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Problem of interest - Solving large linear systems

Goal: Solve large linear systems of the form

Ax = b,

where A ∈ Rm×n with m� n, x ∈ Rn and b ∈ Rm.

For large linear systems, it can be more efficient to use

iterative methods than solving directly.
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Kaczmarz’s Method

Kaczmarz:

Iteratively project onto the solution space with respect to the

i th row.

xk+1 = xk − Aix
k − bi

‖Ai‖2
A>i ,

where i = k mod m + 1.

Ai denotes the i th row of A (i.e. cycle through the rows of A).

Proposed in 1937 by Stefan Kaczmarz.
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Use in Medical Imaging

Rediscovered in 1970 as the Algebraic Reconstruction

Technique (ART) by Gordon, Bender and Herman for

Computed Tomography (CT).

Implemented in a medical scanner in 1972.

images: www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115317.htm
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Kaczmarz Method

Lines represent solution spaces Hi = {x : Aix = bi}.
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Randomized Kaczmarz

Randomized Kaczmarz (RK):

Iteratively project onto the solution space with respect to a single row.

xk+1 = xk − Aik x
k − bik

‖Aik‖
2 A>ik ,

where ik ∼ D.

Ai denotes the i th row of A.

• Randomization allows us to avoid being stuck with particularly bad

orderings

• Don’t get to take advantage of good orderings either though

• Often combined with heuristic choices, eg. sampling without

replacement
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Relation to stochastic gradient

descent



Stochastic gradient descent (SGD)

Loss functions often take the form

F (x) =
1

n

n∑
i=1

fi (x)

Gradient descent:

xk+1 = xk − η∇F (xk),

where η is a step size.

Stochastic gradient descent:

xk+1 = xk − η∇fi (xk).

E
[
∇fi (xk)

]
= ∇F (xk).
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Randomized Kaczmarz and SGD

Needell, Srebro, and Ward 2015

Randomized Kaczmarz can be viewed as reweighted SGD with

importance sampling applied to

F (x) =
1

2
||Ax − b||22 =

∑
i

1

2
(Aix − bi )

2.
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Randomized Kaczmarz and SGD

Needell, Srebro, and Ward 2015

Randomized Kaczmarz can be viewed as reweighted SGD with

importance sampling applied to

F (x) =
1

2
||Ax − b||22 =

∑
i

1

2
(Aix − bi )

2.

Importance sampling: Pick i with probability pi .

Reweighted SGD: Use the weighted update

xk+1 = xk − η

npi
∇fi (xk).
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Randomized Kaczmarz and SGD

Note:

∇fi (x) = A>i (Aix − bi ).

Choosing

pi =
||Ai ||22
||A||2F

,

reweighted SGD becomes

xk+1 = xk − η||A||2F
n||Ai ||22

∇fi (xk)

= xk − η ||A||
2
F

n

A>i (Aix − bi )

||Ai ||22
.
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Convergence of RK



Convergence of RK [Strohmer - Vershynin 2009]

xk+1

− x?

= xk

− x?

−
A>ik
(
Aik x

k − bik
)

‖Aik‖
2

= xk − x? −
A>ik Aik

(
xk − x?

)
‖Aik‖

2

=

(
I−

A>ik Aik

‖Aik‖
2

)(
xk − x?

)
.

Taking the norm,

‖xk+1 − x?‖22 =

∣∣∣∣∣∣∣∣
(

I−
A>ik Aik

‖Aik‖
2

)(
xk − x?

) ∣∣∣∣∣∣∣∣2
2

= ‖xk − x?‖22 −
∣∣∣∣∣∣∣∣A>ik Aik

‖Aik‖
2

(
xk − x?

) ∣∣∣∣∣∣∣∣2
2

,

where the last step is by orthogonality.
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Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability pi =
‖Ai‖22
‖A‖2F

, taking the expectation

conditioned on xk we have

E
[
‖xk+1 − x?‖22 | x

k
]

= E

[
‖xk − x?‖22 −

∣∣∣∣∣∣∣∣A>ik Aik

‖Aik‖
2

(
xk − x?

