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Abstract—In this paper we construct a deterministic polyno-
mial time algorithm for the problem where a set of users is
interested in gaining access to a common file, but where each
has only partial knowledge of the file. We further assume the
existence of another set of terminals in the system, called helpers,
who are not interested in the common file, but who are willing
to help the users. Given that the collective information of all
the terminals is sufficient to allow recovery of the entire file,
the goal is to minimize the (weighted) sum of bits that these
terminals need to exchange over a noiseless public channel in
order achieve this goal. Based on established connections to the
multi-terminal secrecy problem, our algorithm also implies a
polynomial-time method for constructing the largest shared secret
key in the presence of an eavesdropper. We consider the following
side-information settings: (i) side-information in the form of
uncoded packets of the file, where the terminals’ side-information
consists of subsets of the file packets; (ii) side-information in the
form of linearly correlated packets, where the terminals have
access to linear combinations of the file packets; and (iii) the
general setting where the the terminals’ side-information has an
arbitrary (i.i.d.) correlation structure. We provide a polynomial-
time algorithm (in the number of terminals) that finds the optimal
rate allocations for these terminals, and then determines an
explicit optimal transmission scheme for cases (i) and (ii).

I. INTRODUCTION

In recent years cellular systems have witnessed signifi-
cant improvements in terms of data rates, and are nearly
approaching the theoretical limits in terms of the physical
layer spectral efficiency. At the same time, the rapid growth in
the popularity of data-enabled mobile devices, such as smart
phones and tablets, and the resulting explosion in demand
for more throughput are challenging our abilities to deliver
data, even with the current highly efficient cellular systems.
One of the major bottlenecks in scaling the throughput with
the increasing number of mobile devices is the “last mile”
wireless link between the base station and the mobile devices –
a resource that is shared among many terminals served within
the cell. This motivates the study of paradigms where cell
phone devices can cooperate among themselves to get the
desired data in a peer-to-peer fashion without solely relying
on the base station.
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Fig. 1. An example of the data exchange problem with helpers. A base station
has a file formed of four packets w1, . . . , w4 ∈ Fqn and wants to deliver it to
two users over an unreliable wireless channel. Additionally, there is a terminal
in the system that is in the range of the base station, but he is not interested
in the file. However, he is willing to help the two users to obtain the file.
The base station stops transmitting once all terminals collectively have all the
packets, even if individually they have only subsets of the packets. They can
then cooperate among themselves to recover the users’ missing packets. If the
goal is to minimize the total number of communicated bits, helper transmits
packet w1 + w3, while user 2 transmits packet w4, where the addition is in
the field Fqn .

An example of such a setting is shown in Figure 1,
where a base station wants to deliver the same file to mul-
tiple geographically-close users over an unreliable wireless
downlink. We assume that some terminals, which are in the
proximity of the users, are not interested in the file, but
are able to overhear some of the base station transmissions.
Moreover, we assume that these terminals are willing to help
in distributing the file to the interested users. Henceforth, we
refer to these terminals as helpers, and the terminals interested
in the file as users. In the example of Figure 1 we assume that
the file consists of four equally sized packets w1, w2, w3 and
w4 belonging to some finite field Fqn . Suppose that after a
few initial transmission attempts by the base station, the three
terminals (including one helper) individually receive only parts
of the file (see Figure 1), but collectively have the entire file.
Now, if all terminals are in close vicinity and can communicate
with each other, then, it is much more desirable and efficient,
in terms of resource usage, to reconcile the file among users
by letting all terminals “talk” to each other without involving
the base station. The cooperation among the terminals has the
following advantages:
• Local communication among terminals has a smaller
footprint in terms of interference, thus allowing one
to use the shared resources (code, time or frequency)
freely without penalizing the base station’s resources, i.e.,
higher resource reuse factor.

