV as follows:

RS =

{

rS +∆V if S = U
rS otherwise

8: for ∀S ∈ PV do
9: If S is not a singleton set then set V = S and go to step 1.
10: end for

singletons. For those, Lemma 1 directly provides the correct
communication rate Ri. For the rest, we proceed with a divide
and conquer strategy: We now run the 1-MAC algorithm on
each set S ∈ PM, resulting in an optimal pair (RCO(S),PS)
for all S ∈ PM. This process is repeated recursively until all
optimal partitions contain singleton sets only.
Lemma 2. For any optimal transmission scheme (i.e., attain-
ing RCO(M)), the transmission Fi of node ni ∈ M increases
the entropy of all receiving sets in all optimal partitions
PM ∈ QM by the amount of H(Fi) symbols. In other words,
for all PM ∈ QM, we have

H(XS ,Fi) = H(XS) +H(Fi), ∀S ∈ PM, s.t. i /∈ S (7)

For the sake of the next argument, let us fix an arbitrary
optimal partition PM ∈ QM. Since non-interactive transmis-
sion scheme is optimal, we can assume that set S ∈ PM has
received all transmissions from all other sets in PM, but has
itself not yet transmitted anything. From Lemma 1, we know
that the nodes in our considered set S must transmit at rate RS

in order for all nodes in the network to become omniscient.
As a subproblem we now ask the following question: after
receiving transmissions from the nodes in PM \S, how many
symbols do nodes in S have to exchange in order to achieve
omniscience, i.e., in order for each node in S to learn the full
data XM. Perhaps initially somewhat surprisingly, it can be
shown that the number of symbols required is exactly equal to
the number of symbols that would be required to attain local
omniscience within S, i.e., in order for each node in S to learn
the data XS , in the absence of any side information from any
of the other nodes.

Theorem 3. There exists an optimal communication scheme,
where nodes within each S ∈ PM can achieve local omni-
science in RCO(S) transmissions.

This result is crucial for our algorithm because now, each
set S ∈ PM can locally determine the transmission rates of
each node in S by computing PS . As shown in Lemma 1, in
an optimal communication scheme, the nodes in set S must
transmit at a rate RS which is generally larger than the rate

RCO(S) needed to attain omniscience within the set S. As
the next lemma shows, the extra transmissions ∆S = RS −
RCO(S) can be executed by an arbitrarily chosen node inside
S (since there is omniscience within S):

Lemma 3. Let (rj : nj ∈ S), where S ∈ PM, be a rate tuple
that achieves local omniscience of the set S. An optimal rate
assignment for the nodes in S can be done as follows:

Rl = rl +∆S , nl ∈ S

Rj = rj , nj ∈ S \ {nl},

where nl is an arbitrarily chosen node in S.

In the next stage of the algorithm we repeat the same
procedure for all the sets in PS , S ∈ PM. Note that according
to Lemma 3, it is sufficient that only one set in PS for every
S ∈ PM transmits the entire ∆S . These “extra transmissions”
are always passed to the next stage of the algorithm until the
point where optimal partitions consist of singleton sets only;
then they are assigned to one of the nodes accordingly.

V. DISCUSSION AND CONCLUSION
Finding a rate allocation that achieves data exchange in

the minimum total amount of communication can be for-
mulated as an LP but with an exponential number of con-
straints [1]. Hence it is not clear if it can be solved in
polynomial time. In this paper we propose a novel divide
and conquer approach that splits the problem into multiple
sub problems and gives the optimal rate allocation for each
node in polynomial time. In the full version of this paper
(see http://www.eecs.berkeley.edu/%7Enebojsa), we provide
an alternate formulation that is based on an optimization
over a submodular polyhedron. Using a Dilworth’s truncation
of intersecting submodular functions and modified Edmond’s
algorithm [10], it is possible to solve for rate allocation in
polynomial time for any arbitrary memoryless source distri-
bution. This approach turns out to be more efficient than the
one we described in this paper, but it lacks the insights.
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