) ∣∣∣∣∣∣∣∣2
2

∣∣∣∣xk
]

= ‖xk − x?‖22 −
∑
i

‖Ai‖22
‖A‖2F

∣∣∣∣∣∣∣∣A>i Ai

‖Ai‖22

(
xk − x?

) ∣∣∣∣∣∣∣∣2
2

.

Note that∣∣∣∣∣∣∣∣A>i Ai

‖Ai‖22

(
xk − x?

) ∣∣∣∣∣∣∣∣2
2

=
‖Ai‖22

(
Ai (x

k − x?)
)2

‖Ai‖42
=

(
Ai (x

k − x?)
)2

‖Ai‖22
.
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Convergence Rate

Theorem (Strohmer - Vershynin 2009)

Let x be the solution to the consistent system of linear equations

Ax = b. Then the Randomized Kaczmarz method converges to x

exponentially in expectation. At each iteration,

E
[
‖xk+1 − x?‖2

]
≤

(
1− σ2

min(A)

‖A‖2F

)
E
[
‖xk − x?‖2

]
.

Iterating the result above

E
[
||xk − x?||22

]
≤
(

1− σ2
min(A)

||A||2F

)k

||x0 − x?||22.

• σmin(A) is the smallest singular value of A

• ‖A‖2F =
∑

i,j A2
ij
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Inconsistent Systems

We assume Ax = b is overdetermined.

If no solution x exists, we seek the least-squares solution

x? = argmin
x∈Rn

1

2
‖b − Ax‖22.

For simplicity, we will assume that A is full rank.
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Convergence Rate for Inconsistent Systems

Theorem (Needell 2010, Zouzias-Freris 2013)

At each iteration,

E
[
‖xk+1 − x?‖2

]
≤

(
1− σ2

min(A)

‖A‖2F

)
E
[
‖xk − x?‖2

]
+
‖r?‖2

‖A‖2F
.

Iterating the result above,

E
[
‖xk − x?‖2

]
≤

(
1− σ2

min(A)

‖A‖2F

)k

‖x0 − x?‖2 +
‖r?‖2

σ2
min(A)

,

• σmin(A) is the smallest singular value of A

• ‖A‖2F =
∑

i,j A2
ij

• r? = Ax? − b is the least-squares residual

•
‖r?‖2

σ2
min(A)

is referred to as the convergence horizon.
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RK with Averaging



Parallelizing RK

Relaxed

RK:

xk+1 = xk −

λk,ik

Aik x
k − bik

‖Aik‖
2 A>ik

We consider a simple parallel extension in which we use a weighted

average of independent updates.

RK with averaging:

xk+1 = xk −
∑
i∈τk

wi

|τk |
Aix

k − bi

‖Ai‖2
A>i

Weights wi

Number of threads |τk |
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Some definitions

Normalization matrix

D := Diag(‖A1‖, ‖A2‖, . . . , ‖Am‖),

so that the matrix D−1A has rows with unit norm.

Probability matrix

P := Diag(p1, p2, . . . , pm)

where pj = P(i = j) with i ∼ D.

Weight matrix

W := Diag(w1,w2, . . . ,wm).
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Coupling between weights and probabilities

Recall the update

xk+1 = xk −
∑
i∈τk

wi

|τk |
Aix

k − bi

‖Ai‖2
A>i

= xk − A>
∑
i∈τk

wi

|τk |
I>i Ii

‖Ai‖2
(Axk − b)

As the number of threads |τk | → ∞,

xk+1 = xk − A>E

[
wi

I>i Ii

‖Ai‖2

]
(Axk − b).

Note:

• This is a deterministic update.

• E
[
wi

I>i Ii
‖Ai‖2

]
= PWD−2.
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Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we

should require that x? be a fixed point of

xk+1 = xk − A>PWD−2(Axk − b).

