Randomized Kaczmarz with Averaging

Jacob Moorman, Thomas Tu, Denali Molitor, Deanna Needell
March 8, 2019
University of California, Los Angeles
Department of Mathematics

Problem of interest - Solving large linear systems

Goal: Solve large linear systems of the form

$$
\mathbf{A} x=b,
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \gg n, x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$.

Problem of interest - Solving large linear systems

Goal: Solve large linear systems of the form

$$
\mathbf{A} x=b,
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \gg n, x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$.

For large linear systems, it can be more efficient to use iterative methods than solving directly.

Outline

- Kaczmarz and Randomized Kaczmarz (RK)
- Relation to stochastic gradient descent
- Convergence of RK
- Parallel RK with averaging
- Experimental performance
- Hyperparameter optimization

Kaczmarz's Method

Kaczmarz:

Iteratively project onto the solution space with respect to the $i^{\text {th }}$ row.

$$
x^{k+1}=x^{k}-\frac{\mathbf{A}_{i} x^{k}-b_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}} \mathbf{A}_{i}^{\top},
$$

where $i=k \bmod m+1$.
\mathbf{A}_{i} denotes the $i^{\text {th }}$ row of \mathbf{A} (i.e. cycle through the rows of \mathbf{A}).
Proposed in 1937 by Stefan Kaczmarz.

Use in Medical Imaging

Rediscovered in 1970 as the Algebraic Reconstruction Technique (ART) by Gordon, Bender and Herman for Computed Tomography (CT).

Implemented in a medical scanner in 1972.

images: www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115317.htm

Kaczmarz Method

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

Kaczmarz Method

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

Kaczmarz Method

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

Kaczmarz Method

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

An Unlucky Ordering

Lines represent solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$.

Randomized Kaczmarz

Randomized Kaczmarz (RK):

Iteratively project onto the solution space with respect to a single row.

$$
x^{k+1}=x^{k}-\frac{\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \mathbf{A}_{i_{k}}^{\top},
$$

where $i_{k} \sim \mathcal{D}$.
\mathbf{A}_{i} denotes the $i^{\text {th }}$ row of \mathbf{A}.

- Randomization allows us to avoid being stuck with particularly bad orderings
- Don't get to take advantage of good orderings either though
- Often combined with heuristic choices, eg. sampling without replacement

Relation to stochastic gradient descent

Stochastic gradient descent (SGD)

Loss functions often take the form

$$
F(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

Stochastic gradient descent (SGD)

Loss functions often take the form

$$
F(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

Gradient descent:

$$
x^{k+1}=x^{k}-\eta \nabla F\left(x^{k}\right),
$$

where η is a step size.

Stochastic gradient descent (SGD)

Loss functions often take the form

$$
F(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

Gradient descent:

$$
x^{k+1}=x^{k}-\eta \nabla F\left(x^{k}\right),
$$

where η is a step size.
Stochastic gradient descent:

$$
x^{k+1}=x^{k}-\eta \nabla f_{i}\left(x^{k}\right) .
$$

Stochastic gradient descent (SGD)

Loss functions often take the form

$$
F(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

Gradient descent:

$$
x^{k+1}=x^{k}-\eta \nabla F\left(x^{k}\right),
$$

where η is a step size.
Stochastic gradient descent:

$$
x^{k+1}=x^{k}-\eta \nabla f_{i}\left(x^{k}\right) .
$$

$\mathbb{E}\left[\nabla f_{i}\left(x^{k}\right)\right]=\nabla F\left(x^{k}\right)$.