• Transmissions within the close group of terminals is
much more reliable than from the base station to any
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terminal due to geographical proximity of terminals.
• This cooperation allows for the file recovery even when
the connection to the base station is either unavailable
after the initial phase of transmission, or it is too weak
to meet the delay requirement.

The problem of reconciling a file among multiple wireless
users having parts of it while minimizing the cost in terms of
the total number of bits exchanged is known in the literature
as the data exchange problem and was introduced by El
Rouayheb et al. in [1]. In the problem formulation of the
data exchange problem it is assumed that all the terminals
in the system are interested in recovering the entire file, i.e.,
there are no helpers. For this problem randomized algorithms
were proposed in [2] and [3], while deterministic polynomial
time algorithms were proposed in [4], [5]. In [6], [7] and
[8] the authors used a combinatorial approach, to solve this
problem, which exploited the fact that the constraint set in
the corresponding optimization problem forms a submodular
base-polyhedron. For the problem considered in this paper,
where not all terminals are interested in recovering the file,
the constraint set does not constitute a submodular base-
polyhedron. As a result, here, we take a convex optimization
approach to solve the data exchange problem with helpers.
To exemplify the effect of having helpers, consider the

example from Figure 1. Let user 1, user 2 and the helper
transmit R1, R2 and R3 bits, respectively. The objective is
to minimize the weighted sum-rate α1R1 + α2R2 + α3R3

such that, user 1 and user 2 can recover the entire file. It
can be shown that for the case when α1 = α2 = α3 = 1,
the minimum communication cost is 2 and can be achieved
by the following coding scheme: user 2 transmits packet w4,
and the helper transmits w1 + w3, where the addition is over
the underlying field Fqn . This corresponds to the optimal rate
allocation R2 = R3 = 1 symbol in Fqn . Now, if there was no
helper in the system, it would take a total of 3 transmissions
to reconcile the file among the two users. That is user 1 has to
transmit w3 and user 2 transmits w1 and w4. Thus, the helpers
can contribute to lowering the total communication cost in the
system.
The discussion above considers only a simple form of side-

information, where different terminals observe partial uncoded
“raw” packets of the original file. Content distribution net-
works are increasingly using coding, such as Fountain codes
or linear network codes, to improve the system efficiency [9].
In such scenarios, the side-information representing the partial
knowledge gained by the terminals would be coded and in the
form of linear combinations of the original file packets, rather
than the raw packets themselves. The previous two cases of
side-information (“raw” and coded) can be regarded as special
cases of the more general problem where the side-information
has arbitrary correlation among the data observed by the differ-
ent terminals and where the goal is to minimize the weighted
total communication cost. In [10] Csiszár and Narayan posed
a related security problem referred to as the “multi-terminal
key agreement” problem. They showed that obtaining the file
among the users in minimum number of bits exchanged over

the public channel is sufficient to maximize the size of the
secret key shared between the users. This result establishes a
connection between the Multi-party key agreement and the
Data exchange problem with helpers. The authors in [10]
solved the key agreement problem by formulating it as a linear
program (LP) with an exponential number of rate-constraints,
corresponding to all possible cut-sets that need to be satisfied.
In this paper, we make the following contributions. First,

we provide a deterministic polynomial time algorithm for
finding an optimal rate allocation, w.r.t. a linear weighted
sum-rate cost needed to deliver the file to all users when all
terminals have arbitrarily correlated side-information. Second,
for the the data exchange problem with helpers, for raw
or linearly coded side-information, we propose an efficient
communication scheme design based on the algebraic network
coding framework [11], [12].

