Randomized Kaczmarz with Averaging

Jacob Moorman, Thomas Tu, Denali Molitor, Deanna Needell

March 8, 2019

University of California, Los Angeles
Department of Mathematics



Problem of interest - Solving large linear systems

Goal: Solve large linear systems of the form
Ax = b,
where A € R™" with m> n, x € R" and b € R™.

A X b
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Goal: Solve large linear systems of the form
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For large linear systems, it can be more efficient to use
iterative methods than solving directly. 1
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Kaczmarz’s Method

Kaczmarz:
Iteratively project onto the solution space with respect to the
it row.
k+1 _ k_AiXk_bi T
(LY

where i = k mod m -+ 1.

A; denotes the /™ row of A (i.e. cycle through the rows of A).

Proposed in 1937 by Stefan Kaczmarz.



Use in Medical Imaging

Rediscovered in 1970 as the Algebraic Reconstruction
Technique (ART) by Gordon, Bender and Herman for
Computed Tomography (CT).

Implemented in a medical scanner in 1972.

X-ray
/ Source

Motorized
Table

images: www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115317.htm



Kaczmarz Method

Lines represent solution spaces H; = {x : A;x = b;}.
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An Unlucky Ordering

Lines represent solution spaces H; = {x : A;x = b;}.



Randomized Kaczmarz

Randomized Kaczmarz (RK):
Iteratively project onto the solution space with respect to a single row.

k
k+1 _ kiA’.kX _bik T

X 3
LA

where i, ~ D.

A; denotes the it row of A.

e Randomization allows us to avoid being stuck with particularly bad
orderings
e Don't get to take advantage of good orderings either though

e Often combined with heuristic choices, eg. sampling without
replacement



Relation to stochastic gradient
descent
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XKL = xk — pVF(x9),
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Stochastic gradient descent (SGD)

Loss functions often take the form

Gradient descent:
XKL = xk — pVF(x9),

where 7 is a step size.
Stochastic gradient descent:

XKL = Xk Vv E(x5).

E [V£(x¥)] = VF(x¥).



Randomized Kaczmarz and SGD

Needell, Srebro, and Ward 2015

Randomized Kaczmarz can be viewed as reweighted SGD with
importance sampling applied to

1 1
FO) = 5llAx — bl = 3 (A — b2
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Randomized Kaczmarz and SGD

Needell, Srebro, and Ward 2015

Randomized Kaczmarz can be viewed as reweighted SGD with
importance sampling applied to

1 1
FO) = 5lIAx = bIE = 3~ S (Ax — b2
Importance sampling: Pick / with probability p;.

Reweighted SGD: Use the weighted update

Xkt = xk = 1 V£i(x9).
np;
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Randomized Kaczmarz and SGD

Note:
Vfi(x) = A] (Aix — b;).
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Convergence of RK




Convergence of RK [Strohmer - Vershynin 2009]
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AT (Ax* — by)
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Convergence of RK [Strohmer - Vershynin 2009]

Al (Aix*—bj)
1A 1>

AIA,-k (xk — x*)
1A [

k+1 * Uk *
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Convergence of RK [Strohmer - Vershynin 2009]

Al (Aix*—bj)

Xk+1_X*:Xk_ * >
1Al

N AITkrA"k (Xk 2_ X*)
1Al

ATA, .
- ('_ A, 3) b =)
Ik
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Convergence of RK [Strohmer - Vershynin 2009]

k+1 * Uk

:<.

Taking the norm,

||Xk+1 _ X*Hi = H (I

AI-TA; N
_ 7||A“ ;) (xk_X )
Ik

Al (Aix*—bj)
1A 1>
AIA,-k (xk — x*)
1A [

ATA;
=X k) (xk —x*).

2
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Convergence of RK [Strohmer - Vershynin 2009]

Al (Aix*—bj)

Xk+1_X*:Xk_ * :
1Al

N AITkrA"k (Xk 2_ X*)
1Al

Y . LU
1A

Taking the norm,

ATA, 2
||Xk+1 - X*”i _ H | i l; (Xk — X*)
Al 2
T 2
> ||ATA;
= == | 25 (e x|
Al 2

where the last step is by orthogonality.
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Convergence of RK [Strohmer - Vershynin 2009]

lIA113

If we select row i with probability p; = AL
F

taking the expectation

‘|

conditioned on x¥ we have
TA. 2
A,-k A,

2
1Al

(¢ —x)

E [t = x| | ] =E [ ~xl;-||
2
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lIA113

If we select row i with probability p; = AL
F

taking the expectation

conditioned on x¥ we have

ATA; 2
E |:||Xk+1 _ X*Hz | Xk} K lxk _ X*Hz _ H Ik ; (Xk o X*) Xk]
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Convergence of RK [Strohmer - Vershynin 2009]

lIA113

If we select row i with probability p; = AL
F

taking the expectation

conditioned on x¥ we have

ATA; 2
E |:||Xk+1 _ X*Hz | Xk} K lxk _ X*Hz _ H Ik ; (Xk —X*) Xk]
(Al 2
A3 || AT A ’
= [Ix* —x*|l5 - — (X =x) | -
Z AL 111A]3 2
Note that
T D, 2 k *\\ 2
HA A ) _ A (A = X)) (Aixk — x*))
= > .
|A; ||2 2 A3 Al
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Convergence of RK [Strohmer - Vershynin 2009]