Any fixed point x must solve

A>PWD−2Ax = A>PWD−2b.

These are the normal equations of the weighted least-squares problem

minimize
1

2
‖b − Ax‖2PWD−2 , where ‖·‖2M = 〈·,M·〉.

For inconsistent systems, we require the following coupling between the

probability matrix P and the weight matrix W:

PWD−2 = αI.
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General convergence for RK with averaging

Theorem

Suppose PWD−2 = α
‖A‖2F

I for relaxation parameter α > 0. Then the

error at each iteration of RK with averaging satisfies

E
[
‖ek+1‖2

]
≤ σmax

(I− αA>A

‖A‖2F

)2

− α2

|τk |

(
A>A

‖A‖2F

)2
 ‖ek‖2 +

α

|τk |
‖rk‖2W
‖A‖2F

,

where

• ek = xk − x?

• ‖·‖2W = 〈·,W·〉
• ‖A‖2F =

∑
i,j A2

ij

• rk = b − Axk is the k th residual.
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Uniform Weights

When the weights are uniform, i.e. W = αI,

‖rk‖2W = ‖b − Axk‖2W
= α2‖b + A(−x? + x? − xk)‖22
= α2‖r? + Aek‖22.

Since A>r? = 0,

‖rk‖2W = α2
(
‖r?‖22 + ‖Aek‖22

)
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Convergence for RK with averaging using uniform weights

Theorem

Suppose pi = ‖Ai‖2

‖A‖2F
and W = αI. Then the expected error at each

iteration of RK with averaging satisfies

E
[
‖ek+1‖2

]
≤ σmax

(I− αA>A

‖A‖2F

)2

+
α2

|τk |

(
I− A>A

‖A‖2F

)
A>A

‖A‖2F

 ‖ek‖2 +
α2‖r?‖2

|τk |‖A‖2F
.

Takeaways:

• One can solve for the optimal α for the convergence bound based on

σmax(A) and σmin(A).

• Increasing α amplifies effect of noise.

• Increasing |τk | improves the convergence rate and decreases the

convergence horizon.
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Parallel Sketch and Project Method [ Richtárik and Takáč 2017]

For uniform weights and in the consistent case, this method was analyzed

by Richtárik and Takáč under a more general framework.

Sketch and project methods: Randomized iterative solvers for linear

systems.

Iteratively project on to the solution space of

S>i Ax = S>i b,

where Si ∈ Rm×τ and i ∼ D.

Choosing Si = ei , the i th coordinate vector, recovers RK.

26



Parallel Sketch and Project Method [ Richtárik and Takáč 2017]
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Experiments



Effect of number of threads |τk |

Figure 1: Uniform weights wi = 1

and probabilities proportional to

squared row norms pi =
‖Ai‖2

‖A‖2
F
.

PWD−2 ∝ I

Figure 2: Uniform weights wi = 1

and uniform probabilities pi =
1
m
.

PWD−2 6∝ I

minimize
1

2
‖b − Ax‖2PWD−2 .
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Effect of relaxation parameter α

Figure 3: Uniform weights wi = α, probabilities proportional to squared row

norms pi =
‖Ai‖2

‖A‖2
F
, and number of threads |τk | = 10.
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Optimal choice for α

Figure 4: Uniform weights wi = α

and probabilities proportional to

squared row norms pi =
‖Ai‖2

‖A‖2
F
.

Figure 5: Weights proportional to

squared row norms wi = αm ‖Ai‖2

‖A‖2
F

and

uniform probabilities pi =
1
m
.
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Summary

• Analyze an RK method with averaging that takes advantage of

parallel computation

• Find a natural coupling between the probability matrix P and weight

matrix W

• Prove the expected convergence rate per iteration in the general

case and a more interpretable rate for uniform weights

• Prove and demonstrate improved convergence with increasing |τk |

30



Thanks!
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