II. SYSTEM MODEL AND PRELIMINARIES
In this paper, we consider a setup with m terminals out of

which some subset of them is interested in gaining access to
a file or a random process. Let X1, X2, . . . , Xm, m ≥ 2,
denote the components of a discrete memoryless multiple
source (DMMS) with a given joint probability mass function.
Each user i ∈ M � {1, 2, . . . ,m} observes n i.i.d. realizations
of the corresponding random variable Xi.
Let A = {1, 2, . . . , k} ⊆ M be the subset of terminals,

called users, who are interested in gaining access to the file,
i.e., learning the joint process XM � (X1, . . . , Xm). The
remaining terminals {k+1, . . . ,m} serve as helpers, i.e., they
are not interested in recovering the file, but they are willing
to help users in the set A to obtain it. In [10], Csiszár and
Narayan showed that to deliver the file to all users in a setup
with general DMMS, interactive communication is not needed.
As a result, in the sequel WLOG we can assume that the
transmission of each user is only a function of its own initial
observations. Let Fi � fi(X

n
i ) represent the transmission of

the user i ∈ M, where fi(·) is any desired mapping of the
observations Xn

i . For each user in A in order to recover the
entire file, transmissions Fi, i ∈ M, should satisfy,

lim
n→∞

1

n
H(Xn

M|F, X
n
l ) = 0, ∀l ∈ A, (1)

where F � (F1, F2, . . . , Fm).

Definition 1. A rate vector R = (R1, R2, . . . , Rm) is an
achievable data exchange (DE)-rate vector if there exists
a communication scheme with transmitted messages F =
(F1, F2, . . . , Fm) that satisfies (1), and is such that

Ri = lim
n→∞

1

n
H(Fi), ∀i ∈M. (2)

It is easy to show using cut-set bounds that all the achievable
DE-rate vectors necessarily belong to the following region

R � {R : R(S) ≥ H(XS |XSc), ∀S ⊂ M, A �⊆ S} , (3)

where R(S) �
∑

i∈S Ri. Also, using a random coding
argument, it can be shown that the rate region R is an
achievable rate region [10].

2622



In this work, we aim to design a polynomial complexity
algorithm that delivers the file to all users in A while simul-
taneously minimizing a linear communication cost function∑m

i=1 αiRi, where α � (α1, · · · , αm), 0 ≤ αi < ∞, is
an m−dimensional vector of non-negative finite weights. We
allow αi’s to be arbitrary non-negative constants, to account
for the case when communication of some terminals is more
expensive compared to the others, e.g., setting α1 to be a
large value compared to the other weights minimizes the rate
allocated to the user 1. This goal can be formulated as the
following linear program:

min
R

m∑
i=1

αiRi, (4)

s.t. R(S) ≥ H(XS |XSc), ∀S ⊂ M, A �⊆ S.

A. Finite Linear Source Model
In this section we introduce a source-model to characterize

linearly correlated side-information. The source model we use
is called Finite linear source as defined in [13]. It captures
the fact that the content distribution networks using linear
codes result in terminals’ side-information to be in the form
of linear combinations of the original packets instead of
the uncoded packets, as is the case in conventional “Data
Exchange problem”.
Next, we briefly describe the finite linear source model. Let

q be some power of a prime. Consider the N -dimensional
random vector W ∈ F

N
qn whose components are independent

and uniformly distributed over the elements of Fqn . Then, in
the linear source model, the observation of ith user is simply
given by

Xi = AiW, i ∈ M, (5)

where Ai ∈ F
�i×N
q is an observation matrix for the user i.

It is easy to verify that for the finite linear source model,

H(Xi)

log qn
= rank(Ai). (6)

Henceforth for the finite linear source model we will use the
entropy of the observations and the rank of the observation
matrix interchangeably.

III. DETERMINISTIC ALGORITHM

We begin this section by exploring the case when the set
A consists of only one user. Then, by using the methodology
of [14], we extend our solution to the case when the set A
has arbitrary number of users.

A. Deterministic Algorithm when |A| = 1

Let there be only one user interested in obtaining the file,
i.e., A = {1}. This is known as a multi-terminal Slepian-
Wolf problem [15] for which the achievable rate region has
the following form:

R1 = {R : R(S) ≥ H(XS |XSc , X1), ∀S ⊆ M \ {1}} .