Randomized Kaczmarz and SGD

Needell, Srebro, and Ward 2015
Randomized Kaczmarz can be viewed as reweighted SGD with importance sampling applied to

$$
F(x)=\frac{1}{2}\|\mathbf{A} x-b\|_{2}^{2}=\sum_{i} \frac{1}{2}\left(\mathbf{A}_{i} x-b_{i}\right)^{2} .
$$

Randomized Kaczmarz and SGD

Needell, Srebro, and Ward 2015
Randomized Kaczmarz can be viewed as reweighted SGD with importance sampling applied to

$$
F(x)=\frac{1}{2}\|\mathbf{A} x-b\|_{2}^{2}=\sum_{i} \frac{1}{2}\left(\mathbf{A}_{i} x-b_{i}\right)^{2} .
$$

Importance sampling: Pick i with probability p_{i}.
Reweighted SGD: Use the weighted update

$$
x^{k+1}=x^{k}-\frac{\eta}{n p_{i}} \nabla f_{i}\left(x^{k}\right)
$$

Randomized Kaczmarz and SGD

Note:

$$
\nabla f_{i}(x)=\mathbf{A}_{i}^{\top}\left(\mathbf{A}_{i} x-b_{i}\right)
$$

Randomized Kaczmarz and SGD

Note:

$$
\nabla f_{i}(x)=\mathbf{A}_{i}^{\top}\left(\mathbf{A}_{i} x-b_{i}\right)
$$

Choosing

$$
p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}
$$

reweighted SGD becomes

$$
\begin{aligned}
x^{k+1} & =x^{k}-\frac{\eta\|\mathbf{A}\|_{F}^{2}}{n\left\|\mathbf{A}_{i}\right\|_{2}^{2}} \nabla f_{i}\left(x^{k}\right) \\
& =x^{k}-\eta \frac{\|\mathbf{A}\|_{F}^{2}}{n} \frac{\mathbf{A}_{i}^{\top}\left(\mathbf{A}_{i} x-b_{i}\right)}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}
\end{aligned}
$$

Randomized Kaczmarz and SGD

Note:

$$
\nabla f_{i}(x)=\mathbf{A}_{i}^{\top}\left(\mathbf{A}_{i} x-b_{i}\right)
$$

Choosing

$$
p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}
$$

reweighted SGD becomes

$$
\begin{aligned}
x^{k+1} & =x^{k}-\frac{\eta\|\mathbf{A}\|_{F}^{2}}{n\left\|\mathbf{A}_{i}\right\|_{2}^{2}} \nabla f_{i}\left(x^{k}\right) \\
& =x^{k}-\eta \frac{\|\mathbf{A}\|_{F}^{2}}{n} \frac{\mathbf{A}_{i}^{\top}\left(\mathbf{A}_{i} x-b_{i}\right)}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}
\end{aligned}
$$

Convergence of RK

Convergence of RK [Strohmer - Vershynin 2009]

$$
x^{k+1} \quad=x^{k} \quad-\frac{\mathbf{A}_{i k}^{\top}\left(\mathbf{A}_{i_{k}} x^{k}-b_{i k}\right)}{\left\|\mathbf{A}_{i k}\right\|^{2}}
$$

Convergence of RK [Strohmer - Vershynin 2009]

$$
x^{k+1}-x^{\star}=x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top}\left(\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}
$$

Convergence of RK [Strohmer - Vershynin 2009]

$$
\begin{aligned}
x^{k+1}-x^{\star} & =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top}\left(\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}\left(x^{k}-x^{\star}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}
\end{aligned}
$$

Convergence of RK [Strohmer - Vershynin 2009]

$$
\begin{aligned}
x^{k+1}-x^{\star} & =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top}\left(\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}\left(x^{k}-x^{\star}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =\left(\mathbf{I}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\right)\left(x^{k}-x^{\star}\right)
\end{aligned}
$$

Convergence of RK [Strohmer - Vershynin 2009]

$$
\begin{aligned}
x^{k+1}-x^{\star} & =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top}\left(\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}\left(x^{k}-x^{\star}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =\left(\mathbf{I}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\right)\left(x^{k}-x^{\star}\right)
\end{aligned}
$$

Taking the norm,

$$
\left\|x^{k+1}-x^{\star}\right\|_{2}^{2}=\left\|\left(\mathbf{I}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\right)\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}
$$

Convergence of RK [Strohmer - Vershynin 2009]

$$
\begin{aligned}
x^{k+1}-x^{\star} & =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top}\left(\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =x^{k}-x^{\star}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}\left(x^{k}-x^{\star}\right)}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \\
& =\left(\mathbf{I}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\right)\left(x^{k}-x^{\star}\right)
\end{aligned}
$$

Taking the norm,

$$
\begin{aligned}
\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} & =\left\|\left(\mathbf{I}-\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\right)\left(x^{k}-x^{\star}\right)\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left\|\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2},
\end{aligned}
$$

where the last step is by orthogonality.

Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}$, taking the expectation conditioned on x^{k} we have

$$
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \mid x^{k}\right]=\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left.\left\|\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}\right|^{k}\right]
$$

Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}$, taking the expectation conditioned on x^{k} we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \mid x^{k}\right] & =\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left.\left\|\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}\right|^{k}\right] \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}\left\|\frac{\mathbf{A}_{i}^{\top} \mathbf{A}_{i}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}
\end{aligned}
$$

Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}$, taking the expectation conditioned on x^{k} we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \mid x^{k}\right] & =\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left.\left\|\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}\right|^{k}\right] \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}\left\|\frac{\mathbf{A}_{i}^{\top} \mathbf{A}_{i}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2} .
\end{aligned}
$$

Note that

$$
\left\|\frac{\mathbf{A}_{i}^{\top} \mathbf{A}_{i}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}\left(\mathbf{A}_{i}\left(x^{k}-x^{\star}\right)\right)^{2}}{\left\|\mathbf{A}_{i}\right\|_{2}^{4}}=\frac{\left(\mathbf{A}_{i}\left(x^{k}-x^{\star}\right)\right)^{2}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}} .
$$

Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}$, taking the expectation conditioned on x^{k} we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \mid x^{k}\right] & =\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left.\left\|\frac{\mathbf{A}_{i_{k}}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}\right|_{2} ^{k}\right] \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}\left\|\frac{\mathbf{A}_{i}^{\top} \mathbf{A}_{i}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left(\mathbf{A}_{i}\left(x^{k}-x^{\star}\right)\right)^{2}}{\|\mathbf{A}\|_{F}^{2}}
\end{aligned}
$$

Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}$, taking the expectation conditioned on x^{k} we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \mid x^{k}\right] & =\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left.\left\|\frac{\mathbf{A}_{i, k}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}\right|^{k} x^{k}\right] \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}\left\|\frac{\mathbf{A}_{i}^{\top} \mathbf{A}_{i}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left(\mathbf{A}_{i}\left(x^{k}-x^{\star}\right)\right)^{2}}{\|\mathbf{A}\|_{F}^{2}} \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\frac{\left\|\mathbf{A}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}
\end{aligned}
$$

Convergence of RK [Strohmer - Vershynin 2009]

If we select row i with probability $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}$, taking the expectation conditioned on x^{k} we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|_{2}^{2} \mid x^{k}\right] & =\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\left.\left\|\frac{\mathbf{A}_{i k}^{\top} \mathbf{A}_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}\right|^{k} x^{k}\right] \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}\left\|\frac{\mathbf{A}_{i}^{\top} \mathbf{A}_{i}}{\left\|\mathbf{A}_{i}\right\|_{2}^{2}}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\sum_{i} \frac{\left(\mathbf{A}_{i}\left(x^{k}-x^{\star}\right)\right)^{2}}{\|\mathbf{A}\|_{F}^{2}} \\
& =\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\frac{\left\|\mathbf{A}\left(x^{k}-x^{\star}\right)\right\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}} \\
& \leq\left\|x^{k}-x^{\star}\right\|_{2}^{2}-\frac{\sigma_{\text {min }}^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\left\|x^{k}-x^{\star}\right\|_{2}^{2} .
\end{aligned}
$$

Convergence Rate

Theorem (Strohmer - Vershynin 2009)

Let x be the solution to the consistent system of linear equations $\mathbf{A} x=b$. Then the Randomized Kaczmarz method converges to x exponentially in expectation. At each iteration,

$$
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|^{2}\right] \leq\left(1-\frac{\sigma_{\min }^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right) \mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|^{2}\right] .
$$

- $\sigma_{\min }(\mathbf{A})$ is the smallest singular value of \mathbf{A}
- $\|\mathbf{A}\|_{F}^{2}=\sum_{i, j} \mathbf{A}_{i j}^{2}$