12
If we select row i with probability p; = l“lmlf, taking the expectation
F
conditioned on x¥ we have
) 2
Bl = x*Il3 | x¥] = |l = x*Il3 - H B (k) xk]
1A 11° 2
Ajl3||ATA; ?
_ - *HQ Z H ”2 i 2’ (Xk 7X*)
IAIE 1A 2

-y B )

2
IAllE
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12
If we select row i with probability p; = l“lmlf, taking the expectation
F
conditioned on x¥ we have
) 2
Bl = x*Il3 | x¥] = |l = x*Il3 - H B (k) xk]
1A 11° 2
Ajl3||ATA; ?
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Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability p; = l

i 2 . .
Aill, taking the expectation

Az’
conditioned on x¥ we have
) 2
Bl = x*Il3 | x¥] = |l = x*Il3 - H B (k) xk]
1A )12 2
2
A3 || AT A
_ _ *H2 Z 2 (X 7X*)
IAJIZ 1T11A]3 2
2
2 (Ai(x* — x*))
= |Ix* = x*lp = D
; |A[[F
A k _ % 2
_ ka_X*Hg_ H (X 2X )H2
Al
2 A
< ¢ =} = mind R k2

2
IAllE
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Convergence Rate

Theorem (Strohmer - Vershynin 2009)

Let x be the solution to the consistent system of linear equations
Ax = b. Then the Randomized Kaczmarz method converges to x
exponentially in expectation. At each iteration,

2

%112 O min A *112
E xk“xn]s(l <2)>E[||ka||].
A2

® Omin(A) is the smallest singular value of A
2
O HAHF = Zi,j A%j
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Convergence Rate

Theorem (Strohmer - Vershynin 2009)

Let x be the solution to the consistent system of linear equations
Ax = b. Then the Randomized Kaczmarz method converges to x
exponentially in expectation. At each iteration,

E[Ix =] < (1 - ”ﬁ‘;ﬁ?)) E[Ilx* = xI] -
F

Iterating the result above

2

* Umin(A) ‘ *
E [Ibt - 18] < (1- 2 et
F

® Omin(A) is the smallest singular value of A
2
O HAHF = Zi,j A%j
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Inconsistent Systems

We assume Ax = b is overdetermined.
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Inconsistent Systems

We assume Ax = b is overdetermined.

If no solution x exists, we seek the least-squares solution

1
x* = argmin=||b — Ax]|>.
x€R” 2
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Inconsistent Systems

We assume Ax = b is overdetermined.

If no solution x exists, we seek the least-squares solution

1
x* = argmin=||b — Ax]|>.
x€R” 2

For simplicity, we will assume that A is full rank.

16



Inconsistent Systems

Solution spaces H; = {x : A;x = b;} no longer all intersect.

Xo
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Solution spaces H; = {x : A;x = b;} no longer all intersect.
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Convergence Rate for Inconsistent Systems

Theorem (Needell 2010, Zouzias-Freris 2013)
At each iteration,

2

(A |2
E {||Xk+1 _ X*Hq < (1 _ Um|n(2 )> E {ka _ X*Hq + H ||2 )
1Al 1Al

Tmin(A) is the smallest singular value of A
2

HAHF = Zi,j AE’

e r* = Ax* — b is the least-squares residual

2
|l .

is referred to as the convergence horizon.
Ur2nin(A) c

18



Convergence Rate for Inconsistent Systems

Theorem (Needell 2010, Zouzias-Freris 2013)
At each iteration,

2

(A |12
E {||Xk+1 _ X*Hq < (1 _ Jmm(z )> E {ka _ X*Hq + H ||2 )
1Al 1Al

Iterating the result above,

K
2 Tain(A) 2 Il
E It — 1] < (1= o ) -+ S
1Al Tin(A)
Tmin(A) is the smallest singular value of A
2
HAHF = Zi,in'

e r* = Ax* — b is the least-squares residual

2

r*

2| I is referred to as the convergence horizon.
Umin(A)
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RK with Averaging




Parallelizing RK

RK:
k+1 k Aika —bj, o7

i,
L.V
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Parallelizing RK

Relaxed RK: ,
A — b;
XKL = ek 3 i X L I
1Al
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Parallelizing RK

Relaxed RK: ,
A. _ b
KLk oo i X , i I
A

We consider a simple parallel extension in which we use a weighted

average of independent updates.