Hence, the underlying optimization problem has the following
form

min
R

∑
i∈M\{1}

αiRi, s.t. R ∈ R1. (7)

Optimization problem (7) can be solved analytically due to
the fact that the set function

f(S) = H(XS |XSc , X1), ∀S ⊆ M \ {1} (8)

is supermodular (see [16] for the formal definition). Therefore,
optimization problem (7) is over a supermodular polyhedron
R1. From the combinatorial optimization theory it is known
that Edmonds’ greedy algorithm [17] provides an analytical
solution to this problem (see Algorithm 1).

Algorithm 1 Edmonds’ algorithm applied to our problem
1: Set j1, j2, . . . , jm−1 to be an ordering of M \ {1} such
that αj1 ≤ αj2 ≤ · · · ≤ αjm−1 .

2: for i = 1 to m− 1 do
3: R∗ji = H(Xji |X1, Xj1 , Xj2 , . . . , Xji−1).
4: end for

Example 1. Consider a system with m = 6 terminalsM =
{1, 2, 3, 4, 5, 6}. For convenience, we express the underlying
data vector as W =

[
a b c

]T
∈ F

3
qn , where a, b, c are

independent uniform random variables in Fqn . Let us consider
the case where each node has the following observations:
X1 = {a + b}, X2 = {a + c}, X3 = {b + c}, X4 = {a},
X5 = {b},X6 = {c}. Let us assume that user 1 is interested in
recovering the vectorW such that underlying communication
cost is

∑6
i=2 Ri.

It immediately follows from Algorithm 1 that a solution to
this problem is R∗4 = R∗6 = 1, and R∗2 = R∗3 = R∗5 = 0. In
other words, user 1 is missing 2 linear equations in order to
be able to decode all 3 data packets.

B. Deterministic Algorithm when |A| > 1

When |A| > 1, the set of constraints of the optimization
problem (4) does not constitute a polyhedron of a supermod-
ular function, as it was the case when |A| = 1. The reason is
that the possible set function is not defined for all subsets
of M. For that reason, in this section, we take a convex
optimization approach to solve the problem (4), where we use
the single user solution as a key building block.
First, we observe that an achievable DE-rate vector Z has to

simultaneously belong to the rate regionsRl of each individual
user l ∈ A, where

Rl = {R : R(S) ≥ H(XS |XSc , Xl), ∀S ⊆ M \ {l}} . (9)

Thus, the rate region R defined in (3) can be equivalently
represented as

R = {Z : Zi ≥ R
(l)
i , ∀i ∈M \ {l},

s.t. R(l) ∈ Rl, ∀l ∈ A}. (10)
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Therefore, the optimal DE-rate vector Z∗ can be obtained as
follows

min
Z,R

m∑
i=1

αiZi, (11)

s.t. Zi ≥ R
(l)
i , ∀l ∈ A, ∀i ∈ M \ {l},

R
(l) ∈ Rl, ∀l ∈ A.

Optimization problem (11) has an exponential number of
constraints, which makes it challenging to solve in polynomial
time. To obtain a polynomial time solution we consider the
Lagrangian dual of problem (11).

max
Λ

k∑
l=1

g(l)(Λ(l)), (12)

s.t.
k∑

l=1

λ
(l)
i = αi, λ

(l)
i ≥ 0, ∀l ∈ A, ∀i ∈M \ {l},

where

g(l)(Λ(l)) = min
R(l)

∑
i∈M\{l}

λ
(l)
i R

(l)
i , s.t. R

(l) ∈ Rl. (13)

Dual variable Λ in the above problem is represented in matrix
form as follows.