Convergence Rate

Theorem (Strohmer - Vershynin 2009)

Let x be the solution to the consistent system of linear equations $\mathbf{A} x=b$. Then the Randomized Kaczmarz method converges to x exponentially in expectation. At each iteration,

$$
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|^{2}\right] \leq\left(1-\frac{\sigma_{\min }^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right) \mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|^{2}\right]
$$

Iterating the result above

$$
\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|_{2}^{2}\right] \leq\left(1-\frac{\sigma_{\min }^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right)^{k}\left\|x^{0}-x^{\star}\right\|_{2}^{2}
$$

- $\sigma_{\min }(\mathbf{A})$ is the smallest singular value of \mathbf{A}
- $\|\mathbf{A}\|_{F}^{2}=\sum_{i, j} \mathbf{A}_{i j}^{2}$

Inconsistent Systems

We assume $\mathbf{A} x=b$ is overdetermined.

Inconsistent Systems

We assume $\mathbf{A} x=b$ is overdetermined.

If no solution x exists, we seek the least-squares solution

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|b-\mathbf{A} x\|_{2}^{2}
$$

Inconsistent Systems

We assume $\mathbf{A} x=b$ is overdetermined.

If no solution x exists, we seek the least-squares solution

$$
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|b-\mathbf{A} x\|_{2}^{2} .
$$

For simplicity, we will assume that \mathbf{A} is full rank.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Inconsistent Systems

Solution spaces $H_{i}=\left\{x: \mathbf{A}_{i} x=b_{i}\right\}$ no longer all intersect.

Convergence Rate for Inconsistent Systems

Theorem (Needell 2010, Zouzias-Freris 2013)
At each iteration,

$$
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|^{2}\right] \leq\left(1-\frac{\sigma_{\min }^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right) \mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|^{2}\right]+\frac{\left\|r^{\star}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}} .
$$

- $\sigma_{\min }(\mathbf{A})$ is the smallest singular value of \mathbf{A}
- $\|\mathbf{A}\|_{F}^{2}=\sum_{i, j} \mathbf{A}_{i j}^{2}$
- $r^{\star}=\mathbf{A} x^{\star}-b$ is the least-squares residual
- $\frac{\left\|r^{\star}\right\|^{2}}{\sigma_{\text {min }}^{2}(\mathbf{A})}$ is referred to as the convergence horizon.

Convergence Rate for Inconsistent Systems

Theorem (Needell 2010, Zouzias-Freris 2013)
At each iteration,

$$
\mathbb{E}\left[\left\|x^{k+1}-x^{\star}\right\|^{2}\right] \leq\left(1-\frac{\sigma_{\min }^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right) \mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|^{2}\right]+\frac{\left\|r^{\star}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}} .
$$

Iterating the result above,

$$
\mathbb{E}\left[\left\|x^{k}-x^{\star}\right\|^{2}\right] \leq\left(1-\frac{\sigma_{\min }^{2}(\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}\right)^{k}\left\|x^{0}-x^{\star}\right\|^{2}+\frac{\left\|r^{\star}\right\|^{2}}{\sigma_{\min }^{2}(\mathbf{A})},
$$

- $\sigma_{\text {min }}(\mathbf{A})$ is the smallest singular value of \mathbf{A}
- $\|\mathbf{A}\|_{F}^{2}=\sum_{i, j} \mathbf{A}_{i j}^{2}$
- $r^{\star}=\mathbf{A} x^{\star}-b$ is the least-squares residual
- $\frac{\left\|r^{\star}\right\|^{2}}{\sigma_{\text {min }}^{2}(\mathbf{A})}$ is referred to as the convergence horizon.