RK with averaging:

Z w; Ajxk _bAi
1A

7_
ier k

Weights w;
Number of threads |7«|
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Some definitions

Normalization matrix
D:= Diag(HA1”’ HA2”7 ) ”AmH)’

so that the matrix D~1A has rows with unit norm.
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Normalization matrix
D:= Diag(HA1”’ HA2”7 ) ”AmH)’

so that the matrix D~1A has rows with unit norm.

Probability matrix

P:= Diag(pla p2;. .. apm)

where p; = P(i = j) with i ~ D.
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Some definitions

Normalization matrix
D:= Diag(HA1”’ HA2”7 ) ”AmH)’

so that the matrix D~1A has rows with unit norm.

Probability matrix

P:= Diag(pla P2, - apm)
where p; = P(i = j) with i ~ D.

Weight matrix
W := Diag(wy, wa, ..., Wp).

20



Coupling between weights and probabilities

Recall the update

Z w; Aixk _bA/
1Tkl ||A; ||

T i k
= —b
Z |Tk| |A; H )
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Coupling between weights and probabilities

Recall the update

Z w; Aixk — b; Aixt = bi p 7
Iy || :
T ] k
= ’ — b)
Z |Tk| |A; H

As the number of threads |7x| — o0,

Xk+1 _ X _ AT]E
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Coupling between weights and probabilities

Recall the update

Z w; Aixk — b; Aixt = bi p 7
Iy || :
T ] k
= ’ — b)
Z |Tk| |A; H

As the number of threads |7x| — o0,

XK =xk _ATE |w,

Note:

e This is a deterministic update.
o E [W, H'A'Hz} — PWD2.
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Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we
should require that x* be a fixed point of

XK+t = xk _ ATPWD2(Ax* — b).
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should require that x* be a fixed point of

XK+t = xk _ ATPWD2(Ax* — b).
Any fixed point x must solve
A"PWD ?Ax = ATPWD 2.
These are the normal equations of the weighted least-squares problem
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Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we
should require that x* be a fixed point of

XK+t = xk _ ATPWD2(Ax* — b).
Any fixed point x must solve
A"PWD ?Ax = ATPWD 2.
These are the normal equations of the weighted least-squares problem

1
minimize §||b— AXH%WD,Z7 where ||||§/| =(,M).

For inconsistent systems, we require the following coupling between the
probability matrix P and the weight matrix W:

PWD? = qal.
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General convergence for RK with averaging

Theorem

Suppose PWD 2 = HAH2
error at each iteration of RK with averaging satisfies

| for relaxation parameter o« > 0. Then the

E [[le |/’
2 2 5
ATA o [(ATA w2 oo 1€l
So—max <IaA2> 7m <A2> He || +m 2
Az kI \ [[AllE Kl [|AlE
where
o ek = xk _ x*
2
o |-lw= (W)
o Al =3, A2

o rk = b — Axk is the k" residual.
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Uniform Weights

When the weights are uniform, i.e. W = al,
2 2
Ir]lw = 16— AxK[ly
= o[|b + A(—x* +x* = x")|I;

2
= a?||r* + AeX|;.
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Uniform Weights

When the weights are uniform, i.e. W = al,
2 2
Ir]lw = 16— AxK[ly
= o[|b + A(—x* +x* = x")|I;
2 % k(2
= a||r* + Ae”||,.
Since ATr* =0,

2 D) 2
Il = 02 (113 + I1ae]3)

24



Convergence for RK with averaging using uniform weights

Theorem

2
Suppose p; = l\‘lﬁi}L and W = al. Then the expected error at each
F

iteration of RK with averaging satisfies

E [lle )1’

A2 |7l

2
ATA 2 ATA\ ATA |, 2 o>
< Omax | [1—a—5 | + - = llek||” + ——1.

A7 ) [IA]F |7l AlZ

Takeaways:

e One can solve for the optimal « for the convergence bound based on
Omax(A) and o min(A).
e Increasing o amplifies effect of noise.

e Increasing |7x| improves the convergence rate and decreases the
convergence horizon.
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Parallel Sketch and Project Method [ Richtarik and Takac 2017]

For uniform weights and in the consistent case, this method was analyzed
by Richtédrik and Taka¢ under a more general framework.
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Parallel Sketch and Project Method [ Richtarik and Takac 2017]

For uniform weights and in the consistent case, this method was analyzed
by Richtarik and Taka¢ under a more general framework.

Sketch and project methods: Randomized iterative solvers for linear

systems.

Iteratively project on to the solution space of
S/ Ax =S/b,

where S; € R™*" and i ~ D.

Choosing S; = ¢, the it coordinate vector, recovers RK.
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Experiments




Effect of number of threads |74|
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Effect of relaxation parameter o
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Optimal choice for «
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e Analyze an RK method with averaging that takes advantage of
parallel computation

e Find a natural coupling between the probability matrix P and weight
matrix W

e Prove the expected convergence rate per iteration in the general
case and a more interpretable rate for uniform weights

e Prove and demonstrate improved convergence with increasing |7|
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Thanks!
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