Λ =

⎡
⎢⎢⎢⎢⎣

λ
(1)
1 λ

(1)
2 · · · λ

(1)
m

λ
(2)
1 λ

(2)
2 · · · λ

(2)
m

...
... ¨

...
λ
(k)
1 λ

(k)
2 · · · λ

(k)
m

⎤
⎥⎥⎥⎥⎦
. (14)

We denote by Λi and Λ(l), the ith column vector and lth row
vector of the matrix Λ, respectively. Moreover, we denote by

R̃ =

⎡
⎢⎢⎢⎢⎣

R̃
(1)
1 R̃

(1)
2 · · · R̃

(1)
m

R̃
(2)
1 R̃

(2)
2 · · · R̃

(2)
m

...
... ¨

...
R̃

(k)
1 R̃

(k)
2 · · · R̃

(k)
m

⎤
⎥⎥⎥⎥⎦

(15)

the rate matrix whose lth row, here denoted by R̃(l), represents
an optimizer of the problem (13) w.r.t. the weight vector Λ(l).
In order to ensure consistency with the optimization prob-
lem (12) observe that λ(l)

l = 0, and R̃
(l)
l = 0, ∀l = 1, . . . , k.

For any given user l ∈ A, the objective function (13) of
the dual problem (12) can be computed analytically using
Algorithm 1. The optimization problem (12) is a linear pro-
gram (LP) with O(m ·k) number of constraints, which makes
it possible to solve it in polynomial time (w.r.t. number of
terminals). To solve the optimization problem (12) we apply
a subgradient method, as described below.
Starting with a feasible iterate Λ[0] w.r.t. the optimization

problem (12), every subsequent iterate Λ[η] can be recursively
represented as an Euclidian projection of the vector

Λi[η] = Λi[η − 1] + θ[η − 1] · R̃i[η − 1], ∀i ∈ M (16)

onto the hyperplane
{
Λi ≥ 0|

∑k

l=1 λ
(l)
i = αi

}
, where

R̃i[η − 1] is the ith column of the rate matrix R̃[η − 1]. The
Euclidian projection ensures that every iterate Λ[η] is feasible
w.r.t. the optimization problem (12). It is not hard to verify
that the following initial choice of Λ[0] is feasible.

λ
(l)
i [0] =

⎧⎪⎨
⎪⎩

αi

k
if i �∈ A

αi

k−1 if i ∈ A \ {l}
0 if i = l

, ∀i ∈M, ∀l ∈ A. (17)

By appropriately choosing the step size θ[η] in each it-
eration (16), it is guaranteed that the subgradient method
described above converges to the optimal solution of the dual
problem (12). To recover the primal optimal solution from the
iterates Λ[η] we use results from [18], where at each iteration
of (16), the primal iterate is constructed as follows.

R̂[η] =

η∑
j=1

µ
(η)
j R̃[j], (18)

where
n∑

j=1

µ
(η)
j = 1, µ

(η)
j ≥ 0, for j = 1, 2, . . . , η. (19)

By carefully choosing the step size θ[η], ∀η in (16) and the
convex combination coefficients µ

(η)
j , ∀j = 1, . . . , η, ∀η, it

is guaranteed that (18) converges to the minimizer of (11),
and therefore to the minimizer of the original problem (4).
In [18], the authors proposed several choices for {θ[η]} and
{µ

(η)
j } which lead to the primal recovery. Here we list some

of them.
1) θ[η] = a

b+cη
, ∀η, where a > 0, b ≥ 0, c > 0,

µ
(η)
j = 1

η
, ∀j = 1, . . . , η, ∀η,

2) θ[η] = η−a, ∀η, where 0 < a < 1,
µ
(η)
j = 1

η
, ∀j = 1, . . . , η, ∀η.

Now, it is only left to compute an optimal rate allocation
w.r.t to the problem defined in (4). Let R∗ and Z

∗ be the
optimal rate vectors of the problems (4) and (11), respectively.
As we pointed out earlier R

∗ = Z
∗, where Z

∗ can be
computed from the matrix R̂[η] for a sufficiently large η, as
follows

Z∗i = max
{
R̂

(1)
i [η], R̂

(2)
i [η], . . . , R̂

(k)
i [η]

}
, ∀i ∈M. (20)

C. Code Construction for the Linear Source Model
In this Section we briefly address the question of the optimal

code construction for the linear source model. For that matter,
let us consider the following example.