RK with Averaging

Parallelizing RK

RK:

$$
x^{k+1}=x^{k}-\quad \frac{\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \mathbf{A}_{i_{k}}^{\top}
$$

Parallelizing RK

Relaxed RK:

$$
x^{k+1}=x^{k}-\lambda_{k, i_{k}} \frac{\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \mathbf{A}_{i_{k}}^{\top}
$$

Parallelizing RK

Relaxed RK:

$$
x^{k+1}=x^{k}-\lambda_{k, i_{k}} \frac{\mathbf{A}_{i_{k}} x^{k}-b_{i_{k}}}{\left\|\mathbf{A}_{i_{k}}\right\|^{2}} \mathbf{A}_{i_{k}}^{\top}
$$

We consider a simple parallel extension in which we use a weighted average of independent updates.

RK with averaging:

$$
x^{k+1}=x^{k}-\sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{A}_{i} x^{k}-b_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}} \mathbf{A}_{i}^{\top}
$$

Weights w_{i}
Number of threads $\left|\tau_{k}\right|$

Some definitions

Normalization matrix
$\mathbf{D}:=\operatorname{Diag}\left(\left\|\mathbf{A}_{1}\right\|,\left\|\mathbf{A}_{2}\right\|, \ldots,\left\|\mathbf{A}_{m}\right\|\right)$,
so that the matrix $\mathbf{D}^{-1} \mathbf{A}$ has rows with unit norm.

Some definitions

Normalization matrix

$$
\mathbf{D}:=\operatorname{Diag}\left(\left\|\mathbf{A}_{1}\right\|,\left\|\mathbf{A}_{2}\right\|, \ldots,\left\|\mathbf{A}_{m}\right\|\right)
$$

so that the matrix $\mathbf{D}^{-1} \mathbf{A}$ has rows with unit norm.
Probability matrix

$$
\mathbf{P}:=\operatorname{Diag}\left(p_{1}, p_{2}, \ldots, p_{m}\right)
$$

where $p_{j}=\mathbb{P}(i=j)$ with $i \sim \mathcal{D}$.

Some definitions

Normalization matrix

$$
\mathbf{D}:=\operatorname{Diag}\left(\left\|\mathbf{A}_{1}\right\|,\left\|\mathbf{A}_{2}\right\|, \ldots,\left\|\mathbf{A}_{m}\right\|\right)
$$

so that the matrix $\mathbf{D}^{-1} \mathbf{A}$ has rows with unit norm.
Probability matrix

$$
\mathbf{P}:=\operatorname{Diag}\left(p_{1}, p_{2}, \ldots, p_{m}\right)
$$

where $p_{j}=\mathbb{P}(i=j)$ with $i \sim \mathcal{D}$.
Weight matrix

$$
\mathbf{W}:=\operatorname{Diag}\left(w_{1}, w_{2}, \ldots, w_{m}\right) .
$$

Coupling between weights and probabilities

Recall the update

$$
\begin{aligned}
x^{k+1} & =x^{k}-\sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{A}_{i} x^{k}-b_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}} \mathbf{A}_{i}^{\top} \\
& =x^{k}-\mathbf{A}^{\top} \sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{I}_{i}^{\top} \mathbf{I}_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}}\left(\mathbf{A} x^{k}-b\right)
\end{aligned}
$$

Coupling between weights and probabilities

Recall the update

$$
\begin{aligned}
x^{k+1} & =x^{k}-\sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{A}_{i} x^{k}-b_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}} \mathbf{A}_{i}^{\top} \\
& =x^{k}-\mathbf{A}^{\top} \sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{I}_{i}^{\top} \mathbf{I}_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}}\left(\mathbf{A} x^{k}-b\right)
\end{aligned}
$$

As the number of threads $\left|\tau_{k}\right| \rightarrow \infty$,

$$
x^{k+1}=x^{k}-\mathbf{A}^{\top} \mathbb{E}\left[w_{i} \frac{\mathbf{I}_{i}^{\top} \mathbf{I}_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}}\right]\left(\mathbf{A} x^{k}-b\right)
$$

Coupling between weights and probabilities

Recall the update

$$
\begin{aligned}
x^{k+1} & =x^{k}-\sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{A}_{i} x^{k}-b_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}} \mathbf{A}_{i}^{\top} \\
& =x^{k}-\mathbf{A}^{\top} \sum_{i \in \tau_{k}} \frac{w_{i}}{\left|\tau_{k}\right|} \frac{\mathbf{I}_{i}^{\top} \mathbf{I}_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}}\left(\mathbf{A} x^{k}-b\right)
\end{aligned}
$$