Example 2. Let us consider the same source model as in
Example 1, where A = {1, 2, 3}, and the objective function is∑6

i=1 Ri. Applying the algorithm described above, we obtain

R∗1 = R∗2 = R∗3 =
1

4
, R∗4 = R∗5 = R∗6 =

1

2
. (21)

This solution suggests that in order to design a scheme that
performs optimally, it is necessary to split all the packets into 4
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Fig. 2. Multicast network constructed for Example 2 with the optimal rate
tuple R∗

1
= R∗

2
= R∗

3
= 2, R∗

4
= R∗

5
= R∗

6
= 1. Each user receives

side-information from “itself” through links (si, ri), i = 1, 2, 3, and from
the other terminals through links (ri, tj), i = 1, . . . , 6, j = 1, 2, 3, i �= j.

equally sized chunks. In other words, terminals’ observations
can be written as X1 = a + b = {a1 + b1, a2 + b2, a3 +
b3, a4 + b4}, X2 = a + c = {a1 + c1, a2 + c2, a3 + c3, a4 +
c4}, etc., where all ai’s, bi’s and ci’s belong to Fqn/4 . For
this “extended” source model we have that the optimal rate
allocation is R∗1 = R∗2 = R∗3 = 1, R∗4 = R∗5 = R∗6 = 2.
Next question we need to address is how to design trans-

missions of each user? Starting from an optimal (integer)
rate allocation, we first construct the corresponding multicast
network (see Figure 2). In this construction, notice that there
are several types of nodes. First, there is a super node S that
possesses all the packets. Each user in the set A plays the
role of a transmitter and a receiver, while the helpers act only
as transmitters. To model this, we denote s1, . . . , s6 to be the
“sending” nodes, and t1, t2 and t3 to be the receiving nodes.
To model the side-information at users 1, 2 and 3, we introduce
links (si, ti), i = 1, 2, 3, of capacity 4, which are routing the
users’ observations to the corresponding receiving nodes. To
model the broadcast nature of each transmission, we introduce
“dummy” nodes r1, . . . , r6, such that the capacity of the links
(si, ri) is the same as link capacity (ri, tj), i �= j, and is equal
to R∗i , ∀i ∈ M.
To solve for actual transmissions of each terminal, we apply

the algebraic network coding approach [11], with appropriately
designed source matrix A which corresponds to the side-
information of all terminals. Finally, the network code for
the data exchange problem with helpers can be constructed in
polynomial time from the algorithms provided in [12] which
are based on a simultaneous transfer matrix completion.

IV. CONCLUSION AND EXTENSIONS

In this paper, we studied the data exchange problem with
helpers. We provided a deterministic polynomial time algo-
rithm for minimizing the weighted sum-rate cost of commu-
nication. We showed that the data exchange problem with
only one user and many helpers can be solved analytically

using Edmonds’ algorithm. Further, using the single user
solution as a building block we showed how one can solve the
more general problem with arbitrary number of users. Several
extensions are of interest. For instance, we can consider a
modification of the original data exchange problem where
only helpers are allowed to transmit. Starting from a single
user case, it is easy to see that an achievable rate vector must
satisfy all the cut-set constraints over the helper set such that
the user is always on the receiving side of the cut. Minimizing
the weighted sum-rate cost over all achievable rate tuples can
again be done using Edmonds’ algorithm (see Algorithm 1).
Finally, extension to the multiple user case corresponds to the
weighted sum-rate minimization over all rate tuples that are
simultaneously achievable for all the users. This optimization
problem can be solved in polynomial time using the same
approach as described in Section III-B.
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