As the number of threads $\left|\tau_{k}\right| \rightarrow \infty$,

$$
x^{k+1}=x^{k}-\mathbf{A}^{\top} \mathbb{E}\left[w_{i} \frac{\mathbf{I}_{i}^{\top} \mathbf{I}_{i}}{\left\|\mathbf{A}_{i}\right\|^{2}}\right]\left(\mathbf{A} x^{k}-b\right)
$$

Note:

- This is a deterministic update.
- $\mathbb{E}\left[w_{i} \frac{\mathbf{I}_{i}^{\top} \boldsymbol{i}_{i}}{\left\|\boldsymbol{A}_{i}\right\|^{2}}\right]=\mathrm{PWD}^{-2}$.

Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we should require that x^{\star} be a fixed point of

$$
x^{k+1}=x^{k}-\mathbf{A}^{\top} \mathbf{P W D}^{-2}\left(\mathbf{A} x^{k}-b\right) .
$$

Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we should require that x^{\star} be a fixed point of

$$
x^{k+1}=x^{k}-\mathbf{A}^{\top} \mathbf{P W D}^{-2}\left(\mathbf{A} x^{k}-b\right) .
$$

Any fixed point x must solve

$$
\mathbf{A}^{\top} \mathbf{P} \mathbf{W} \mathbf{D}^{-2} \mathbf{A} x=\mathbf{A}^{\top} \mathbf{P} \mathbf{W} \mathbf{D}^{-2} b .
$$

Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we should require that x^{\star} be a fixed point of

$$
x^{k+1}=x^{k}-\mathbf{A}^{\top} \mathbf{P W D}^{-2}\left(\mathbf{A} x^{k}-b\right) .
$$

Any fixed point x must solve

$$
\mathbf{A}^{\top} \mathbf{P} \mathbf{W D}^{-2} \mathbf{A} x=\mathbf{A}^{\top} \mathbf{P W D}^{-2} b .
$$

These are the normal equations of the weighted least-squares problem

$$
\text { minimize } \frac{1}{2}\|b-\mathbf{A} x\|_{\mathbf{P W D}^{-2}}^{2}, \quad \text { where } \quad\|\cdot\|_{\mathbf{M}}^{2}=\langle\cdot, \mathbf{M} \cdot\rangle .
$$

Coupling between weights and probabilities

Since we want the method to converge to the least-squares solution, we should require that x^{\star} be a fixed point of

$$
x^{k+1}=x^{k}-\mathbf{A}^{\top} \mathbf{P} \mathbf{W D} \mathbf{D}^{-2}\left(\mathbf{A} x^{k}-b\right)
$$

Any fixed point x must solve

$$
\mathbf{A}^{\top} \mathbf{P W D}^{-2} \mathbf{A} x=\mathbf{A}^{\top} \mathbf{P W D}^{-2} b .
$$

These are the normal equations of the weighted least-squares problem

$$
\text { minimize } \frac{1}{2}\|b-\mathbf{A} x\|_{\mathbf{P W D}^{-2}}^{2}, \quad \text { where } \quad\|\cdot\|_{\mathbf{M}}^{2}=\langle\cdot, \mathbf{M} \cdot\rangle .
$$

For inconsistent systems, we require the following coupling between the probability matrix \mathbf{P} and the weight matrix \mathbf{W} :

$$
\mathbf{P W D}^{-2}=\alpha \mathbf{I} .
$$

General convergence for RK with averaging

Theorem

Suppose $\mathbf{P W D}^{-2}=\frac{\alpha}{\|\mathbf{A}\|_{\mathcal{F}}^{\mathbf{2}}} \mathbf{I}$ for relaxation parameter $\alpha>0$. Then the error at each iteration of RK with averaging satisfies

$$
\begin{aligned}
& \mathbb{E}\left[\left\|e^{k+1}\right\|^{2}\right] \\
& \quad \leq \sigma_{\max }\left(\left(\mathbf{I}-\alpha \frac{\mathbf{A}^{\top} \mathbf{A}}{\|\mathbf{A}\|_{F}^{2}}\right)^{2}-\frac{\alpha^{2}}{\left|\tau_{k}\right|}\left(\frac{\mathbf{A}^{\top} \mathbf{A}}{\|\mathbf{A}\|_{F}^{2}}\right)^{2}\right)\left\|e^{k}\right\|^{2}+\frac{\alpha}{\left|\tau_{k}\right|} \frac{\left\|r^{k}\right\|_{\mathbf{W}}^{2}}{\|\mathbf{A}\|_{F}^{2}},
\end{aligned}
$$

where

- $e^{k}=x^{k}-x^{\star}$
- $\|\cdot\|_{\mathbf{W}}^{2}=\langle\cdot, \mathbf{W} \cdot\rangle$
- $\|\mathbf{A}\|_{F}^{2}=\sum_{i, j} \mathbf{A}_{i j}^{2}$
- $r^{k}=b-\mathbf{A} x^{k}$ is the $k^{\text {th }}$ residual.

Uniform Weights

When the weights are uniform, i.e. $\mathbf{W}=\alpha \mathbf{I}$,

$$
\begin{aligned}
\left\|r^{k}\right\|_{\mathbf{W}}^{2} & =\left\|b-\mathbf{A} x^{k}\right\|_{\mathbf{W}}^{2} \\
& =\alpha^{2}\left\|b+\mathbf{A}\left(-x^{\star}+x^{\star}-x^{k}\right)\right\|_{2}^{2} \\
& =\alpha^{2}\left\|r^{\star}+\mathbf{A} e^{k}\right\|_{2}^{2} .
\end{aligned}
$$

Uniform Weights

When the weights are uniform, i.e. $\mathbf{W}=\alpha \mathbf{I}$,

$$
\begin{aligned}
\left\|r^{k}\right\|_{\mathbf{W}}^{2} & =\left\|b-\mathbf{A} x^{k}\right\|_{\mathbf{W}}^{2} \\
& =\alpha^{2}\left\|b+\mathbf{A}\left(-x^{\star}+x^{\star}-x^{k}\right)\right\|_{2}^{2} \\
& =\alpha^{2}\left\|r^{\star}+\mathbf{A} e^{k}\right\|_{2}^{2}
\end{aligned}
$$

Since $\mathbf{A}^{\top} r^{\star}=0$,

$$
\left\|r^{k}\right\|_{\mathbf{W}}^{2}=\alpha^{2}\left(\left\|r^{\star}\right\|_{2}^{2}+\left\|\mathbf{A} e^{k}\right\|_{2}^{2}\right)
$$

Convergence for RK with averaging using uniform weights

Theorem

Suppose $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$ and $\mathbf{W}=\alpha \mathbf{I}$. Then the expected error at each iteration of RK with averaging satisfies
$\mathbb{E}\left[\left\|e^{k+1}\right\|^{2}\right]$

$$
\leq \sigma_{\max }\left[\left(\mathbf{I}-\alpha \frac{\mathbf{A}^{\top} \mathbf{A}}{\|\mathbf{A}\|_{F}^{2}}\right)^{2}+\frac{\alpha^{2}}{\left|\tau_{k}\right|}\left(\mathbf{I}-\frac{\mathbf{A}^{\top} \mathbf{A}}{\|\mathbf{A}\|_{F}^{2}}\right) \frac{\mathbf{A}^{\top} \mathbf{A}}{\|\mathbf{A}\|_{F}^{2}}\right]\left\|e^{k}\right\|^{2}+\frac{\alpha^{2}\left\|r^{\star}\right\|^{2}}{\mid \tau_{k}\|\mathbf{A}\|_{F}^{2}} .
$$

Takeaways:

- One can solve for the optimal α for the convergence bound based on $\sigma_{\text {max }}(\mathbf{A})$ and $\sigma_{\text {min }}(\mathbf{A})$.
- Increasing α amplifies effect of noise.
- Increasing $\left|\tau_{k}\right|$ improves the convergence rate and decreases the convergence horizon.

Parallel Sketch and Project Method [Richtárik and Takáč 2017]

For uniform weights and in the consistent case, this method was analyzed by Richtárik and Takáč under a more general framework.

Parallel Sketch and Project Method [Richtárik and Takáč 2017]

For uniform weights and in the consistent case, this method was analyzed by Richtárik and Takáč under a more general framework.

Sketch and project methods: Randomized iterative solvers for linear systems.

Iteratively project on to the solution space of

$$
\mathbf{S}_{i}^{\top} \mathbf{A} x=\mathbf{S}_{i}^{\top} b,
$$

where $\mathbf{S}_{i} \in \mathbb{R}^{m \times \tau}$ and $i \sim \mathcal{D}$.
Choosing $\mathbf{S}_{i}=e_{i}$, the $i^{\text {th }}$ coordinate vector, recovers RK.

Experiments

Effect of number of threads $\left|\tau_{k}\right|$

Figure 1: Uniform weights $w_{i}=1$
and probabilities proportional to squared row norms $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$.

$$
\mathbf{P W D}^{-2} \propto \mathbf{I}
$$

Effect of number of threads $\left|\tau_{k}\right|$

Figure 1: Uniform weights $w_{i}=1$ and probabilities proportional to squared row norms $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$.

$$
\mathbf{P W D}^{-2} \propto \mathbf{I}
$$

Figure 2: Uniform weights $w_{i}=1$ and uniform probabilities $p_{i}=\frac{1}{m}$.

$$
\mathbf{P W D}^{-2} \nless \mathbf{I}
$$

Effect of number of threads $\left|\tau_{k}\right|$

Figure 1: Uniform weights $w_{i}=1$ and probabilities proportional to squared row norms $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$.

$$
\mathbf{P W D}^{-2} \propto \mathbf{I}
$$

Figure 2: Uniform weights $w_{i}=1$ and uniform probabilities $p_{i}=\frac{1}{m}$.

$$
\mathbf{P W D}^{-2} \not \propto \mathbf{I}
$$

$$
\text { minimize } \frac{1}{2}\|b-\mathbf{A} x\|_{\mathbf{P W D}^{-2}}^{2} .
$$

Effect of relaxation parameter α

Figure 3: Uniform weights $w_{i}=\alpha$, probabilities proportional to squared row norms $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$, and number of threads $\left|\tau_{k}\right|=10$.

Optimal choice for α

Figure 4: Uniform weights $w_{i}=\alpha$ and probabilities proportional to squared row norms $p_{i}=\frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$.

Figure 5: Weights proportional to squared row norms $w_{i}=\alpha m \frac{\left\|\mathbf{A}_{i}\right\|^{2}}{\|\mathbf{A}\|_{F}^{2}}$ and uniform probabilities $p_{i}=\frac{1}{m}$.

Summary

- Analyze an RK method with averaging that takes advantage of parallel computation
- Find a natural coupling between the probability matrix \mathbf{P} and weight matrix W
- Prove the expected convergence rate per iteration in the general case and a more interpretable rate for uniform weights
- Prove and demonstrate improved convergence with increasing $\left|\tau_{k}\right|$

Thanks!

References

- T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential convergence. Journal of Fourier Analysis and Applications, 15(2):262278, 2009.
- D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT Numerical Mathematics, 50(2):395 403, 2010.
- A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for solving least-squares. SIAM Journal on Matrix Analysis and Applications, 34(2):773 793, 2013.
- D. Needell, R. Ward, and N. Srebro. Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm. Advances in Neural Information Processing Systems. 2014.
- D. Needell and R. Ward. "Batched stochastic gradient descent with weighted sampling." International Conference Approximation Theory. Springer, Cham, 2016.
- P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: Algorithms and convergence theory. arXiv e-prints, page arXiv:1706.01108, June 2017.
- K. Yuan, Q. Ling, and W. Yin. "On the convergence of decentralized gradient descent." SIAM Journal on Optimization 26.3 (2016): 1835-1854.

